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Abstract 

 
Data compression like image and video compression has come a long way since the 
introduction of Compressive Sensing (CS) which compresses sparse signals such as images, 
videos etc. to very few samples i.e. M < N measurements. At the receiver end, a robust and 
efficient recovery algorithm estimates the original image or video. Many prominent 
algorithms solve least squares problem (LSP) iteratively in order to reconstruct the signal 
hence consuming more processing time. In this paper non-iterative threshold based recovery 
algorithm (NITRA) is proposed for the recovery of images and videos without solving LSP, 
claiming reduced complexity and better reconstruction quality. The elapsed time for images 
and videos using NITRA is in sµ  range which is 100 times less than other existing 
algorithms. The peak signal to noise ratio (PSNR) is above 30 dB, structural similarity 
(SSIM) and structural content (SC) are of 99%. 
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1. Introduction 

With paramount growth in data flow in wireless sensor networks (WSNs), compression of 
data becomes essential, especially when it comes to images and videos. Traditional ways of 
compression requires all samples of image or video for perfect reconstruction. But in 2004, it 
was found that signals can be perfectly reconstructed even with very few samples which led 
to the development of the technique of Compressed Sensing (CS) [1-4]. CS involves the 
compression of original information into measurements from which the original signal can 
be got back at the receiver side efficiently with better quality and minimized delay in 
reconstruction, thus making CS applicable for WSNs [2]. 

Greedy algorithms like Orthogonal Matching Pursuit (OMP) [5], Compressed Sampling 
Matching Pursuit (CoSaMP) [6], Stagewise Orthogonal Matching Pursuit (StOMP) [7], 
Enhanced Orthogonal Matching Pursuit (EOMP) [8], Iterative Hard Thresholding (IHT) [9] 
etc. are prominent reconstruction techniques which solves LSP iteratively. Larger the 
number of iterations, greater is the time delay in reconstruction and complexity which is 
disadvantageous while dealing with large amounts of data.  This paper proposes NITRA 
which has no iterations but threshold operation, to estimate the signal from the compressed 
measurements exhibiting reduced complexity with less elapsed time. The PSNR, SSIM and 
the quality of the resultant reconstructed image/video is good and has least error. This new 
algorithm is benchmarked by comparing various parameters like PSNR, SSIM, SC etc. with 
other currently used algorithms. 

Section 2 describes the related work undergone so far on compressed sensing and 
reconstruction, Section 3 gives the notations used in this paper. In section 4 the basic 
compressed sensing procedure is explained, Section 5 projects the NITRA procedure and its 
mathematical error bound calculations, Section 6 discusses the results and comparisons and 
Section 7 concludes the whole work. 

2. Related Work 
Many have contributed to the field of CS in various ways, building efficient and strong 

procedures to compress and recover signals, images or videos. Dana Mackernzie [1], in his 
paper, “Compressed Sensing Makes Every Pixel Count”, describes the initial stages and 
ideas involved in the history of compressed sensing. Masiero et al. [2], explains the Bayesian 
analysis of CS and have displayed empirical proof that CS can be used as a practical 
compression and recovery technique by using real time data collected with WSN testbed. 
Emmanual Candes et al. and David L. Donoho have described in their respective papers [3, 4] 
about reconstruction of data from very less number of frequency components or from 
incomplete frequency samples. 

OMP [5], proposed by T. Tonu Cai and Lie Wang selects the exact support of the signal 
with high probability allowing perfect reconstruction. Thomas Blumensath [9] has 
introduced another efficient algorithm for reconstruction of data from measurements called, 
‘Iterative Hard Thresholding (IHT) algorithm’, where a hard threshold operator is used for 
selecting only the required values which are sufficient for reconstruction of the compressed 
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data. It was Zhiling Zhang [10], who compared some of the prominent algorithms in terms of 
failure rate and mean square error has proved that T-MSBL shows superiority over those 
algorithms. There are many parameters to benchmark the quality of the reconstructed data 
like PSNR, MSE, Average difference, Maximum Difference etc. These measuring 
parameters were presented by Marta Mrak et.al. in [11]. Needell and Tropp, in [6] have 
proposed some lemmas on the basis that the measurement matrix follows RIP which is being 
used in this paper.  

3. Notations 

The following notations are used in this paper: '' x  is the input signal vector of size )1( ×N  
where 2nN = , n is number of rows/columns. '' y  is a M - dimensional vector i.e., 
measurement vector and '' sx  is a N  dimensional vector which has been sparsifed in some 
transform domain using suitable basis functions available, hence the name ‘sparse vector’. 
The sparsity of the sparse vector is represented by '' s . The ‘measurement matrix’ used is 
denoted by the notation ''φ  which is of dimension )( NM × . The transpose of this matrix is 
denoted by '' Tφ  of size )( MN × . The thresholding operator that is being used in this 
algorithm is ''β  which is calculated based on the measurements '' y . The estimated signal is 
represented by '' rx  and the residual by rsr xxr −= , which is the error between the input 
sparse signal and the estimated signal. The vector obtained before thresholding is represented 
by the notation '' btx . ''e  denotes the observation error and augφ  represents the augmented 
measurement matrix formed using identity and zero matrices.  

4. Theory of Compressed Sensing 

Consider a real valued input vector ‘ x ’ of size 1×N , i.e. mxx ℜ∈: , where ‘ m ’ is the real 
space dimension. CS can be applied only to those data that are sparse, i.e. data which contain 
only less number of non-zero values. Any vector ‘ sx ’ is ‘ s ’ sparse if there are ‘ s ’ non-zero 
values in it. However, all the signals are not naturally sparse and hence they are intentionally 
sparsified using a transform basis. The transformation and sparsification are carried out using 
orthonormal basis function, denoted by ‘ψ ’, which may be DCT, DWT, DFT etc. depending 
upon the application. Equation (1) depicts the sparse vector formation [12]: 

                                                     xxs ψ=                                                                    (1) 

The sparsified signal is dimensionally undersized to form the measurements ‘ y ’ using 
measurement matrix ‘ φ ’, which is of size NM × . Gaussian, Binary, Toeplitz, Hankel, 
Kronecker product etc. and their combinations are used widely as measurement matrices. ‘ y ’ 
is of dimension )1( ×M  and is used to reconstruct the input image at the receiver end. The 
receiver is provided with both ‘ y ’ and  ‘φ ’ by the transmitter with which it reconstructs the 
input data. Since xxs ψ=  the mathematical representation for calculating measurement 
vector from the sparsified vector is given by equation (2): 
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                                                       sxy φ=    or   sxy ψφ=                                                     (2) 

 

4.1 General Compressed Sensing Framework  

 Fig. 1 describes the CS framework at both transmitter and receiver sides and is common 
for both images and videos [13, 14]. The test videos considered here are in uncompressed 
YUV format and only the luminance component is used for further processing.  

 

 

 

 

 

 

 

  

  

 

The nn ×  pixel sub-matrices are transformed into another domain for sparsification using 
DCT and the resultant coefficients are sparsified. The measurement vector is calculated by 
processing the sparse vector with measurement matrix φ  which may be any random matrix. 
The disadvantage of selecting a random matrix is that, for every execution, the values of the 
matrix changes resulting in variations in the execution time, output quality, efficiency, PSNR 
etc. Generating a fixed measurement matrix will fix the above said problem. 

After many trials augmented matrix of size NM × , given by equation (3), formed by 
combining identity matrix of size MM × , and zero matrix of size )( MNM −× , was found 
to extract necessary information selectively since it has unity values in the leading diagonal. 
The advantages of augmented matrix are that they are compact, easy to be expressed and 
useful for faster implementations and a constant output will be obtained for every execution. 

           [ ])(| MNMMMaug ZI −××==φφ         (3) 

where Z  represents null matrix. Augmented matrix aids better in compression and 
reconstruction processes since the matrix follows restricted isometry property (RIP) and 
principle transform sparsity. The second and third lemmas were proposed by Needell and 
Tropp [6] which are used in this paper to prove the error bound of the proposed algorithm. 

Lemma 1: For a measurement matrix φ  which satisfies RIP with sparsity s  

Fig. 1. General framework for Compressed Sensing 

Y component of 
YUV sequence 

Splitting the 
video into 

frames 

Dividing the 
frames into 8x8 

 

Transmitting
)1( ×My  and 

)( NM ×φ from Tx 

Reception of y  and 
φ at the Rx 

 

Applying reconstruction 
algorithm to y  and φ  

Inverse Basis 
function 

Combine the processed 
frames to form the 
reconstructed video 

Calculating

sxy φ=  , where

xxs ψ=  

Orthonormal 
basis function to 

every single block 



4164                                            J. Florence Gnana Poovathy et al.: Non-Iterative Threshold based Recovery Algorithm (NITRA) 
for Compressively Sensed Images and Videos 

                                                                
22

1 yy s
T δφ +≤                            (4) 

222
)1()1( sss

T
ss xxx δφφδ +≤≤−

                                               
(5) 

And also 

22
)( sss

T xxI δφφ ≤− ,                    (6) 

22 sss
T xx δφφ ≤

                         (7)
 

 A perfect measurement matrix should satisfy the following Lemmas proposed by 
Needel and Tropp, Proposition 3.5 in [6]. 

Lemma 2: If φ  satisfies the RIP 
22

1 sss xx δφ +≤ , sxx s ≤∀
0

: , then 

s

x
xx s

ssss
1

22
11 δδφ +++≤

                    
(8) 

Lemma 3: For any ‘ x ’ let ‘ sx ’ be the best approximation to ‘ x ’. Let sr xxx −= . Let 
exxxexy srs
~+=+=+= φφφφ . If the RIP holds for sparsity ‘ s ’, then the error e~  can be 

bounded by 

              
2

1

22
11~ e

s

xx
xxe s

sss +
−

++−+≤ δδ
         

(9)     

where, 
2

e  is the observation error which is zero. Now that φ  which satisfies RIP has been 
obtained, measurement vector y  is to be calculated. y  is calculated by multiplying 

)( NM ×φ  and )1(ˆ ×Nx . The resultant vector )1( ×My  is transmitted to the receiver along 
with φ . Thus transmission of the whole input image block is reduced to just NM <
measurements resulting in lot of reduction in execution time, complexity etc. If there are p
blocks in a frame/image, then the total number of measurements required for reconstructing 
the frame/ image will be pM . 

5. Non-Iterative Threshold based Recovery Algorithm 
NITRA and other algorithms used in this paper were developed as MATLAB scripts. Dell 

Inspiron laptop with Intel i5 core processor was used as a computing resource for the 
execution of all the algorithms mentioned in this paper and the comparison of various 
objective measures of these algorithms. Upon the reception of y  and φ , the receiver should 
apply a robust reconstruction algorithm to these inputs and recover the original input 
image/video. Many CS reconstruction algorithms as in [5-9] iteratively solve LSP where the 
number of iterations depends upon either sparsity or any comfortable fixed number. The 
proposed algorithm NITRA is named after its algorithmic procedure which involves no 
iteration to find the best match. It uses only transpose function and a thresholding operator β , 
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where β  depends upon the measurement vector y . The threshold operator is calculated 
using equation (10). 

     ( ) ys maxlog10 ×=β                             (10) 

where s  is the sparsity given as 
0

xs = . y  is considered as an important metric to find the 
threshold because among the three inputs that are to be provided to the receiver namely, 

sy  and ,φ , y  carries the information about the pixel values of the image or video frame in 
the form of coefficients. Table 1 provides the NITRA algorithm which uses these inputs to 
recover the images and videos. 

 

 

 

 

 

 

 

 

 

 

 

At the transmitter end, the measurement vector y  is obtained by finding the inner product 
of φ  and sx  as explained in section 4. In NITRA, φ  is fixed for every block and hence it 
will be sufficient to transmit φ  only once to the receiver thus consuming less memory. 

According to the NITRA’s procedure provided in Table 1, at the receiving end, the 
estimation of the original image is made by taking the inner product of Tφ  and y . Only 
those values which satisfy the threshold condition β  are selected for reconstruction and the 
others are made zeros thereby reducing the number of computations. NITRA does not have 
iterations within every block which is advantageous in the context of reducing computational 
complexity, execution time etc. making it suitable for WSNs. After threshold operation, the 
resultant values are directly transformed back to the real space by taking 2D-IDCT. Since the 
proposed NITRA uses augmented matrix (as in equation (3)) as sensing matrix which has 
large number of zeros and unity in leading diagonal, it senses only the necessary information 
required for perfect reconstruction. NITRA does not need to solve LSP to find the best 
solution unlike the other conventional CS recovery algorithms which use random matrices 
which makes solving LSP mandatory. Also, in existing algorithms, the sensing matrix is 

NITRA framework for images and videos 

At the receiver: 

(1)  )max(log10 ys×=β  
(2) ynewx Tφ=_   
(3) for Ni :1=  

      if β≤)(_ inewx  
           ;0=q  
      else 
           )(_ inewxq =  

(4)  )(qidctrecon =  
(5) Rearrange blocks to frames 

 

Table 1. NITRA for Reconstruction of Image/Video at the Receiver 
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generated separately for each split block and hence the total performance cannot be relied 
upon in one single execution of the algorithm. The feasibility of reconstruction of images 
and videos using NITRA, its error bound and accuracy are proven mathematically by 
deriving the following theorems and lemmas. 

5.1 Error bound of the proposed method 

Since NITRA is a lossy technique of recovery of compressively sensed images and video 
frames, the perfection in reconstruction must be verified mathematically by checking the 
error in reconstruction. Using lemmas from [6], the following theorems have been proposed 
to prove that the error in reconstruction of images and videos by NITRA is within the 
minimal range. Theorem 1 gives the condition which is to be satisfied for perfect 
reconstruction. The norm of the difference between the original input vector x and the 
estimated vector rx  must be less than or equal to the sum of second norm of sparse vector 

sx  and the estimated error ε~ . ε~  depends upon x , sx  and e as in equation (12) where e is 
the assumed error and can be neglected since it tends to zero. 
 
Theorem 1: Considering a noisy observation, exy += φ , where x  is a vector. Let sx  be the 
sparse vector with s  non-zero elements. NITRA will recover the estimated signal rx  of the 
input x  by satisfying the following condition: 

ε~
22
+≤− sr xxx  where,                   (11) 

212
~1~ exx

s
xx ss +−+−=ε

                        
(12) 

The accuracy of NITRA for estimating x  can be represented by 

2122
~1 exx

s
xxxx ssr +−+−≤−

                             
(13)  

Equation (13) gives the accuracy of NITRA in estimating the original image from the 
compressed form. The error between the original input vector and the estimated input vector 
is less than the sum of first and second norms of the difference between original and the 
sparse vector. NITRA satisfies this equation exactly thus providing greater accuracy. 

Proof of error bound in Theorem 1 

Initially, NITRA satisfies the condition given by equation (14) 
 

222 srsr xxxxxx −+−≤−        (14) 

where, x  is any input vector. Since RHS of equations (11) and (14) are equal, LHS can be 
equated and ε~ is substituted from equation (12). The resultant will be 

 2122
~1 exx

s
xxx ssrs +−+≤−       (15) 

Substituting equation (15) in equation (14), equation (16) is obtained. 

exxxx
s

xxx sssr
~1

2122 +−+−+≤−             (16) 
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In order to apply Lemma 3 to represent the error bound 
2

~e , the term sδ+1  is multiplied 
to equation (16) in the following fashion: 

 
21222

~1111 exx
s

xxxxx sssssrs +







−+−+++≤−+ δδδ  (17)

 

Multiplication of sδ+1 to 
2

~e is avoided since 1<<sδ . Substituting equation (9) in 
equation (17), the error between the original vector and the reconstructed vector is found to 
prove equation (11), hence proving that the error by using NITRA for reconstruction is found 
to be minimum. The steps are as follows: 

 εδδ ~11 ++=−+ srs xx  

 
s

sr xxx
δ

ε
+

+≤−
1

~
22        (18) 

When the difference metric 1<<sδ , the denominator of equation (18) tends to unity and 
hence the final equation will be, 
 ε~22 +≤− sr xxx         (19) 

This proves that the error is far less than the combined errors obtained by adding 
2sx  and 

the difference terms 
2sxx −  and 

1

1
sxx

s
− .  

Theorem 2: Given a noisy observation exy += φ , where sx  is s  sparse vector, if φ  has RIP, 
then NITRA will recover an approximation rx  satisfying 

222
exxx srs +≤−                                 (20)  

The accuracy of the estimation is 

22
exx rs ≤−                     (21) 

 Proof of error bound in Theorem 2 

 The estimated error is dependent on the term 
2bts xx − . This is the difference 

between the estimates before and after thresholding operation. With the help of triangular 
inequality, we can express the error to be, 
 
 

222 btrbtsrs xxxxxx −+−≤− .                  (22) 

After thresholding, rx  becomes the best approximation to btx  than sx  which means 

22 btsbtr xxxx −≤−                                  (23) 

and thus the error will not exceed twice the value of bts xx − . The error is expressed as, 

22
2 btsrs xxxx −≤− .                    (24) 
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But exeyx s
TT

bt +=+= φφφ . Using all the above findings, the error is represented as 
follows: 
 

22
2 exxxx T

s
T

srs φφφ +−≤−  

      
22

22 exx T
s

T
s φφφ +−≤  

      ( )
22

2 exI T
s

T φφφ +−≤                   (25)

 From Lemma 1, it can be written that, 
22

1 ee s
T δφ +=  and ( )

22 sss
T xxI δφφ ≤−  

The term 
2rs xx − is nothing but the residue which can be denoted by 

2rr . Therefore, 

 222 122 exxx sssrs δδ ++≤−                 (26)      

This can also be written as 

 
222 ebxaxx srs +≤−                       (27) 

where, sa δ2=  and sb δ+= 12 . The range of sδ  is 10 << sδ . Hence 
2rr  can be 

approximated as 

 222 exxx srs +≤−                    (28)  

Equation (28) proves that the error between the sparse vector and the estimated vector is less 
than or equal to the sum of norms of sparse vector and the observation error. On the 
assumption that the observation error is zero, i.e. 0

2
=e , we can write equation (28) as 

22 srs xxx ≤− or 
22 sr xr ≤ . 

6. Results and Discussions 
     The quality of the recovery algorithm can be benchmarked by analyzing the same in two 
ways: analyzing the algorithm itself and by analyzing the results of the algorithm. Algorithm 
analysis can be carried out using various mathematical metrics like complexity calculation, 
time consumption etc. Validation of the results of the algorithm can be carried out using 
various quality measuring parameters like PSNR, SSIM, SC etc. The perceptual and 
objective quality measures of NITRA are calculated as given in the following subsections. 
The images and videos are in uncompressed portable network graphics (PNG)/tagged image 
file formats (TIFF) and YUV format respectively. More than 10 inbuilt test images in 
MATLAB and 10 video sequences taken from [15] were used to validate the efficiency of 
NITRA. The test images portrayed in this paper are lena, peppers, onion, coins and autumn 
and the test videos are foreman, akiyo, bus, Stephan and mother-daughter series. All 
comparisons and calculations portrayed here are measured when the number of 
measurements is minimum, i.e. M = 20 (considering only 31.25% of the original 
information). The objective measures which give the numerical estimation of the quality of 
the output considered for qualifying NITRA are peak signal to noise ratio (PSNR), mean 
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square error (MSE), structural similarity (SSIM), structural content (SC), normalized cross 
correlation (NK), maximum difference (MD), mean absolute error (MAE) and normalized 
absolute error (NAE) [11]. 

6.1 Perceptual quality 

As far as image and video processing is concerned, any algorithm is considered efficient 
when the results of the algorithm are perceptually perfect. Fig. 2 and Fig. 3 are the proofs 
that the perceptual qualities of the recovered images/videos are conserved to a greater extend 
along with better PSNR for only 20 measurements. For applications where clarity along with 
reduced computation time and complexity is required, NITRA will be a suitable choice. It is 
super important to note that the clarity can further be increased by increasing the number of 
measurements used during recovery process.  

                        

 

 

 

                        

 

 

 

 

6.2 Comparison of perceptual quality of NITRA with LSP based algorithms 

      The perceptual quality of NITRA can be proved excellent when the output image and 
video frames are compared with the same obtained from other algorithms. The LSP based 
algorithms considered for comparison are OMP and StOMP. StOMP is proved to be best 
among the greedy algorithms for image and video reconstruction. It is a variation of OMP 
and hence these two LSP algorithms are considered for comparison of the performance of 

b) Reconstructed Lena Image 
M=20, PSNR = 31.5440 dB 

 

d) Reconstructed 
Peppers Image 

M=20, PSNR = 30.9370 
dB 

 
 

c) Input Peppers Image a) Input Lena image 

Fig. 2. Reconstructed images using NITRA with number of measurements and their corresponding 
PSNR in dB. 

b) Reconstructed frame 
 (Foreman series) 

M = 20, PSNR = 30.8773 

a) Input frame  
(Foreman series) 

b) Reconstructed frame  
(Akiyo series) 

M = 20, PSNR = 34.7404 dB 

a) Input frame  
(Akiyo series) 

Fig. 3. Reconstructed video frames using NITRA with number of measurements and their 
corresponding PSNR in dB. 
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NITRA. Fig. 4 gives the quality comparison in terms of visual perception for both images 
and videos.  

                          

 

             

 

 

 

 

From Fig. 4, it is evident that NITRA displayed better visual quality than OMP and 
StOMP for least number of measurements i.e. M = 20. The clarity of the image and video 
frame as a whole is high in NITRA. OMP and StOMP displays blockiness artifact which is 
avoided in NITRA due to the usage of augmented matrix for sensing the appropriate values 
from the sparse vector. The PSNR obtained by the LSP based algorithms are around 24 dB 
while NITRA exhibits a PSNR of 31 dB, with least information. Thus there is approximately 
7 dB increase in PSNR while using the proposed algorithm. The appearance of the 
reconstructed image is better in comparison to other LSP based algorithms. 

6.3 Objective measures 

Ability of NITRA to perfectly reconstruct the image or video can be benchmarked by 
calculating various other quality measuring parameters and comparing them with algorithms 
like OMP and StOMP which is portrayed in Table 2. 

Average PSNR obtained is around 30 dB for images which is higher than that of StOMP 
and OMP. The SSIM is approximately 92% for images using NITRA while it is 64% and 77% 
using OMP and StOMP respectively. Though the reconstruction depends upon the pixels 
contained in the input images or video frames, the results produced while using NITRA is 
superior to the iterative algorithms considered for comparison. It is evident from Table 2 that 
NITRA reaches a maximum PSNR of 40 dB for images similar to ‘onion.png’ while LSP 
based algorithms give a maximum PSNR of only about 28 dB. MSE is around 45 while it is 

b) Recovered by NITRA 
 PSNR = 31.5440 dB 

 

a) Input Lena 
 

c) Recovered by OMP 
 PSNR = 22.40 dB 

 

d) Recovered by StOMP 
PSNR = 24.42 dB 

 

d) Input foreman e) Recovered by NITRA 
PSNR = 30.90 dB 

 

f) Recovered by OMP 
PSNR = 22.42 dB 

 

g) Recovered by StOMP 
PSNR = 23.72 dB 

 
Fig. 4. Reconstructed image and video frame (frame no. 4) using a) and d) are the inputs b) and e) are 

reconstructed using NITRA c) and f) are reconstructed using OMP and d) and g) are reconstructed 
using StOMP. The PSNR displayed here are calculated for M = 20 
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in the order of few hundreds in other algorithms. Similarly the maximum difference in pixel 
value is around 75 while in OMP and StOMP, it is above 200.  

Table 2. Objective Measures for the Quality of Reconstructed Images using NITRA, OMP and 
STOMP 

 
Input 

Sample 
Images 

 

Reconstruction 
Algorithms 

Objective Measures 

 
PSNR 
(dB) 

 
MSE 

 
SSIM 

 
SC 

 
NK 

 
MD 

 
MAE 

 
NAE 

 
Lena 

NITRA 31.54 45.56 0.92 0.99 1.00 73 3.71 2.83 E-05 
OMP 22.40 373.57 0.63 0.99 0.98 220 10.24 9.11 E-07 

StOMP 24.42 234.76 0.77 0.99 0.99 220 7.38 1.69 E-05 
 
Peppers 

NITRA 30.93 52.40 0.93 0.99 1.00 77 4.03 2.95 E-05 
OMP 21.51 459.15 0.64 0.99 0.98 198 10.98 7.21 E-06 

StOMP 25.40 187.11 0.83 0.99 0.99 206 6.84 1.77 E-05 
 

Onion 
NITRA 40.15 6.28 0.98 0.99 0.99 29 1.47 5.66 E-06 
OMP 26.88 133.26 0.86 0.99 0.99 92 3.83 1.08 E-05 

StOMP 28.43 93.34 0.99 0.99 0.99 45 2.53 3.56 E-06 
 

Coins 
 

NITRA 31.04 51.15 0.91 0.99 0.99 71 3.60 7.17 E-06 
OMP 23.95 261.94 0.73 0.99 0.98 209 8.04 3.78 E-06 

StOMP 25.82 170.42 0.95 0.99 0.99 173 6.32 2.53 E-06 
 

Autumn 
NITRA 28.44 93.12 0.87 0.99 0.99 75 5.33 3.89 E-06 
OMP 25.50 183.37 0.74 1.00 0.99 173 7.99 2.60 E-06 

StOMP 26.66 140.30 0.82 0.99 0.99 93 6.79 2.50 E-06 

The same process was carried out for videos. The quality measures were calculated for 
individual frames and were averaged over the total number of frames considered for the 
reconstruction process. Table 3 exhibits the objective measures for standard test video series, 
akiyo and foreman.  

 

Table 3. Objective Measures for the Quality of Reconstructed Videos using NITRA, OMP and 
STOMP 

 
Input 

Sample 
Videos 

 

Reconstruction 
Algorithms 

Objective Measures 

 
PSNR 
(dB) 

 
MSE 

 
SSIM 

 
SC 

 
NK 

 
MD 

 
MAE 

 
NAE 

 
Akiyo 

NITRA 34.74 21.82 0.94 0.99 1.00 78.50 3.21 4.09 E-05 
OMP 25.94 165.45 0.79 0.99 0.99 192 5.29 9.23 E-07 

StOMP 24.80 145.74 0.86 0.99 0.99 212 4.10 9.39 E-06 
 
Foreman 

NITRA 30.93 52.40 0.93 0.99 1.00 77 4.03 2.95 E-05 
OMP 22.42 372.09 0.67 0.99 0.99 253 8.88 6.84 E-05 

StOMP 23.72 276.11 0.69 0.99 0.99 249 7.55 1.11 E-05 
 

Stefan 
NITRA 24.98 206.59 0.82 1.00 0.99 106 8.72 2.64 E-05 
OMP 20.19 622.42 0.53 0.99 0.98 179 13.91 7.31 E-06 
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StOMP 21.23 489.86 0.62 0.99 0.99 132 10.11 3.35 E-06 
 

Mother-
Daughter 

NITRA 34.81 21.47 0.94 0.99 1.00 51 2.44 2.52 E-05 
OMP 25.89 167.52 0.89 0.97 0.98 105 5.49  3.95 E-05 

StOMP 26.57 143.24 0.93 0.98 0.99 79 3.97 3.32 E-05 
 

Bus 
NITRA 25.61 78.78 0.81 0.99 0.97 127 8.12 5.19 E-05 
OMP 20.13 638.96 0.59 0.98 0.94 249 14.39 7.97 E-05 

StOMP 21.37 474.32 0.69 0.99 0.96 200 12.57 6.32 E-05 
 

For videos too, the PSNR is above 30 dB for 31.25 % of input information (M/N = 0.3125) 
which is an optimum value for lossy compression techniques. The average PSNR obtained is 
more than 30 dB using NITRA which is greater than the PSNRs obtained using StOMP and 
OMP. The SSIM is 94% for NITRA while OMP and StOMP yields only 79% and 86% for 
akiyo, 68% and 64% for foreman series using OMP and StOMP respectively. MD in pixel 
values is very less, approximately 77, while other algorithms have a difference above 200 
like in the case of images, which proves that every pixel is recovered with highest accuracy 
by NITRA. Stefan video has higher entropy in pixel distribution and hence reconstruction 
using NITRA gives lesser PSNR and perceptual quality. Yet, NITRA produces a higher 
PSNR of 25 dB while the same for OMP and StOMP is approximately 20 dB. These results 
show the efficiency of NITRA in reconstructing the images and videos with higher 
perceptual quality. 

When the number of measurements increase, there is an obvious increase in the PSNR 
and other quality measures since more information about the input image or video is 
provided to the recovery algorithm. But, Table 2 and Table 3 prove that NITRA estimates 
the input image and videos with higher perfection when compared with iterative algorithms 
even for least number of measurements. 

6.4 Big O (O) 

Big O notation gives the behavior of a function or algorithm when the number of 
arguments or trials reaches a very large value or infinity. With this idea, the complexity of 
reconstruction algorithms can also be expressed by Big O notation. NITRA shows reduced 
complexity because of the usage of simple arithmetic operators. Arithmetic operators exhibit 
linearity to the operands and hence the complexity contributed by them can be neglected 
while considering larger loops. The calculated Big O )(O  for NITRA can be expressed as an 
order of N since there is only one loop which does the threshold operation N  times. Thus, 
NITRA shows a complexity of )(NO  unlike existing greedy algorithms like OMP and IHT 
[9] which have the Big O value of )(MNO , since the latter solves least squares problem 
iteratively. The number of iterations depends upon the sparsity or any fixed value. Here M  
and N  refer to the 1×m measurements and nn ×  input matrix respectively. 

6.5 Elapsed Time and Total Execution Time 

Elapsed time and total run times were calculated using MATLAB scripts. The computing 
resource for these experiments was Dell Inspiron laptop with 64 bit operating system and 
INTEL’s i5 core processor. Since NITRA has no iteration, the time taken for the execution 
of NITRA for each block is considerably reduced. On an average, NITRA takes 
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approximately 25.97 sµ for the execution of the algorithm for each block while other 
algorithms like CoSaMP, StOMP and OMP takes approximately 0.51 ms , 3.72 ms  and 3.23
ms  respectively. Fig. 5 and Fig. 6 prove that NITRA takes only tens of sµ  for recovery of 
both images and videos. 

                

 
 

 

Fig. 6 represents the case of video which shows that NITRA takes less time to execute 
when compared to other greedy algorithms. NITRA takes an average of 26.65 sµ  while 
CoSaMP, OMP and StOMP consume approximately 0.458 ms , 2.86 ms  and 4.1 ms  
respectively for each block. That would be 94.18%, 99.06% and 99.35% reduction in 
execution time while using NITRA for every block when compared with CoSaMP, OMP and 
StOMP. Since the measurement matrix is not fixed for each block of the image for CoSaMP, 
OMP and StOMP, the overall perceptual quality of the image/video frame is diminished 
since the algorithm forms different equations for every single block to be solved. This 
disadvantage is avoided in NITRA since the sensing matrix is fixed. The comparison of 
average elapsed time for ten blocks, for images and videos using NITRA and 
different algorithms like OMP, CoSaMP and StOMP is shown in Table 4. 

 

Blk. 

Averaged Elapsed time (ms) for 10 blocks 

Image (Lena) Video (Akiyo) 

NITRA CoSaMP OMP StOMP 
 

NITRA 
 

CoSaMP 
 

OMP 
 

StOMP 
1 0.0274 0.761 2.969 3.733 0.0264 0.447 2.046 4.22 

2 0.0259 0.404 3.944 3.708 0.0264 0.445 2.281 4.374 

3 0.0257 0.408 2.952 3.764 0.0265 0.426 2.144 4.345 

4 0.0259 0.408 2.681 3.684 0.0263 0.506 2.378 4.277 

Fig. 5. Comparison of elapsed time per block for 
image using NITRA and various other algorithms 

8x8 blocks 
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8x8 blocks 

Fig. 6. Comparison of elapsed time per block for 
video using NITRA and various other algorithms 

Table 4. Averaged Elapsed Time (ms) for Image/Video using NITRA and Other Reconstruction Algorithms 
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This approximation is almost same for the blocks of both images as well as videos. The 
total execution time of the codes of NITRA and other algorithms considered for comparison 
is shown in the Table 5. It takes an average of 1.3 s  and 10.45 s  for the combined procedure 
of compression and reconstruction for images and videos respectively. For images, NITRA 
shows decrease in total runtime of 58.75%, 88.94% and 93.31% when compared to the time 
taken by CoSaMP, OMP and StOMP respectively. For videos too, NITRA showcases 
reduced runtime of 29%, 85.73% and 91.62% with respect to CoSaMP, OMP and StOMP 
respectively.  

Table 5. Averaged Run Time (s) of NITRA and Other Algorithms for Reconstruction of Images and 
Videos 

Averaged total runtime (s) of different 
algorithms for images  

Averaged total runtime (s) of different 
algorithms for videos  

NITRA CoSaMP OMP StOMP NITRA CoSAMP OMP StOMP 

1.3067 2.5134 11.8195 19.5301 10.4523 14.7223 73.2695 124.7040 

 

Another advantage of using NITRA is that the usage of fixed measurement matrix helps 
in finding the exact PSNR value in a single iteration. In other algorithms since the values of 
the random matrix change the PSNR obtained during one iteration will not be the same when 
the algorithm is executed for the second time. Hence the same algorithm must be run for a 
number of times and the PSNRs obtained must be averaged over the total number of 
executions to obtain the approximate PSNR.  

7. Conclusion and Future Work 
Wireless Sensor Networks (WSNs) require efficient reconstruction algorithms to perfectly 

recover the compressed data without delay at the receiver end.  NITRA is a recovery 
algorithm with simple arithmetic for reconstruction of the original input from )( NM <
measurements.  Augmented measurement matrix and the less complex mathematical 
expressions used in the proposed algorithm, contributes to a less complexity of )(NO . The 
algorithmic steps involved in NITRA are quite simple consequently reducing the elapsed 
time to approximately 100 times when compared to LSP based CS recovery techniques. The 
total run time of NITRA is reduced to nearly 90% for both videos and images while 
comparing the same with other reconstruction algorithms like OMP, StOMP and CoSaMP 

5 0.0258 0.437 3.457 3.718 0.0281 0.43 2.313 4.059 

6 0.0258 0.445 3.719 3.747 0.0263 0.508 2.401 4.101 

7 0.0257 0.418 3.021 3.746 0.0266 0.418 2.409 3.982 

8 0.0258 0.407 2.917 3.722 0.0267 0.445 2.34 3.856 

9 0.0257 0.849 2.814 3.744 0.0264 0.472 2.266 3.934 

10 0.0260 0.625 3.817 3.706 0.0268 0.487 2.247 3.851 
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which would go handy while dealing with large sized images and videos in a large scale. On 
the basis of the above results, NITRA projects itself as a best suited algorithm for 
reconstruction of images and videos with high output quality. In a nut shell, images and 
videos that are compressed to NM <  measurements using CS and transmitted over WSNs, 
can be reconstructed perfectly by non-iterative threshold based recovery algorithm (NITRA), 
exhibiting reduced delay, better performance in terms of PSNR, SSIM, SC etc., accompanied 
by better perceptual quality. In future, NITRA’s modified version is to be applied to the 
chrominance part of images and videos. Embedding enhancement technique within the 
recovery algorithm is to be tried out to improve the perceptual quality of the reconstructed 
images and videos with meager information available.  
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