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Abstract 
Information Centric Networking (ICN) has recently attracted great attention. It names the 
content decoupling from the location and introduces network caching, making the content to 
be cached anywhere within the network. The benefits of such design are obvious, however, 
many challenges still need to be solved. Among them, the local caching policy is widely 
discussed and it can be further divided into two parts, namely the cache permission policy and 
the cache replacement policy. The former is used to decide whether an incoming content 
should be cached while the latter is used to evict a cached content if required. 

The Internet is a user-oriented network and popular contents always have much more 
requests than unpopular ones. Caching such popular contents closer to the user’s location can 
improve the network performance, and consequently, the local caching policy is required to 
identify popular contents. However, considering the line speed requirement of ICN routers, the 
local caching policy whose complexity is larger than O(1) cannot be applied. In terms of the 
replacement policy, Least Recently Used (LRU) is selected as the default one for ICN because 
of its low complexity, although its ability to identify the popular content is poor. Hence, the 
identification of popular contents should be completed by the cache permission policy.  

In this paper, a cache permission policy called Cache-Filter, whose complexity is O(1), is 
proposed, aiming to store popular contents closer to users. Cache-Filter takes the content 
popularity into account and achieves the goal through the collaboration of on-path nodes. 
Extensive simulations are conducted to evaluate the performance of Cache-Filter. Leave Copy 
Down (LCD), Move Copy Down (MCD), Betw, ProbCache, ProbCache+, Prob(p) and 
Probabilistic Caching with Secondary List (PCSL) are also implemented for comparison. The 
results show that Cache-Filter performs well. For example, in terms of the distance to access to 
contents, compared with Leave Copy Everywhere (LCE) used by Named Data Networking 
(NDN) as the permission policy, Cache-Filter saves over 17% number of hops. 
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1. Introduction 

As the number of Internet users and the scale of applications continue to grow, many serious 
drawbacks of the current Internet are exposed, such as the poor scalability and the low 
resource utilization. How to design the next-generation network has become one of the hottest 
issues in academic communities. Among the proposals, Information Centric Networking (ICN) 
has recently attracted great attention, with some well-known research projects and approaches 
including NDN [1], PURSUIT [2], COLOR [3] and so on [4-7]. ICN shifts from the original 
host-based network to a new content-centric one, and aims at creating a more efficient content 
distribution network. Specifically, ICN names the content decoupling from its location and 
introduces the network caching, thus, contents can be cached anywhere within the network, 
with accompanying advantages such as reducing the user delay and offloading the traffic from 
the server.  

The benefits of introducing the network caching are obvious but there are still many 
challenges needed to be solved, including the local caching policy issue [8-17], the cache 
collaboration policy issue [18-20], the cache allocation policy issue [21-22], etc. In this paper, 
we mainly focus on the cache permission policy, which is part of the local caching policy. The 
local caching policy can be divided into two parts, namely the cache permission policy and the 
cache replacement policy. The cache permission policy is used to determine whether the new 
incoming content should be allowed to enter the cache while the cache replacement policy is 
used to determine which cached content should be removed to make room for the new one 
when the cache is full.  

The Internet is a user-oriented network and popular contents always have much more user 
requests than unpopular ones.  Caching such popular contents closer to users can improve the 
network performance. The traditional counter-based local caching policies that need to record 
the number of requests can effectively identify popular contents, however, as they perform the 
sorting operation, their complexity is at least O(logN). Considering the line speed requirement 
of ICN routers [23-24], the local caching policy whose complexity is larger than O(1) cannot 
be applied. As far as the cache replacement policy is concerned, Least Recently Used (LRU) is 
selected as the default cache replacement policy in ICN [25], since it has almost the best 
performance among policies whose complexity is O(1) such as First In First Out (FIFO) and 
randomized policies. Nevertheless, its ability to identify the popular content is poor. LRU can 
be regarded as a one-time request history replacement policy and cannot directly reflect the 
number of requests. Thus, the function of identifying popular contents according to their 
number of requests should be completed by the cache permission policy. 

As the network caching is shared by all contents and the average size of a content is much 
larger than that of the web page, the replacement rate of cached contents in cache nodes will be 
extremely high and contents cannot be cached steadily. Many contents have been deleted 
before their subsequent requests arrive, making popular contents to be easily replaced by 
unpopular ones. Consequently, the caching effect of improving the network performance 
cannot be well reflected. Hence, an effective cache permission policy that can reflect the 
content popularity is required, and its complexity should be O(1). That is the basic design 
principle of our proposed Cache-Filter.  

Similar as LCD, Cache-Filter moves a new copy of content down a hop when the request 
hits the cache. After reaching the downstream node, the name of the content is first recorded in 
CacheFilter (CF) list instead of the content itself. Only when the content flows through the 
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node again and the name of the content is not removed by CF list will the content be cached. 
CF list actually is used for screening popular contents and reducing the frequency of replacing 
cached contents, thus, cached contents are guaranteed to be stable in cache nodes. 

In order to evaluate the performance of our proposed Cache-Filter, simulations are 
conducted under a 6-layer tree and a 625-node Internet-like topology. For performance 
comparison, LCD [8], Move Copy Down (MCD) [8], Prob(p) [8], Betw [9], ProbCache [10], 
ProbCache+ [11] and Probabilistic Caching with Secondary List (PCSL) [12] are also 
implemented. The results show that in terms of the distance to access to contents, compared 
with Leave Copy Everywhere (LCE) that is used by NDN as the permission policy, 
Cache-Filter saves over 17% number of hops.  

The paper is organized as follows. In Section 2, related works of cache permission policies 
are given, while in Section 3, the problem description is presented to introduce the motivation 
of Cache-Filter. The detailed mechanism of Cache-Filter is illustrated in Section 4 and the 
simulation results are shown in Section 5. The last section is the conclusion.  

2. Related Work 
The cache issue has been intensively studied in the field of web caching [26], Content 

Delivery Network (CDN) [27] and IPTV [28], etc., and the local caching policy is always one 
of the hot topics widely discussed. Different from previous studies that are aimed at certain 
specific applications, ICN faces to all network contents, making the network caching become 
a sort of public competed resource.  

The local caching policy can be divided into the cache permission policy and the cache 
replacement policy. The latter has gained lots of attention in web caching. Many schemes have 
been proposed, considering the request frequency, the content size, the content age, etc. The 
literature [29] provided a very detailed summary. However, due to the line speed requirement 
of ICN routers, the complexity of the cache replacement policy used in ICN is required to be 
O(1), making LRU as the default option. Consequently, previous works for the local caching 
policy in ICN are mainly focused on the cache permission policy.  

The work in [8] proposed three cache permission policies including LCD, Move Copy 
Down (MCD) and Prob(p). LCE is also used to make comparison. Those policies were 
designed for web caching, but can also be applied to ICN. LCE can be regarded as an extreme 
permission policy that allows all contents to be cached, which is currently adopted by NDN. 
LCE leaves one copy of content on every en-route node in order to satisfy subsequent requests. 
Nevertheless, in web caching, the size of a web page is pretty small and the cache capacity is 
not the key factor to limit the cache performance. Different from the web caching, ICN 
network caching is a sort of public resource that are shared by all contents. In addition, ICN 
routers are required to forward contents at the line speed, making the cache capacity subject to 
the bandwidth of Network Interface Card (NIC). Consequently, the ratio of the cache capacity 
and the content number will be rather small. Moreover, ICN has interactions among caching 
nodes. Using LCE as the permission policy will cause the same content to be cached by all 
en-route nodes, wasting the limited cache resources and increasing the cache replacement rate 
significantly. Thus, LCE might not be the best choice for ICN. 

LCD and MCD can roughly reflect the number of requests. Under LCD and MCD, a new 
copy of the requested content will be cached only at the immediate downstream node of the hit 
node. Thus, contents that have more requests will be closer to users. The difference between 
LCD and MCD is that under MCD, the requested content will be removed by the hit node, 
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reducing the redundancy of cached contents along the delivery path. LCD and MCD make use 
of the number of requests to screen popular contents, however, the ratio between the request 
frequency and the path length will affect their performance.  

Prob(p) is a probability-based cache permission policy. When the content is sent back, the 
en-route node will cache the content at a fixed probability p. Compared with LCE, Prob(p) 
increases the diversity of cached contents and decreases the content replacement rate of cache 
nodes along the delivery path.  

Betw [9] is aimed to cache contents at important nodes where a cache hit is most likely to 
happen, so as to achieve the requirement of cache less for more. Their solution is based on the 
concept of Betweenness Centrality (BC) which measures the number of times a specific node 
lies on the content delivery paths between all pairs of nodes in a network topology. As the 
request is sent upstream, the maximum value of BC of the node along the delivery path will be 
recorded in the request. When the request reaches the server or the node that caches the content, 
the value of BC in the request will be attached to the content header. As the content is sent 
back, each on-path node will compare its own BC value with the one containing in the content 
header. Only when the two BC values are equal will the node cache the content. Although 
Betw stores the content on a node that is more likely to produce a cache hit, it will accelerate 
the content replacement rate of those nodes, resulting in the instability of cached contents. 
Meanwhile, BC is a topological property and does not capture the content popularity.  

I. Psaras et al. proposed two probability-based cache permission policies called ProbCache 
[10] and ProbCache+ [11]. ProbCache+ is the enhanced version of ProbCache. The idea behind 
them is caching contents closer to users. The probability also takes the remaining cache 
capacity of the delivery path into account. However, the content popularity which is the most 
crucial factor for caching performance is not considered. The caching probability expressions 
of ProbCache and ProbCache+ for node X to cache the incoming content are shown in Eq. (1) 
and Eq. (2) respectively, where c represents the total length of the delivery path, x is the 
distance between the node X and the hit node, Ni is the cache capacity of the ith node on the 
delivery path from the user side, NX is the cache capacity of the node X and Ttw equals 10. 

 

 
 

Garcia-Reinoso et al. proposed two caching policies called LRU-PC and LRU-PCSL [12]. 
The former is actually the combination of Prob(p) and LRU. The latter is the update version of 
LRU-PC with a Secondary List (SL). When the content is sent back, the content name is firstly 
cached in SL with a fixed probability psl. If the content is already in SL, then, the content is 
cached in the cache with a fixed probability pc. This idea is similar with ours, however, we take 
the content popularity into account and the length of CF list is much less than that of cached 
content list, which is just the opposite as LRU-PCSL does. 

K-LRU [13] records the last K references of cached contents. Although it is a caching 
replacement policy, K-LRU also uses a new list to filter contents to be cached before they are 
actually cached. However, since K-LRU requires to keep track of the time of last K references 
of the content, its complexity is no longer as O(1) as that of LRU.  
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Tarnoi et al. compared the performance of different combinations of cache permission 
policies and cache replacement policies in the work [14] and found that the combination of 
Prob(0.01) and LRU has a good result.  

An age-based permission policy called ABC was proposed in the work [15]. Under the 
policy, the more popular the content is and the closer the content is to users, the longer the 
cache age will be allocated to the content. Once the content gets the allocated age, it cannot be 
removed until the age is expired. Suksomboon et al. proposed a probability-based permission 
policy that takes the content popularity into consideration [16]. However, both of above works 
assume that the content popularity is known in advance by some other means, which requires 
some additional complex operations. Bernardini et al. proposed a popularity-based permission 
policy that records the content request number [17], but it does not meet the requirement of the 
line speed.   

The comparison of above mentioned permission policies is shown in Table 1. Cache-Filter, 
LCD, MCD, Betw, ProbCache and ProbCache+ add a tag in the packet and have to deal with it 
when the content is sent back. Prob(p), ProbCache, ProbCache+, PCSL, and PopCache are 
supposed to produce a random number to compare with a defined or calculated probability. 
ABC calculates the cache time for the incoming content based on the content popularity and 
MPC counts the request number for the content. In addition, Cache-Filter and PCSL firstly 
record the content name instead of the content itself. 

 
Table 1. The comparison of related caching permission policies 

 

Permission 
Policy 

Factors to be 
considered 

Compl- 
exity 

Packet 
Tag Operations on 

Cache-Filter Content Popularity, 
Content Name List O(1) √ Tag and Name List  

LCD[8] Content Popularity O(1) √ Tag 
MCD[8] Content Popularity O(1) √ Tag 

Prob(p)[8] Probability O(1) × Probability Calculation 
LCE --- O(1) × --- 

Betw[9] Topologic Features O(1) √ Tag 

ProbCache[10] Distance, Probability, 
Cache Capacity O(1) √ Tag and Probability Calculation 

ProbCache+[11] Distance, Probability, 
Cache Capacity O(1) √ Tag and Probability Calculation 

PCSL[12] Probability,  
Content Name List O(1) × Probability Calculation and Name List 

ABC[15] Content Popularity, 
Distance, Cache Time O(1) × 

Cache Time Calculation 
(Content Popularity is known in advance) 

PopCache[16] Content Popularity, 
Probability O(1) × 

Probability Calculation 
(Content Popularity is known in advance) 

MPC[17] Content Popularity O(logN) × Counts of Request Number 

3. Problem Description 
Unlike the previous studies of caching, ICN is the content-oriented network and all contents 
within the network can make use of the cache resources. Thus, how to allocate the cache 
resources for different contents so as to reduce the user delay and network traffic is the main 
goal of designing the local caching policy. Although this issue has been thoroughly studied in 
other fields such as the web caching and CDN, those solutions cannot be directly applied to 
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ICN. Since ICN regards the content as the first class network citizens, the traditional 
channel-based connection is replaced by the hop-by-hop transmission. Many new features 
have been generated. The most crucial feature for designing the cache permission policy 
should be the line speed requirement for ICN routers. It causes the following results. 

1) The complexity of the cache permission policy should be O(1) and LRU has become the 
default cache replacement policy in ICN. Complex policies cannot be used, although their 
performance is better. 

2) The cache capacity cannot be enlarged arbitrarily and it is related to the bandwidth of the 
NIC. In addition, all contents compete the caching resources in the network, making the ratio 
of the cache capacity and the content number very small. The work [25] even estimated that 
this ratio is at an order of magnitude of 10-5. 

The current Internet is a user-oriented network and the content popularity is the most crucial 
factor for the caching performance [25]. Popular contents have much more user requests than 
unpopular ones. However, LRU is a kind of replacement policy that only records one-time 
history. Thus, it can guarantee the timeliness of cached contents and avoids the cache pollution 
problem that Least Frequently Used (LFU) suffers. On the contrary, LRU cannot identify 
popular contents since it does not count the request number, making its performance worse 
than that of LFU. 

As a cache replacement policy, LRU operates like below. For simplicity, we treat LRU as a 
list that consists of many entries. Each entry contains the content name and some related 
information like the address where the content is cached. When a new content enters the cache, 
a new entry will be added to record the content name and related information at the top of the 
list. If the cache is full, the entry at the bottom of the list will be removed. When the cached 
content is hit, the corresponding entry in the list will be moved to the top. Suppose that the 
LRU list contains at most n entries. A popular content c is requested at time t1, and requested 
again at t2. The condition which makes the content c to be remained in the LRU list is that other 
requests produced during the time interval (t2- t1) are subscribed for not more than n different 
contents. However, since the ratio of the cache capacity and the content number is pretty small, 
with high total request frequency or long interval (t2- t1), the content can be easily evicted by 
others. Thus, the stability of popular contents cannot be guaranteed, which certainly degrades 
the cache performance. 

In addition, cache nodes in ICN are interacted. In the delivery path, the upstream nodes are 
directly affected by the downstream nodes because many requests are satisfied by the 
downstream nodes. The instability of the downstream cached contents will cause more drastic 
changes to upstream nodes. Besides, if LCE is used as the cache permission policy which 
makes all nodes along the delivery path cache the same content, the overall content 
replacement rate of cache nodes will be much higher. A replacement error, which means the 
popular content is evicted by the unpopular one, will cause all nodes on the path to cache the 
same unnecessary contents and the diversity of cached contents along the delivery path 
becomes very poor. These all indicate that LRU, as the default cache replacement policy, does 
not perform well in ICN.  

Therefore, the content popularity or the number of requests should be somehow reflected by 
the cache permission policy. Moreover, the complexity of the cache permission policy should 
be O(1).  
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4. The Proposed Cache-Filter 

4.1 The overview of Cache-Filter 
Cache-Filter is a cache permission policy whose complexity is O(1) and it takes the content 
popularity into account. It aims to 1) cache popular contents closer to users so as to reduce the 
user delay and the network traffic; 2) decrease the content replacement rate of cache nodes in 
order to keep cached contents steadily; 3) ensure the diversity of cached contents along the 
delivery path to improve the cache efficiency. 

As the complexity of policies that involve the sorting operation is at least O(logN), it is not 
feasible for the node to determine the content popularity by counting the number of requests 
for some contents. Thus, the number of requests has to be reflected through the mutual 
cooperation of the on-path nodes. Under Cache-Filter, each request may advance a new copy 
of the content one hop closer to the user. A flag called CacheFlag is added in the content 
header. Its default value is set as false. The false means that the node is not allowed to cache 
the content if its cache is full while the true means just the opposite. Only the server or the hit 
node that holds the requested content can change CacheFlag to be true. After the content is 
sent to the immediate downstream node, CacheFlag in the content header will be set as false so 
that other nodes in the delivery path cannot cache the content anymore if their caches are full.  

Since the ratio of the cache capacity and the content number is extremely small, a new 
content to be cached will result in another content to be excluded. As mentioned above, LRU, 
as the cache replacement policy in ICN, cannot identify the content popularity well and leads 
to the high content replacement rate of cache nodes. In order to alleviate these problems, the 
node using Cache-Filter as the cache permission policy does not immediately cache the 
content whose CacheFlag is true. Instead, it just records the content name in a CacheFilter 
(CF) list and waits for a moment to see whether the content is popular. If the same content 
whose CacheFlag is true is sent back again and the content name is still in CF list, then, the 
node will cache the content locally.  

CF list uses LRU as the list replacement policy so that its complexity can be limited at O(1). 
As mentioned above, LRU, as the cache replacement policy, has a high content replacement 
rate under ICN environment and cannot identify the content popularity well. However, CF list 
just utilizes this feature of LRU to filter out unpopular contents from the server side. In fact, 
CF list transfers the replacement rate from the cache replacement policy to the cache 
permission policy to ensure the stability of cached contents. Moreover, the length of CF list is 
set much less than that of the cached content list like ContentStore (CS) in NDN, not only 
accelerating the replacement rate in CF list but also reducing the node overhead. Therefore, 
under a high CF list replacement rate, the content which is requested again before its name is 
evicted by CF list is very likely to be the popular one. Then, after the same operation of other 
on-path nodes, only the popular contents will be cached close to users. 

Cache-Filter screens popular contents from the source side, and the more popular the 
content is, the quicker it is pulled down to the network edge and the closer it is to the users. 
Thus, the replacement error caused by LRU can be well alleviated since the content popularity 
of cached contents along the delivery path is in a descending order from the user side, 
guaranteeing the stability of cached contents along the delivery path.  
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CacheFlag

 
Fig. 1. The flow chart of Cache-Filter 

 

The general flow chart of Cache-Filter is illustrated in Fig. 1 and NDN is selected as the 
ICN frame. In the following, we use the terms request and Interest, content and Data 
interchangeably. The flow of processing Interest is almost the same as NDN. When Data is 
sent back, if its header contains a true CacheFlag, the content name will be firstly recorded in 
CF list. Only after being hit in CF list, the content can be cached. CF list takes effect when 
Data is sent back and can avoid conflict with CS. As Interest is sent upstream, the node only 
looks up its CS and CF list is not involved. As Data is sent back, the node will firstly look up 
its CF list.  

4.2 The operation of Cache-Filter 
This section describes the operation of Cache-Filter in detail and the related pseudo-code is 
shown in Table 2.  

As Interest is sent upstream, if it reaches the server or the node that caches the 
corresponding content, Data will be returned and CacheFlag in Data header is set to true. 
Otherwise, the node checks PIT. If the content name does not exist, the node will create a 
related entry and forward Interest according to FIB. Otherwise, the node will suppress Interest 
to be sent upstream.  

When Data is sent back, the node will firstly check CacheFlag. If the flag is false, Data is 
unnecessary to be cached. However, during the network initialization, it takes some time for 
Cache-Filter to make full use of the cache capacity. Thus, the node can randomly cache Data if 
its cache is not full. In this case, the node produces a random number A (rndA). If rndA is larger 
than 0.5, Data will be cached locally. Since this Data has not been screened by CF list, it will 
be placed at the bottom of CS and will be the first to be removed if required, in case that it is 
not a popular content. 

If CacheFlag of Data is true, Data will be likely to be cached. The node firstly changes 
CacheFlag to false and then, checks CF list. If the name of Data exists in CF list, the node 
caches Data in CS and removes the corresponding entry in CF list. Meanwhile, if the cache is 
full, there will be another content to be replaced. The replaced content name will be stored in 
CF list in case that it is a popular content. In order to increase the diversity of cached contents 
along the delivery path, a Remove Message whose Time-to-Live (TTL) is one will be sent by 
the node to its immediate upstream node where the content comes from, notifying that Data 
has been cached downstream. On receiving this Remove Message, the upstream node will 
check its degree (the number of neighbors). If the degree value is not more than 2, the 
corresponding content will be removed. Otherwise, the node just drops the Remove Message. 
The motivation is that it is unnecessary to cache the same content along an exclusive path.  

If the name of Data is not included in CF list, a corresponding entry will be created in CF list. 
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In this case, if the cache is not full, the node produces a random number A (rndA). If rndA is 
larger than 0.5, Data is cached locally and the corresponding CF entry is removed. Finally, 
Data is distributed according to the related PIT entry.  

Note that the complexity of our proposed Cache-Filter is O(1). As stated before, CF list 
takes effect only when contents are arrived from the upstream and it screens popular contents 
before CS caches contents. In fact, CF list and CS work in a strictly sequence, not conflicting 
with each other. Hence, there is no extra complex operation required between them. The 
complexity of Cache-Filter mostly depends on CF list, more accurately, LRU, the replacement 
policy of CF list. As for the implementation of LRU whose complexity is O(1), the core idea is 
to maintain two separate data structures, a hash table which to check whether the requested 
content is in LRU list, and another is a doubly linked list which to keep the sequence of the 
cached contents. When Interest is coming, if the requested content is cached, by checking the 
hash table, LRU can find the location of the requested content in the doubly linked list and 
send the content back. Then, LRU links the previous content of the requested content to the 
next content of it. Finally, LRU puts the requested content at the head of the doubly linked list. 
When Data is coming, LRU adds the content name to the hash table and the head of the doubly 
linked list. Besides, if the cache is full, the content name at the tail of the doubly linked list 
should be removed, together with the corresponding entry in the hash table.  
 

Table 2. The pseudo-code of the operation of Cache-Filter 
The Operation of CacheFilter 

1: Funciton:ReceiveInterest (Interest(c), inface) 26: |  Data(c)->SetCacheFlag (False); 
2: c=Interest(c)->GetContentName( ); 27: |  CF_Hit=CF->Lookup(c); 
3: CS_Hit=CS->Lookup(c); 28: |  If (CF_Hit) 
4: If (CS_Hit) 29: |  |  CS->Add(Data(c), front); 
5: |  Data(c)=GetData(c); 30: |  |  CF->Remove(c); 
6: |  Data(c)->SetCacheFlag (True); 31: |  |  If (CacheFull) 
7: |  Forward (Data(c), inface); 32: |  |  |  CF->Add(c’, front); 
8: Else 33: |  |  |  #c’: the name of the evicted content 
9: |   Exist=PIT->Lookup(c); 34: |  |  Endif 
10: |   If (!Exist) 35: |  |  SendRemoveMessage(c, inface); 
11: |   |  PIT->Create (c, inface); 36: |  Else 
12: |   |  Forward (Interest(c), FIB); 37: |  |  CF->Add(c, front); 
13: |   Else  38: |  |  If (!CacheFull && (rndA>0.5)) 
14: |   |  Suppress (Interest(c)); 39: |  |  |  CS->Add(Data(c), back); 
15: |   End If 40: |  |  |  CF->Remove(c); 
16: End If 41: |  |  End if 
17:  42: |  End if 
18: Function: ReceiveData (Data(c), inface) 43: End if 
19: c=Data(c)->GetContentName( ); 44: Forward (Data(c), PIT); 
20: Flag=Data(c)->GetCacheFlag( ); 45:  
21: If (Flag==False) 46: Function: ReceiveRemoveMessage (c, inface) 
22: |  If (!CacheFull && (rndA>0.5)) 47: If (node->GetDegree( )<3) 
23: |  |  CS->Add(Data(c), back); 48: |  CS->Remove(GetData(c)); 
24: |  End if 49: End if 
25: Else   
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4.3 A simple example 
A simple example of how Cache-Filter operates is provided below. The running statuses of the 
node A and B are illustrated in Figs. 2(a) ~ 2(f). Assume CS and CF list have 3 and 2 entries 
respectively and the request sequence is {#1, #2, #1, #3, #1, #1}.  

The user request for the content #1 is depicted in Fig. 2(a). The server sets the CacheFlag of 
the content #1 to true (T) and sends it back. After receiving the content, the node B changes the 
CacheFlag to false (F) and records the content name in CF list. Suppose the produced rndA is 
less than 0.5 in both the node A and B, then, the content #1 is not cached along the delivery 
path.  

1

1T1F1F

1 1

rndA<0.5 rndA<0.5

CS CF
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CS CF(a)

User Server

Node A Node B

       

Node BNode A
2

2T2F2F

2 2

rndA>0.5 rndA<0.5

2
CS CF

2
1

CS CF(b)

User Server  
Fig. 2(a). Requesting for content #1                    Fig. 2(b). Requesting for content #2 

 
The user request for the content #2 is depicted in Fig. 2(b). Suppose the produced rndA is 

larger than 0.5 in node A, then, the content #2 is cached by the node A.  
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  Fig. 2(c). Requesting for content #1                     Fig. 2(d). Requesting for content #3 

 
The user request for the content #1 is depicted in Fig. 2(c). Since content #1 is stored in CF 

list of the node B, it will be cached and the related CF list entry is removed.  
The user request for the content #3 is depicted in Fig. 2(d). The content #3 is inserted in CF 

list of the node B. Suppose the produced rndA is larger than 0.5 in node A, then, content #3 is 
cached by the node A and it is inserted at the bottom of CS because the node A caches content 
#3 in a random way. 
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    Fig. 2(e). Requesting for content #1                         Fig. 2(f). Requesting for content #1 

 
The user request for the content #1 is depicted in Fig. 2(e). Since content #1 has been cached 

by the node B, it is sent back with CacheFlag true by the node B. Then, the content #1 is 
inserted in CF list of the node A. 

The user request for the content #1 is depicted in Fig. 2(f). Since content #1 exists in CF list 
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of the node A, after receiving the content, the node A will cache content #1 in CS and remove 
related entry in CF list. Then, it will send a remove message to the node B and notify the node 
B that it has cached the content #1. On receiving that message, the node B removes the content 
#1 to make room for other contents. 

4. Simulation Results 
The function of Cache-Filter (C-F) is implemented with ndnSIM [30], a NS-3 based NDN 
simulator, and additionally, some cache common permission polices whose complexity is 
O(1) are also implemented for performance comparisons. Those policies include LCD, MCD, 
Betw (BTW), ProbCache (PRC), ProbCache+ (PRC+), Prob(0.01), Prob(0.3), Prob(0.7), and 
PCSL. LRU is selected as the cache replacement policy for them. The combination of LCE 
and LRU is the local caching policy of NDN, which has been provided by ndnSIM. Note that 
according to the work [12], pc and psl in PCSL are set at their best values, 0.1 and 0.5 
respectively, and the length ratio of SL and CS is 10. 

All permission policies are run under a 6-layer tree and 625-node Internet-like topology to 
investigate their performance. The total content number is set to 10,000, and each content has 
the same size. The content requests follow the Zipf distribution where the skewness parameter 
ranges from 0.5 to 1.5, while the arrival process of content requests follows the Poisson 
distribution where the arrival rate is 10Hz for each user. The cache capacity is set to contain 50 
contents by default and it ranges from 10~100 contents. The length of CF list is set to 20% of 
the cache capacity by default. The initial cache is empty. The simulation duration lasts 11,000 
seconds where the first 1,000 seconds is for the warm-up. The simulation related parameters 
are summarized in Table 3 and U in the row of Local Policy denotes the union symbol. 
Without otherwise specified, the cache capacity and the size of CF take the default values.  
 

Table 3. The list of related parameters 
Parameter Value 
α of Zipf distribution 0.5~1.5, 1.0 by default 
Topology Tree Topology (64 nodes), Internet-like Topology (625 nodes) 
Frequency of each user 10Hz 
Content Number 10,000 
Simulation Duration 11,000 seconds 
Cache Capacity 10~100, 50 by default 
The length ratio of  
CF list and CS  10%~100%, 1,000%, 20% by default 

Local Policy {C-F, LCD, MCD, BTW, PRC, PRC+, Prob(0.01), Prob(0.3), 
Prob(0.7), PCSL, LCE} U {LRU} 

Performance Metric Distance (hops), Server Hit Ratio, Cache Eviction Counts 
 
As for the topology, the 6-layer tree topology consists of 64 nodes. 32 users are connected to 

different leaves and a server is accessed to the root, thus, the distance between each user to the 
server is 7 hops. The bandwidth of each node in the tree topology is set at 10Gbps. 

The Internet-like topology is selected from the Rocketfuel’s AT&T topology [31], as shown 
in Fig. 3. It contains 625 nodes and 2,101 links. Specifically, there are 296 leaves (red), 108 
gateways (green) and 221 backbones (blue). We do not change the original parameters of the 
Internet-like topology. In the Internet-like topology, there are 100 users and 100 servers 
randomly accessing at leaves. 10,000 contents are arbitrarily allocated to those 100 servers but 
each content is owned by a unique server. We change the random seed and repeat the 
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simulation 20 times under the Internet-like topology, resulting in 20 kinds of distribution 
scenarios. Since the change trend of each cache permission policy is very similar in all 
scenarios, we only present results of the first scenario.  

The testing performance indexes include Distance (Dist), Server Hit Ratio (SHR) and Cache 
Eviction Counts (CEC). The Distance is defined as the number of hops that the request reaches 
the server or the node which has the requested content copy. The Average Distance is the 
quotient of the summation of the Distance of each request and the total number of requests. 
The shorter the average distance, the higher the efficiency of the network caching performance 
is. Note that we do not use the user delay as a performance metric because it is hard to judge 
the cause of a long delay if the link delay itself is quite long in the topology. Average Server 
Hit Ratio is defined as the ratio of the total request number received by all servers and the total 
requests number sent by all users. It roughly shows the ability that the network caching as a 
whole can unload the server traffic. Finally, Cache Eviction Counts is defined as the number of 
times that the cached content is evicted from all nodes in the network, which reflects the 
stability of the cached contents. In addition, the term Transit is regarded as per second. 
Without otherwise specified, parameters are set at their default values. 

 
Fig. 3. The Internet-like topology [31] 

5.1 The length of CF list 
First, the length of CF list is investigated to see how it influences the performance of 
Cache-Filter. The cache capacity is set to 50 and the length of CF list ranges from 5 to 50 
entries. CF list containing 500 entries is also evaluated. The relationship between Average 
Distance within the last 10,000 seconds and the length of CF list is illustrated in Fig. 4.  

 

Fig. 4. The relationship between Average Distance and the length of CF list 
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It is observed that Average Distance increases slightly as the length of CF list enlarges 
under both of the topologies. Since LRU cannot identify popular contents well, larger length of 
CF list will reduce the replacement rate of CF list and cause more content names to be 
recorded in CF list. Thus, contents that are not very popular have more opportunities to be 
inserted in CF list and then to be cached by nodes, resulting in the improvement of the content 
replacement rate and degrading the cache performance lightly. In addition, larger length of CF 
list requires more cache resources overhead, hence, the length of CF list is set to 20% of the 
cache capacity by default. Note that the gap between two curves is the result of the different 
setting and characteristics of the two topologies. 

5.2 Average Distance 
Average Distance reflects the efficiency of the network caching and good cache permission 
polices can cache popular contents closer to users. On one hand, the user delay is reduced, 
improving the user experience. On the other hand, most of requests are satisfied by the 
network edge, dramatically decreasing the network traffic.  
 

       
      Fig. 5(a). Under the tree topology                       Fig. 5(b). Under the Internet-like topology    

 
Transit Average Distance of each cache permission policy under the tree and Internet-like 

topology is illustrated in Figs. 5(a) ~ 5(b) respectively. Cache-Filter outperforms others 
except Prob(0.01) in the tree topology with the average of 3.98 and 3.62 number of hops 
respectively, while LCE performs the worst with the average of 4.80 and 4.37 number of hops. 
Compared with LCE, Cache-Filter saves over 17% number of hops. The detailed results of 
each permission policy about the average value within the last 10,000 seconds (AVG) and the 
reduction ratio (RTO) compared with LCE are listed in Tab. 4 and Tab. 5. Note that RTO 
compared with LCE is calculated as (XOther_Policy-XLCE)/XLCE. 

As stated before, since the ratio of the cache capacity and the content number is rather small 
in ICN and LRU is chosen as the cache replacement policy, it is not suitable to adopt LCE as 
the cache permission policy, which makes the content copy to be stored along the whole 
delivery path. LRU cannot identify popular contents as well as LFU, resulting in the instability 
of cached contents. Besides, LCE does not filter contents entering the cache, making the 
inherent drawback of LRU to be fully exposed. Thus, it makes sense that the combination of 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015                        4925 

LCE and LRU, which is used in NDN, performs the worst.  
The main reason why all the other permission policies perform better than LCE is that, to 

some extent, they all filter out some contents into caches and decrease the content replacement 
rate of cache nodes. The performance difference among them is determined by the factors 
under consideration when setting the permission rule.  

PCSL has good performance because it is the combination of Prob(p) and SL. Prob(p) can 
decrease the content replacement rate of cache nodes and SL can help to filter out popular 
contents. However, the setting of pc and psl of PCSL will influence the performance of PCSL a 
lot and it requires much longer SL to keep track of content names. 

Prob(0.01), Prob(0.3) and Prob(0.7) are a sort of cache permission policies purely based on 
probability. Prob(0.01) performs much better than Prob(0.3) and Prob(0.7), mainly because 
the former has much lower caching probability and can indirectly filter out popular contents. 
Prob(0.01) is no doubt the simplest to be implemented among other caching permission 
policies. Although it does not consider any other factors, Prob(0.01) is quite efficient in such 
an environment where the ratio of the cache capacity of each node and content number is really 
small, just as the work [14] illustrates. This is because by a very low probability, only popular 
contents that have many requests can be cached. However, besides the cache capacity of each 
node, the performance of Prob(p) with low probability also depends on the number of nodes in 
the topology, the skewness parameter of Zipf distribution, etc. In addition, it is observed that 
different from its good performance in the tree topology, Transit Average Distance of 
Prob(0.01) in the Internet-like topology even does not reach a steady state before 8,000 
seconds. Since the tree topology used is a regular topology which all leaves are at the same 
depth, contents requested in nodes which locate at the same depth are almost the same. Thus, 
there is not much difference between the tree topology and a cascade topology which has the 
same length as the depth of tree topology. This is the reason why Prob(0.01) can quickly reach 
a steady state in the tree topology. In contrast, the Internet-like topology has 625 nodes, much 
larger than the depth of the tree topology and it takes a very long time for Prob(0.01) to reach 
its best performance. Considering contents in the real network is changed all the times, such a 
long time surly degrades the performance of Prob(0.01). 

ProbCache and ProbCache+ primarily take the length of delivery path into account while 
Betw considers the importance of the node. They all perform better than LCE, Prob(0.3) and 
Prob(0.7) since they are designed based on some features of the delivery path or the network 
characteristics. However, the content popularity, which dominates the cache performance, is 
ignored. LCD performs better under both topologies because it can reflect the content request 
number, with each request advancing a new copy of the content one hop closer to the user. 
However, LCD only makes use of the length of the delivery path to filter out unpopular 
contents. If the request frequency is high or the path length is short, its performance will be 
limited. MCD performs far worse than LCD because it removes the hit content after the 
content is forwarded. Contents that can be pulled down are very likely to be popular and 
deleting such contents will certainly degrade the content sharing. 

The reason why Cache-Filter has better performance is described as follows. Considering 
the feature of ICN and the defect of LRU, we take the content popularity into consideration to 
design Cache-Filter. Besides, the complexity of Cache-Filter is ensured to be O(1). 
Cache-Filter just takes the feature of the high replacement rate of LRU to filter out unpopular 
contents. In order to prevent content from entering the cache immediately, it adds content 
name into CF list which uses LRU as the replacement policy. With a high replacement rate of 
CF list, the content whose name can be hit in CF list is probably a popular one. In addition, by 
the filter effect of all nodes along the delivery path from the server side, only popular contents 
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can be pulled down to the edge of the network, which is also the reason why Cache-Filter is 
better than LCD. The outstanding performance of Cache-Filter under both of topologies 
indicates that the principle of caching popular contents closer to users works effectively. 

The changes of Average Distance within the last 10,000 seconds of each cache permission 
policy as the cache capacity increases under the tree and Internet-like topology are illustrated 
in Figs. 6(a) ~ 6(b) respectively. It is observed that the change trend of each cache permission 
policy is generally the same except Prob(0.01) in the Internet-like topology. When the cache 
capacity enlarges, the performance of Prob(0.01) improves a little. The reason is that 
Prob(0.01) cannot identify popular contents. However, Cache-Filter still has better 
performance because it regards the content popularity as the key factor to design the policy.  It 
is natural that Average Distance drops as the cache capacity increases, however, the rate of 
decline of each curve becomes slightly smaller. Since content requests follow the Zipf 
distribution, the lower-ranking content has substantially less request number than the 
higher-ranking one. Thus, it can be expected that when the cache capacity increases to a 
certain extent, continuing to enlarge the cache capacity of nodes does not improve the network 
performance, and this extent is associated with the skewness parameter of the Zipf 
distribution. 

The changes of Average Distance within the last 10,000 seconds of each cache permission 
policy as α increases under the tree and Internet-like topology are illustrated in Figs. 7(a) ~ 
7(b) respectively. It is observed that the change trend of each cache permission policy is 
generally the same. Cache-Filter still has better performance under the two topologies. 
Average Distance drops a lot as α increases since more requests are sent for less contents. It is 
also observed that the performance of Prob(0.01) in the tree topology is worse than that of 
Cache-Filter. This is because when α is relatively low, the difference of request number of the 
popular content is not as large as it is when α is relatively high and Prob(0.01) is hard to 
identify popular contents only by an extremely low probability. In addition, when α=1.5, even 
Average Distance of LCE is no more than 1.71, making the caching permission policy much 
less important than it is when α is relatively low. 
 

                
       Fig. 6(a).Under the tree topology                   Fig. 6(b). Under the Internet-like topology 
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     Fig. 7(a). Under the tree topology                   Fig. 7(b). Under the Internet-like topology 

 

5.3 Server Hit Ratio 
Transit Average Server Hit Ratio of each cache permission policy under the tree and 
Internet-like topology is illustrated in Figs. 8(a) ~ 8(b) respectively.  
 

  
       Fig. 8(a). Under the tree topology                   Fig. 8(b). Under the Internet-like topology 

 
Cache-Filter has lower Transit Average Server Hit Ratio with 45.61% and 1.71% under the 

tree and Internet-like topology respectively while LCE performs poor with 58.47% and 2.97%. 
It is observed that the rank of Transit Average Server Hit Ratio of different permission policies 
is not consistent with the rank of Transit Average Distance of them. This is because the server 
hit ratio only reflects the caching performance of the network as a whole, however, how the 
cached contents are allocated along the delivery path cannot be reflected. For example, assume 
a very simple topology like server-N1-N2-user and each node can cache a content c1 or c2. 
The server hit ratio remains the same in the situation where N1 caches c1, N2 caches c2 and 



4928                                  Feng et al., : Cache-Filter: A Cache Permission Policy for Information-Centric Networking 

where N2 caches c1, N1 caches c2. Thus, Average Distance of each permission policy is 
necessary to be tested. It is observed that curves of Transit Average Server Hit Ratio of the 
Internet-like topology are quite different from that of the tree topology. The reasons are that 
the node number of the tree topology is much less than that of the Internet-like topology and 
that Internet-like topology is a scale-free one with 100 servers, making the majority of delivery 
paths to be crossed and overlapped. Therefore, it takes longer time for the Internet-like 
topology to reach a steady state.  

As for why Transit Average Server Hit Ratio of Betw and ProbCache+ is much higher than 
others, reasons are below. For Betw, since it caches contents at the node whose BC is the 
largest along the delivery path, contents in that nodes are easily evicted especially in the 
complex topology, making some less popular contents to be fetched from servers. For 
ProbCache+, its cache probability almost entirely depends on the distance from users to hit 
nodes or servers, regardless of the content popularity, making popular contents have very low 
cache probability at following nodes of hit nodes. Thus, ProbCache+ cannot guarantee that the 
more popular the content is, the more cache probability it can get, and popular contents are 
easily evicted. The detailed results of each permission policy about the average value within 
the last 10,000 seconds are listed in Table 4 and Table 5. 
 

5.4 Cache Eviction Counts 
Transit Cache Eviction of each cache permission policy under the tree and Internet-like 
topology is illustrated in Figs. 9(a) ~ 9(b) respectively.  
 

  
Fig. 9(a). Under the tree topology                   Fig. 9(b). Under the Internet-like topology 

 
It is observed that Transit Cache Eviction Counts of LCE is extremely high, and Average 

Cache Eviction Counts of LCE within the last 10,000 seconds reaches 1213.11 and 578.11 per 
second. Thus, the stability of cached contents is not guaranteed and many contents are evicted 
before their subsequent requests are arrived. This has verified the argument we mentioned 
above that a very important reason why all the other permission policies perform better than 
LCE is that they all filter out some contents into caches and decrease the content replacement 
rate. Prob(0.01), Prob(0.3) and Prob(0.7) limit contents into caches by a fixed probability and 
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the results of both Average Distance and Average Cache Eviction Counts are 
Prob(0.01)<Prob(0.3)< Prob(0.7)<LCE, indicating that it is very necessary to prevent some 
contents into caches to keep the cached contents steadily in ICN. Prob(0.01) has the best 
performance among others for its extremely low probability so that only popular contents with 
many requests can be cached.  

Cache-Filter aims at reducing the content replacement rate and the reduction comes from 
two parts. One is produced by the effect of CacheFlag similar as LCD, which is a real 
reduction. Another is to transfer the replacement rate from the cache replacement policy to the 
cache permission policy. The eviction rate of CF list of Cache-Filter (CF*) is also shown in 
Figs. 9(a) ~ 9(b). The average rate is at 179.90 and 95.06 in two topologies, although the 
length of CF list is set 20% of CS length to improve the replacement rate. It seems that the 
eviction rate of CF list should be much higher, however, due to the filter effect of first several 
nodes from the server side, only popular contents can be reserved at the network edge and the 
rest of nodes on the path seldom evicts contents in both CS and CF. Compared with LCE, 
Cache-Filter reduces the eviction rate at 99.13% and 98.20% under two topologies 
respectively. The detailed results of each permission policy about the average value within the 
last 10,000 seconds and the reduction ratio compared with LCE are listed in Table 4 and 
Table 5.  

In summary, according to the simulation results, Cache-Filter has good performance 
because it takes the content popularity into consideration and leaves popular contents close to 
users. Cache-Filter uses the CF list and CacheFlag to filter out unpopular contents from the 
server side. By the filter effect of all nodes along the delivery path, only popular contents can 
be pulled down near users, so as to enhance the user experience, reduce network duplicate 
traffic and improve cache performance. Besides, Prob(p) with very low probability p is also a 
good caching permission policy for its simplification of implementation and low complexity.  
We will continue to optimize our Cache-Filter combined with Prob(p) in our future work. 
 

Table 4. The detail results of each permission policy in the tree topology 
 

Permission 
Policy 

Dist SHR CEC 
AVG RTO AVG AVG RTO 

C-F 3.98 17.15% 45.61% 10.61  99.13% 
LCD 4.08 14.95% 47.53% 182.80  84.93% 

MCD 4.23 11.84% 50.48% 182.71  84.94% 
BTW 4.11 14.39% 48.98% 182.71  84.94% 
PRC 4.32 9.93% 50.58% 163.92  86.49% 

PRC+ 4.19 12.75% 47.41% 37.67  96.89% 
Prob(0.01) 3.95 17.75% 43.79% 9.55  99.21% 

Prob(0.3) 4.50 6.36% 53.04% 335.67  72.33% 
Prob(0.7) 4.70 2.15% 56.61% 826.89  31.84% 

PCSL 4.15 13.59% 47.37% 61.26  94.95% 
LCE 4.80 0 58.47% 1213.11  0 
CF* --- 179.90  --- 
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Table 5. The detail results of each permission policy in the Internet-like topology 
 

Permission 
Policy 

Dist SHR CEC 
AVG RTO AVG AVG RTO 

C-F 3.62 17.07% 1.71% 10.39 98.20% 
LCD 3.85 11.78% 2.15% 101.75 82.40% 

MCD 4.10 6.10% 3.40% 102.31 82.30% 
BTW 4.11 5.93% 5.29% 98.06 83.04% 
PRC 3.95 9.44% 2.21% 82.64 85.71% 

PRC+ 4.06 7.03% 5.56% 19.01 96.71% 
Prob(0.01) 3.78 13.41% 2.81% 4.26 99.26% 

Prob(0.3) 4.09 6.42% 2.47% 156.02 73.01% 
Prob(0.7) 4.27 2.15% 2.78% 390.40 32.47% 

PCSL 3.79 13.24% 2.12% 31.21 94.60% 
LCE 4.37 0 2.97% 578.11 0 
CF* --- 95.06 --- 

5. Conclusion 
In this paper, we have first analyzed some new generated features of ICN related to design a 
cache permission policy. Since LRU is selected as the default cache replacement policy and it 
cannot filter out unpopular contents well, the function of identifying content popularity is 
required to be completed by the cache permission policy and the complexity of the cache 
permission policy is supposed to be O(1). Then, we describe in detail the working mechanism 
of our proposed Cache-Filter. Specially, a flag called CacheFlag is attached in the content 
header and a CF list that uses LRU as the replacement policy is inserted into the nodes. In 
Cache-Filter, the incoming content is cached if its name is recorded in CF list and its 
CacheFlag is true. Through the cooperation of all on-path nodes, only popular contents can be 
pulled down to the network edge, reducing the user delay and the network traffic. Finally, 
extensive simulations are conducted under a 6-layer tree and a 625-node Internet-like topology 
to evaluate the performance of our proposed Cache-Filter. For comparison, LCD, MCD, Betw, 
Prob, ProbCache, ProbCache+, and PCSL are also implemented. In terms of the distance to 
access to contents, compared with LCE that is used by NDN as the permission policy, 
Cache-Filter saves over 17% number of hops. 
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