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Abstract 
 

Compressed sensing (CS) possesses the potential benefits for spectrum sensing of wideband 
signal in cognitive radio. The sparsity of signal in frequency domain denotes the number of 
occupied channels for spectrum sensing. This paper presents a scheme of adaptively adjusting 
the number of compressed measurements to reduce the unnecessary computational complexity 
when priori information about the sparsity of signal cannot be acquired. Firstly, a method of 
sparsity estimation is introduced because the sparsity of signal is not available in some 
cognitive radio environments, and the relationship between the amount of used data and 
estimation accuracy is discussed. Then the SNR of the compressed signal is derived in the 
closed form. Based on the SNR of the compressed signal and estimated sparsity, an adaptive 
algorithm of adjusting the number of compressed measurements is proposed. Finally, some 
simulations are performed, and the results illustrate that the simulations agree with theoretical 
analysis, which prove the effectiveness of the proposed adaptive adjusting of compressed 
measurements. 
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1. Introduction 

With the rapid development of wireless communication over the last decades, the spectrum 
resources become increasingly scarce. Furthermore, some of the assigned spectrums are 
sometimes unoccupied by PUs (primary users), which results in the waste of spectrum 
resources. In order to exploit the spectrum more efficiently, cognitive radio (CR) has been 
proposed. Without bad interference to any PU, the SUs (secondary users) could detect the 
spectrum holes and then access to them [1]-[2]. It is widely recognized that spectrum sensing 
is a key technology of cognitive radio.  

At the beginning, the focus of spectrum sensing was placed on the dectection of narrowband 
signal. Many typical approaches have been suggested, such as energy-based detection, 
matched-filter detection and cyclic spectral detection [3]. However, with the increasing 
requirement of future high-speed cognitive data, detection of wideband signal becomes a hot 
topic.  

Up to now, many detection algorithms of wideband signal have been reported [4]-[9]. The 
first scheme is a direct generalization of conventional narrowband methods. Wideband signal 
is divided into many narrowband signals, and these narrowband signals are detected one by 
one. Because these methods require much operation time, the algorithms of simultaneously 
and parallelly processing the wideband signal were proposed [4]-[5]. Typical algorithms 
mainly consist of filter band spectrum sensing [4], multi-resolution spectrum sensing [5]. For 
the filter band spectrum sensing, each channel is equipped with band-pass filter, which results 
in too high hardware complexity and cost. As for multi-resolution spectrum sensing, the 
wideband signal is detected in two stages: a sparse stage and a precise stage, where the wavelet 
transformation is always exploited [6]. In the case of multi-resolution spectrum sensing, much 
more time and computational complexity are required when the bandwidth of signal increases. 
In addition, to cope with the multi-path fading and shadow of wireless channel, collaborative 
spectrum sensing methods of wideband signal have been addressed [7]-[8]. Generally, two 
cases are considered. The first case is that each SU detects the entire channel, where Markov 
process is an important mathmatical tool. The second case is that only one channel is detected 
by one SU, and many SU are exploited to detect all of channels. It is widely accepted that 
wideband ADC is required for the forementioned approaches. However, according to Nyquist 
sampling theory, it is necessary to sample the signal at least twice faster than its bandwidth, 
which is a challenging task for ADC hardware and cost [9]-[10]. Moreover, a large amount of 
sampled signal results in high computational complicity.  

Fortunately, the compressed sensing (CS) makes it possible to sample the signal at a slower 
rate than Nyquist sampling rate [11]. According to CS theory, the sparsity of signal denotes  
the number of non-zero values in some basis [12], and a sparse signal can be accomplished 
through the linear random projections. Moreover, the signal can be reconstructed through the 
compressed measurements with high probability [13]. Based on these advantages of CS, a few 
CS-based spectrum sensing algorithms of wideband signal have been proposed in 
[9],[14]-[16]. Z.Tian and G.B.Giannakis introduced the compressed sensing to spectrum 
sensing of wideband signal firstly [14], then a cross-correlation-based method was addressed 
with cyclic spectral density [15]. In [9], wideband spectrum sensing was modeled as a 
well-known structured covariance estimation problem because the compressed measurements 
are a linear combination of the original signals. In order to reduce the computational 
complexity, a novel decomposition compressed spectrum sensing scheme was presented [10]. 
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In addition, some cooperative compressed spectrum sensing algorithms have been addressed 
by terms of advantages of cooperative spectrum sensing and compressed sensing [16].  

For previous CS-based spectrum sensing of wideband signal, signal reconstruction is the 
first and key step, and then reconstructed signal is processed with different mathematical tools 
to derive test statistic [9],[14]-[16], which also poses high computational complexity. At 
present, the adopted reconstruction methods are mainly divided into two categories: convex 
relaxation algorithms and iterative greedy algorithms [17-20]. For convex relaxation 
algorithms, sparseness constraint is changed from L0-norm to L1-norm. They consist of BP 
(Basis Pursuit), BPDN (Basis Pursuit Denoise), SL0 (Smoothed L0), which can be realized by 
exploiting an interior-point method for noise-free case and gradient projection for noise case 
[17]. Computational complexity of BP is O(N3), which is very high for practical application. 
To cope with this challenge, some iterative greedy algorithms have been proposed [18-20]. 
Reconstuction error is permitted under the constraint of minimum L0-norm for iterative greedy 
algorithms. Typical algorithms include MP (Matching Pursuit), OMP (Orthogonal Matching 
Pursuit) and the modified methods of OMP. Matching pursuit is the most basic method, but its 
convergence is slow. Then OMP was presented for solving these existing problems of MP [18], 
and its computational complexit is O(KMN), which is far less than that of BP. OMP is a 
non-linear adaptive algorithm based on MP, and the selected itom is orthogonalized to reach 
faster convergence rate and higher reconstruction accuracy. Subsequently, some modified 
algorithms of OMP were introduced, such as ROMP (Regularized Orthogonal Matching 
Pursuit), CoSaMP (Compressive Sampling Matching Pursuit) and StOMP (Stagewise OMP) 
[19-20]. Each of these algorithms has its own merits and weaknesses, for example, priori 
information about sparsity of signal and noise is required by OMP, and threshold decision is 
tightly correlated to measurement matrix for StOMP, which seriously limits its applications. 
Considering recovery accuracy, computational complexity and feasibility comprehensively, 
OMP algorithm is always exploited for many applications by most of literatures.  

We can see that high computational complexity is caused by reconstruction algorithm. It has 
been proved that the accuracy of reconstruction and computational complexity are decided by 
the number of compressed measurements for reconstruction algorithm [14]-[16]. For iterative 
greedy algorithm, the number of compressed measurements is a key factor of impacting the 
computational complexity. Too many compressed measurements lead to very high 
computational complexity, and too little compressed measurements have a severe impact on 
the performance of reconstruction. Therefore, a few adaptive reconstruction methods have 
been introduced. An adaptive sensing and group testing algorithm for sparse signal 
reconstruction was proposed in [21]-[24]. In terms of sparse target scene,  an adaptive method 
was addressed in [25], where the measurement matrix can be updated by the target scene 
information fed back by the reconstruction algorithm. In [26], total coefficients power was 
defined as a new metric to guide the node selection to build a sparse additional projection 
vector. In addition, the necessary number of compressed measurements was proposed to 
reconstruct a sparse signal in a required probability [27]. However, the practical signal is 
always corrupted by noise, and the real sparse signals scarcely exist. As a result, the methods 
in [21]-[27] can be only applied in noise-free scenario, which is unsuited for spectrum sensing. 
Most importantly, the SNR of compressed signal has a direct impact on the performance of 
spectrum sensing, which is dominated by the number of compressed measurements. Therefore, 
we will explore the relationship between the SNR of the compressed signal and the number of 
compressed measurements. What’s more, other factors should also be considered to obtain 
appropriate number of compressed measurements and closed-form SNR of compressed signal, 
such as the non-orthogonality of measurement matrix, the sparsity of signal, coherence of 
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vectors of measurement matrix. To sum up, the proposed spectrum sensing can be described as 
follows. Firstly, the SNR of the compressed signal is calculated according to the requirements 
of spectrum sensing performance, estimated sparsity of signal and SNR of the non-compressed 
signal. And then the appropriate number of compressed measurements is acquired by the SNR 
of the compressed signal. Finally, the frequency-domain signal is reconstructed by virtue of 
compressed measurements to finish spectrum sensing. From the proposed algorithm, we can 
see that the number of compressed measurements varies adaptively with SNR of the 
compressed signal, which can decrease the computational complexity of spectrum sensing. 

For current CS-based spectrum sensing of wideband signal, another factor of high 
computaional complexity is calculating test statistic and obtaining time-domain signal from 
sparse frequency-domain signal. Therefore, we exploit directly the reconstructed 
frquency-domain signal to finish spectrum sensing, namely the frequency-domain non-zero 
values of reconstructed signal denote the existence of PUs. Consequently, this scheme 
removes the two before-mentioned mathmatical operations, which can further decrease the 
computational complexity.  

It should also be noted that the previous methods are supposed to know the sparsity of signal. 
However, random appearance of PUs leads to time-varying sparsity for cognitive radio 
environments. Therefore, sparsity estimation must be firstly performed for spectrum sensing. 
Many works on sparsity estimation have been reported in past few years. A novel scheme of 
sparsity estimation was presented by means of the divide and conquers method in [28]. In [29], 
an eigenvalue-based compressive SOE technique was proposed in terms of asymptotic random 
matrix theory. In addition, A SNR-based sparsity estimation method was introduced to detect 
the sparsity level of the channel in [30]. Sparsity estimation for different kinds of random 
matrix has been discussed in [31]-[32]. For these methods, the sparsity estimation is quite 
accurate if enough data are exploited, which poses the high computational complexity and 
long sampling time. As a consequence, it is not comprehensive to evaluate the estimation 
methods only by estimation accuracy. 

Our main contributions are: 1) a method of sparsity estimation is proposed, whose 
performance is theoretically analyzed by the amount of the used data and estimation accuracy. 
2) The closed-form expression of SNR of the compressed signal is obtained, and it can be 
concluded that three factors (SNR of the non-compressed signal, the sparsity of signal and 
number of compressed measurements)  have an impact on SNR of the compressed signal. 3) 
We introduce the approach to adaptively adjust the compressed measurements for the two 
different cases.  

The rest of the paper is organized as follows. In section 2, we introduce the system model 
for wideband spectrum sensing. In section 3, we propose a method of sparsity estimation and 
analyze its performance theoretically. In addition, the relationship between the amount of the 
used data and estimation accuracy is obtained. In section 4, the SNR of the compressed signal 
is derived in the closed form, and the specific process of the proposed spectrum sensing is 
described. In addition, the method of adaptively adjusting the number of compressed 
measurements is proposed for the two typical sensing scenarios. In section 5, some 
simulations are performed to validate theoretical analysis. We also compare the proposed 
method with the traditional schemes for the various performance metrics. Finally, we conclude 
the paper in Section 6. 
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2. System Model of Wideband Spectrum Sensing 
In this section, a system model for wideband spectrum sensing is addressed. Suppose that 
discrete Fourier transformation of wideband signal r is x=F(r), which is a 1N ×  vector in 
frequency domain, and only K (K << N)entries of x are non-zero. Namely, the signal r is 
sparse in frequency domain. According to CS theory, such a signal can be accomplished 
through the linear random projections 

   =Θy x                                                                    (1) 

Here, Θ  is a M by N random matrix with the condition M << N, and K denotes the sparsity 
of signal in Fourier basis[12], which is the number of occuped bands in our proposed spectrum 
sneing method. Through linear projections, M measurements rather than N sampling signal is 
obtained. It should be noted that random matrix Θ is required to satisfy restricted isometry 
property (RIP). Namely, a matrix M N×Θ  satisfies the RIP of order K if there exists a constant 

Kδ  , 0 1Kδ< < , for all
0

K<x , we have 
2 2 2

2 2 2
(1 ) (1 )K Kδ δ− < < +Θx x x                                           (2) 

What's more, we assume that the maximum number of PUs is N in frequency band (0~WHz), 
and each of PUs occupies a channel of W/NHz. However, only a small fraction of N PUs 
exploit the channel at a given time and location. We assume that only K (K<<N) channels are 
adopted by active PUs, and the remaining N-K channels are idle. Clearly, the wideband signal 
x of PUs is K-sparse in the frequency domain. Then the idle N-K channels provide spectrum 
opportunity for the SUs. Fig. 1 shows spectrum occupancy of PUs.  
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Fig. 1. An illustration of wideband spectrum occupancy by PUs, for the cases of N=512 and K=20, 

assuming that all the occupied channels have the unit amplitude. 
 

Considering the impact of wireless channel, the compressed measurements of SU’s are 
expressed in the form  

1−= +ΦFy Hx n                                                   (3) 
where y and x are a M-dimension complex vector and a N-dimension complex vector, 
denoting the compressed measurements and the Fourier coefficients of PUs’ signal 
respectively. And M  is the number of compressed measurements. When K (K<<N) channels 
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are occupied by active PUs, only K entries in x are non-zero. The matrix Φ represents a M by 
N Bernoulli random matrix, here we exploit the AIC model presented in [14]. 1−F  is an inverse 
discrete Fourier transformation matrix. ( (1), (2), ( ))diag h h h N= 2H  is the channel matrix 
between SU and PUs, where h(i) (i=1, 2, … , N) denotes the channel gain for the ith channel. As 

we mentioned above, the ith channel occupies the spectrum of [( 1) , ]W Wi i
N N

− Hz in frequency 

domain. In addition, n represents a Gaussian noise vector. By simplifying 
equation 1−=Θ ΦF H , we can get = +Θy x n . In CR environments, the purpose of spectrum 
sensing is to detect the locations of K channels occupied by PUs, and then SUs can take 
advantage of other idle N-K channels. Here, the compressed measurements vector y and the 
matrix Θ  are available information for spectrum sensing. In summary, the problem of 
spectrum sensing is translated to the CS reconstruction under the constraint of more conditions, 
which can be expressed as  

0
ˆ arg min , . .s t= =Θx x y x  and some additional conditions 

The additional conditions are as follows, the sparsity of signal K is unknown and the number 
of compressed measurements is varied.  

According to the forementioned model, we carry out spectrum sensing by reconstructing the 
sparse signal in frequency domain. In other words, reconstructed frequency-domain signal 
represents the result of spectrum sensing. What is more, no other further operation is required 
for spectrum sensing. 

3. Method of Sparsity Estimation 
In this section, we introduce a method of sparsity estimation and analyze the performance 
theoretically.  

Lemma 1:  If 1 0
K=x , 2 0

1K= +x , 2 2
1 22 2

<Θ Θx x holds when a matrix Θ  satisfies the 

RIP of order K with isometry constant 1
2 1K

δ <
+

 and the received signals possess the similar 

power and experience a slow fading.  
Proof: Considering that the received signals possess similar power, namely the non-zero 

entries of x approximate to each other and are assumed as a. If the sparsity of x1 is K, then 
2 2

1 2
Ka≈x . Substituting this result into the expression of RIP, we can get 

22 2
1 2

(1 ) (1 )Ka Kaδ δ− ≤ ≤ +Θx                                 (4) 
Similarly, when the signal experiences a slow fading, the non-zero entries of x1 and x2 in the 

same indices can be viewed as an unchanged value during coherence time. Thus, for x2 we 
have 

22 2
2 2

(1 )( 1) (1 )( 1)K a K aδ δ− + ≤ ≤ + +Θx                                 (5) 

If 2 2
1 22 2

<Θ Θx x , the expression 2 2(1 ) (1 )( 1)Ka K aδ δ+ < − +  must be satisfied. Through 

simplifying the expression, 1
2 1K

δ <
+

 can be obtained. So, it is proved that if 1 0
K=x and 

2 0
1K= +x , 2 2

1 22 2
<Θ Θx x  holds. It means that higher sparsity of signal x poses larger 
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value of 2

2
Θx  , which provides premise and foundation to estimate the sparsity of signal. 

Suppose that a matrix Θ  satisfies the RIP of order K with isometry constant δ , we have  
2

2
2

2

(1 ) (1 )δ δ− ≤ ≤ +
Θx

x
. Because of very small isometry constant δ , 

2

2
2

2

Θx

x
 approximates to 

1, e.g., 2 2

2 2
≈Θx x . Therefore, the estimated value of 2

2
x  can be obtained in terms of 2

2
Θx . 

If the non-zero entries of vector x approximate to a, we have 2 2 2
2 0

a a K ′≈ =x x . Thus, the 
estimated sparsity of x can be acquired from the following expression 

2 2

2 2
2 2K

a a
′ = ≈

Θx x
                                    (6) 

It is clear that 2

2
x  and 2

2
Θx  vary with δ  proportionally. Therefore, the estimated sparsity 

of signal is more accurate when δ  becomes smaller. 
     According to previous analysis, we can see that equation (6) holds when two conditions are 
satisfied. The first condition is that the non-zero entries of vector x in the same time 
approximate to each other, which requires similar power for the received signals in the 
different frequency band. Therefore, it is relatively strict for some practical applications. The 
second condition is that the non-zero entries of vectors x1 and x2 in the same indices 
approximate to each other, where x1 and x2 are vectors in different time during coherence time, 
but when time difference of x1 and x2 exceeds the coherence time, they will have different 
value. This condition can be satisfied when the signals experience a slow fading. If the 
previous two conditions can not be satisfied for practical circumstances, we can employ other 
methods introduced in [28]-[32]. As described in section 1, these methods can perform well. 
Compared with the proposed method, they only have relatively high computational 
complexity. In addition, the estimation methods of sparsity do not affect the performance of 
wideband spectrum sensing if only we can get the correct sparsity of signal. 

4. Adaptive adjustment of Compressed Measurements 
In this section, we analyze the SNR of the compressed signal, and conclude that three parts 
(SNR of the non-compressed signal, the sparsity of signal and number of compressed 
measurements) will influence the SNR of the compressed signal. Based on the SNR of the 
compressed signal, we propose a method of adjusting the number of compressed 
measurements adaptively. 

4.1 Derivation of SNR of the Compressed Signal 
Consider that x is a 1N ×  signal vector and only K (K<<N) entries of x are non-zero. 
According to CS theory, such a signal can be compressed by the linear random projections 
=Θy x , where Θ  denotes a M by N (M<<N) random matrix.  Here, let Λ = supp(x) denote 

the set of indices for the non-zero coordinates of the signal vector x. Using the set Λ, the 
measurement vector y is expressed as 

i i
i

x
∈Λ

=∑Θy                                                        (7) 

Where iΘ  denotes the ith column of the matrix Θ , and ix  is the entry of the signal x with 
index i . This equation implies that measurement vector y is the linear combination of the 
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columns of Θ , and the coefficients are ( )ix i∈Λ . In other words, the non-zero entries of 
( )ix i∈Λ  are projected to columns of iΘ , and then their sum is calculated. 
In order to clearly describe the noise and interference brought by compressed sensing, we 

take a simple case for example. Let 1 2 3[ , , ]Tx x x=x . The measurement matrix Θ is assumed as 

1 2 3

1 0 0
[ , , ] 0 1 0

0 0 1

 
 = =  
  

Θ Θ Θ Θ                                 (8) 

Thus, the measurement matrix indicates that the signal x is not compressed. Fig. 2 illustrates 
three unit vectors 1Θ , 2Θ  and 3Θ in the three-dimension coordinate system, which denote 
X-axis basis vector, Y-axis basis vector and Z-axis basis vector respectively. It can be seen 
from equation (7) that the measurement vector y denotes a point 1 2 3{ , , }x x x  in three-dimension 
coordinate system when the entries of x  are projected. 

Z
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Fig. 2. Three basis vectors in three-dimension coordinate system. 

 
If there exists noise, the actual signal can be expressed as 1 1 2 2 3 3[ , , ]x n x n x n= = + + ++r x n . 

Just like ix , the noise in  is also projected to X-axis, Y-axis and Z-axis respectively. As we see 
in Fig. 2, jn  have no projection on ( )i i j≠Θ  because three basis vectors 1 2 3, ,Θ Θ Θ  are 
mutually orthogonal. When ix  is projected to iΘ , the SNRi of each dimension is written as 

2

2
2

2

, 1,2,3i
i

i

x
SNR i

n
= =                                          (9) 

If compressed sensing is applied, here we take 2, 3M N= =  for example, 1 2 3[ , , ]=Θ Θ Θ Θ  
is a 2 by 3 matrix. Three vectors in two-dimension coordinate system are shown in Fig. 3.  
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Fig. 3. Three basis vectors in two-dimension coordinate system 
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The measurement vector y can be expressed as  
1 1 2 2 3 3

1 1 1 2 2 2 3 3 3( ) ( ) ( )
r r r
x n x n x n

= + +

= + + + + +

Θ Θ Θ
Θ Θ Θ

y
                          (10) 

It is clear that these three vectors 1 2 3, ,Θ Θ Θ  cannot be mutually orthogonal. Therefore, in  
is projected to ( )j i j≠Θ , and the projection coefficient dot( , )ij i jc = Θ Θ , where dot( ) denotes 
inner product of vectors. Apart from in , ix  is also projected to ( )j i j≠Θ , and the 
projection coefficient is dot( , )ij i jc = Θ Θ . It can be seen that the noise brought by compressed 
sensing consists of the non-compressed noise in , the projection of other noise j ijn c and the 
projection of non-zero signal k kix c . 

From the previous analysis, the SNR of the compressed signal is denoted as  

[ ]
2

2
2

1, 1,

i
i

N K

i j ij i k ki i
j i j k k i

x
SNR E SNR E

x n c n x c x
= ≠ = ≠

 
 
 ′ = =  
 + + + − 
 

∑ ∑
                            (11) 

Where SNR′  denotes SNR of the compressed signal, and E( ) refers to the mathematical 
expectation.  

In order to simplify equation (11), we assume that noise vector n consists of independently 
and identically distributed (i.i.d.) Gaussian components with mean zero and variance 2σ . The 
signal vector x consists of i.i.d. Bernoulli components, which satisfy [ 1]iP x λ= =  
and [ 0] 1iP x λ= = − , where λ  refers to the parameter of Bernoulli, and we have K Nλ= . 
Let T=Θ ΘC  denotes a M by N matrix with i.i.d. non-diagonal components, and we 
have dot( , ) ( )ij i jc i j= ≠Θ Θ . The mathematical expectation of ( )ijc i j≠  is 0, and 

2 2( ) ( )ijE c E c=  holds, which will be discussed in the section 5. Based on the previous 
discussion, the following expression can be obtained 

2

2
2

1, 1,

2

2 2 2

1, 1,

2 2

( )

( ) ( ) ( )

( 1) ( ) 1 ( 1) ( )

i

N K

i j ij i k ki i
j i j k k i

i
N K

j ij i k ki
j i j k k i

x
SNR E

x n c n x c x

x

E n c E n E x c

SNR
N E c K SNR E c

= ≠ = ≠

= ≠ = ≠

 
 
 ′ =  
 + + + − 
 

=
+ +

=
− + + − × ×

∑ ∑

∑ ∑
                               (12) 

Where SNR denotes the signal noise ratio of the non-compressed signal. According to 
equation (12), three conclusions can be obtained: (1) SNR′ is related to the SNR of the 
non-compressed signal, and it is less than the SNR of the non-compressed signal because the 
denominator is more than 1. It indicates that compressed sensing decreases SNR. (2) SNR′  
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varies with mathematical expectation 2( )E c  inversely. Meanwhile, 2( )E c   is related to the 
measurement matrix, which will be discussed in section 5. (3) If the sparsity of signal 
experiences a decline, SNR′  will increase accordingly. 

4.2 Calculation of SNR of the Compressed Signal 
Consider equation (12), in order to calculate the SNR of the compressed signal ( SNR′ ), the 
SNR of the non-compressed signal and 2( )E c  are known as the priori knowledge generally. 
Because many methods of calculating SNR of the non-compressed signal have been reported, 
and it is not our emphasis, we don’t address corresponding algorithm in detail. Below, we 
provide a method of calculating 2( )E c . Because ( ) ,T

ij ijc i j= ≠Θ Θ  is i.i.d., the probability 
density function (PDF) ( )f c can be denoted by virtue of ( ),ijf c i j≠ . By the definition of 

mathematical expectation, 2( )E c  is calculated by 
2 2( ) ( )E c c f c dc= ∫                           (13) 

Furthermore, we have
2 2

cosij i j i j ijc θ= ⋅ = ×Θ Θ Θ Θ , where ijθ  is the angle between two 

vectors iΘ  and jΘ . If the columns of the measurement matrix Θ  are normalized, which 

indicates that 
2 2

1i j= =Θ Θ , cosij ijc θ= is obtained. Similarly, ,ij i jθ ≠  is i.i.d., so 

( ),ijf i jθ ≠  is represented by PDF ( )f θ . From the previous analysis, the relationship between 
PDF ( )f θ  and ( )f c  can be written as  

cos
( ) ( )

c
f f c

θ
θ

=

⇒                                                   (14) 
Let ( )cF c  denote cumulative distribution function (CDF) of variable c, and ( )Fθ θ  indicate 

CDF of variable θ . Then, the expression can be obtained in the form 
( ) (cos )

( arccos )
1 ( arccos )

=1 (arccos )

cF c P c
P c

P c
F cθ

θ
θ

θ

= ≤
= ≥
= − ≤
−

                                         (15) 

After calculating the derivative, the PDF ( )f c  can be acquired 

arccos

arccos 2

( ) ( ) | (arccos ) '
1( ) |

1

c

c

f c f c

f
c

θ

θ

θ

θ

=

=

= − ×

= ×
−

                                      (16) 

The PDF of ( )f θ  is given in [33] 

[ ]2( ) sin , 0,

( 2)!! ,  is odd more than 3
2 ( 3)!!

( 2)!! ,  is even more than 2
( 3)!!

n
M

M

f I

M M
M

I
M M

M

θ θ θ π

π

−= ∈

−
 × −=  −
 × −

                               (17) 

Here, the variable θ  denotes the angle between two column vectors of measurement matrix, 
and M is the length of two vectors. The operation ( )!! refers to double factorial. By terms of 
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equation (16) and equation (17), the PDF of ( )f c  is obtained. What is more, applying the 
result of ( )f c  into equation (13), mathematical expectation 2( )E c  is computed, which is only 
the function of M. Finally, SNR′can be calculated by employing equation (12). 
 

4.3 Adaptive Method of Adjusting Compressed Measurements 
Now, equation (12) is rewritten as  

2 2( 1) ( ) 1 ( 1) ( )
SNRSNR

N E c K SNR E c
′ =

− + + − × ×
                        (18) 

 
It has been widely recognized that the SNR of the compressed signal ( SNR′ ) determines 

spectrum sensing performance. Specifically speaking, spectrum sensing performance is 
dominated by the SNR of the non-compressed signal, sparsity of signal and 2( )E c . According 
to characters of three factors, there exist two typical sensing scenarios. The first case is the 
fixed SNR of the compressed signal and the varied sparsity of signal. Therefore, the SNR of the 
compressed signal ( SNR′ ) is influenced by the estimated sparsity of signal K ′  and 
expectation 2( )E c (the number of compressed measurements). When the estimated sparsity is 
acquired, we can control the SNR of the compressed signal by changing the number of 
compressed measurements to achieve a certain spectrum sensing performance under the 
constraint of computational complexity. 

Consider another scenario, the sparsity of signal K is fixed, but the SNR of the 
non-compressed signal fluctuates. From equation (18), the SNR of the compressed signal 
varies accordingly. Here, the value of 2( )E c  can also be adjusted to guarantee certain SNR′ . 
Similarly, changing of 2( )E c  can be achieved by changing the number of compressed 
measurements. 

In summary, the block diagram of spectrum sensing can be schematically illustrated in Fig. 
4. Firstly, the received signal is compressed using a matrix of sparsity estimation 1 1( )M N×Θ , 

and the compressed measurements are acquired 1 1=y Θ x . Then the sparsity K is estimated by 

terms of 2
1 2

y . Secondly, the row number of measurement matrix of spectrum sensing is 

calculated according to  the estimated K and the required SNR of compressed sensing, then the 
received signal is compressed by the measurement matrix of spectrum sensing 2 2( )M N×Θ , 

therefore compressed measurements are computed by 2 2=y Θ x . Lastly, let [ ]1 2, T=Θ Θ Θ  

and [ ]1 2, T=y y y , where Θ  and y are an M by N matrix and an M-dimension vector respectively, 

i.e., M=M1+M2. Then Θ  and y are exploited to reconstruct frequency-domain signal, and the 
results of spectrum sensing can be obtained according to reconstructed frequency-domain 
signal. 
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Fig. 4. the process of spectrum sensing using sparsity and SNR estimation 

 
 

Now, we analyze the computational complexity of proposed algorithm, which consists of 
sparsity estimation, calculating the SNR of compressed signal and reconstructing 
frequency-domain signal. It is supposed that the real signal is adopted. Sparsity estiamtion is 
finised by calculating L2-norm, which requires M1 multiplications and M1-1 additions. By 
analyzing equation (18), the computational complexity of calculating the SNR of compressed 
signal only is negligible. As mentioned above, OMP is the reconstrution algorithm used in this 
paper, and its computational complexit is O(KMN). Based on previous analysis, the 
reconstruction algorithm need maximum computational complexity in the proposed method. N 
and K are same for the conventional schemes and the proposed method. However, we can 
adjust M to reach a minimum value for the required spectrum sensing performance, which is 
the main cause of alleviating computational complexity. Moreover, as addressed in 
introduction, eliminating calculations of test statistic and conversion from time-domain signal 
from sparse frequency-domain signal will also partially reduce the computational sources 
comparing with previous algorithms.     

5. Numerical Results 
In this section, some simulations are carried out to verify theoretical analysis. In addition, the 
various performance metrics of the proposed method are compared with that of the traditional 
methods. Because OMP algorithm is widely exploited and it is a base of other recovery 
methods, OMP algorithm is selected as reconstruction algorithm in simulations. The following 
parameters remain fixed throughout all simulations: the length of signal N=512 and the times 
of Monte Carlo is 5000. The other parameters are separately specified for each experiment. 

5.1 Simulation Results for Sparsity Estimation Method 
To evaluate the performance of the proposed method of sparsity estimation, the normalized 
error (NE) is defined as 
 

K KNE D
K

′− =   
                                                  (19) 

 
Where D[ ], K and K ′ denote variance function, the actual sparsity of signal and the 

estimated sparsity with the proposed method separatively. Normalized error (NE) versus the 
sparsity of signal is presented in Fig. 5. The simulation parameters are as follows. M= 10, 40 
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and 50, respectively. The SNR of non-compressed signal is 30dB. K is from 10 to 90 and the 
corresponding step length is 10. The three lines represent the different performances of three 
compressed measurements separatively. As illustrated in Fig. 5, NE is lower when more 
compressed measurements are exploited. When the number of compressed measurements is 
not changed, normalized error can remain stable. According to compressed sensing, more 
compressed measurements can capture and extract more information about the sparsity of 
signal from the same signal x, which means that more equations can be acquired 
mathematically. As a consequance, the sparsity estimation error varies with the number of 
compressed measurements when other parameters are retained. 
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Fig. 5. The normalized error (NE) versus the sparsity of signal for different number of compressed 
measurements 

 
 

5.2 Simulation Results for SNR of the Compressed Signal 
To verify our theoretical analysis about ( )f c  presented in Section 4, the theoretical and 
simulated PDF of dot( , ) ( ) ,T

ij i j ijc i j= = ≠Θ Θ Θ Θ  are shown in Fig. 6. The theoretical curve 
is obtained by solving equation (16) and equation (17). It can be seen that the simulation 
results fit our forementioned theoretical analysis curve well. The number of compressed 
measurements is 30( 30 / 512 )nqM R R= = ×  for Fig. 6(a), and 40( 40 / 512 )nqM R R= = ×  for 
Fig. 6(b). It can be noticed that the variance of c decreases with increasing of the number of 
compressed measurements. In other words, ( )T

ijΘ Θ  will approach 0 closely if we increase the 
compressed measurements. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 1, January 2016                                           71 

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ, rad

f (
θ)

 
-0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

θ, rad

f (
θ )
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Fig. 6. Theoretical and simulated PDF of ( , ) ( ) ,T
ij i j ijc i j= = ≠dot Θ Θ Θ Θ    

 
Mathematical expectation 2( )E c  versus the number of compressed measurements is shown 

in Fig. 7. It can be seen that 2( )E c  varies with the number of compressed measurements 
inversely. If the row number of measurement matrix Θ  increases, expectation 

2 2( ) [dot( , )] ,ij i jE c E i j= ≠Θ Θ  drops. Meanwhile, 2( )E c  will approach 0 if the number of 
compressed measurements becomes quite large. 
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Fig. 7. Mathematical expectation 2( )E c  versus the number of compressed measurements 

 
The SNR of the compressed signal versus the number of compressed measurements is 

illustrated in Fig. 8, where K=10, 20, 30 respectively, and M is from 0 to 150. The three lines 
denote the performance for the different sparsity of signal. It can be observed from Fig. 8 that 
the SNR of the compressed signal varies with the number of compressed measurements 
directly. Since the SNR of the non-compressed signal is set to 30dB, SNR of the compressed 
signal is consistently lower than 30dB, which means that the decreasing in the number of 
compressed sensing is at the expense of decreasing in SNR. Meanwhile, the line with sparsity 
K = 10 is consistently higher than any other line. Therefore, the SNR of the compressed signal 
varies with the sparsity of signal inversely. 
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Fig. 8. SNR of the compressed signal versus the number of compressed measurements 

 for the different sparsity of signal: K = 10, 20, 30 
 

5.3 Simulation Results for Adaptive Adjustment in the Number of Compressed 
Measurements  
To evaluate the performance of the proposed method of adaptive adjustment in the number of 
compressed measurements, obtained measurements are applied to perform spectrum sensing. 
The probability of detection dP  and probability of false-alarm fP  serve as the evaluation 
criteria. We define d  as a 1N ×  vector, which is the pratical situation of each channel. 
Accordingly, ˆ( 1)N ×d  is the estimated situation. The entries of d  and d̂  are either 1(busy 
channel) or 0(idle channel). Then dP  and fP  are expressed as 
 

ˆ( )T

d TP × =
=

×1
d d d

d
                                              (20-a) 

ˆ(1 ) ( )
1

T

f TP
N

− × ≠
=

− ×
d d d

d
                                        (20-b) 

 
The dP  and fP for the different sparsity of signal are illustrated in Fig. 9(a), and the number 

of compressed measurements versus the sparsity of signal is depicted in Fig. 9(b), where the 
SNR of non-compressed signal is 30 dB.  From Fig. 9 (b), the adaptive method can change the 
number of compressed measurements with different sparsity of signal adaptively, while the 
other one fixes the measurements at 50( 50 / 512 )nqR R= × . According to Fig. 9 (a), when the 
sparsity of signal is lower, the fixed method shows better performance than the adaptive 
method, because the number of compressed measurements for the fixed method is larger than 
that of adaptive one. However, the probability of detection dP  for fixed method experiences a 
dramatic fall when the sparsity of signal increases, and spectrum sensing performance of the 
proposed method can consistently stay on a high level in the case of possessing an acceptable 
computational complexity. 
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(a) The probability of detection and probability of false alarm versus sparsity 
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(b) The number of compressed measurements versus the sparsity of signal 

 
Fig. 9. The performance of adaptive method and fixed method  

 
 

The performance of the proposed adaptive method is compared with the case of 
1.7 log( / 1)M K N K= × +  provided in [23] in Fig. 10, where the SNR of non-compressed 

signal is 30 dB. It can be shown that the proposed method can adjust the number of 
compressed measurements with sparsity of signal adaptively. Moreover, the proposed method 
have better performance and more advantages when it is applied in spectrum sensing. 
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(b) The number of compressed measurements versus the sparsity of signal. 

 
Fig. 10. The performance of the proposed adaptive method and 1.7 log( / 1)M K N K= × +   

 
 

Our adaptive adjustment of compressed measurements is to guarantee the same SNR of the 
compressed signal, i.e., spectrum sensing performance. If the SNR of the non-compressed 
signal fluctuates, the proposed method can also adjust the number of compressed 
measurements to guarantee the spectrum sensing performance. Fig. 11 illustrates the 
performance of the proposed adaptive method for the different SNR of the non-compressed 
signal, where K=20, the SNR is from 10dB to 30dB. 
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 (b) The number of compressed measurements versus SNR 

 
Fig. 11.The performance of the proposed adaptive method versus SNR with Pf is fixed at 0.05 

 
From Fig. 11(a), we can see that spectrum sensing performance of the proposed method 

approaches that of Nyquist rate method when the SNR of the non-compressed signal increases. 
However, the traditional method shows degraded performance, especially in the case of low 
SNR. According to Fig. 11(b), the proposed method increases the number of compressed 
measurements for low SNR of the non-compressed signal, therefore possessing better 
performance than traditional methods. Meanwhile, the required measurements of the proposed 
method and traditional method are similar when the SNR of the non-compressed signal is high, 
which saves the computational soureces. In summary, the strategy in [32] only can be 
exploited in high SNR, while the proposed method can change the number of compressed 
measurements to ensure the spectrum sensing performance in low SNR. 
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6. Conclusion 
In this paper, a method of adaptively adjusting compressed measurements for wideband 
spectrum sensing was proposed in the case of unknowing the number of occupied bands 
(sparsity of signal in the frequency domain). Aiming at the case of unkown sparsity in the 
practical cognitive radio, a method of sparsity estimation was discussed, and the relationship 
between the amount of used data and estimation accuracy was established to evaluate the 
performance of estimation. Since the SNR of the compressed signal determines spectrum 
sensing performance, the SNR of the compressed signal was derived in a closed form to 
analyze the factors of impacting on sensing performance. It has been observed that the SNR of 
the compressed signal is influenced by the SNR of the non-compressed signal, the sparsity of 
signal and the number of compressed measurements. Based on the previous discussion about 
the SNR of the compressed signal, the method of adjusting the number of compressed 
measurements was proposed, which possesses minimum computational complexity to ensure 
the required spectrum sensing performance. 
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