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Abstract 
 

Transceiver optimization in multiple input multiple output (MIMO) cognitive systems is 
studied in this paper. The joint transceiver beamformer design is introduced to minimize the 
transmit power at secondary base station (SBS) while simultaneously controlling the 
interference to primary users (PUs) and satisfying the secondary users (SUs) 
signal-to-interference-plus-noise ratio (SINR) based on the convex optimization method. Due 
to the limited cooperation between SBS and PUs, the channel state information (CSI) usually 
cannot be obtained perfectly at the SBS in cognitive system. In this study, both perfect and 
imperfect CSI scenarios are considered in the beamformer design, and the proposed method is 
robust to CSI error. Numerical results validate the effectiveness of the proposed algorithm. 
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1. Introduction 

With the rapid development of the wireless mobile communication technology, the scarcity 
of the radio spectrum becomes an urgently called-for problem. In order to alleviate this 
problem and improve the bandwidth efficiency, Dr. J. Mitola proposed the concept of 
cognitive radio (CR) in 1999[1]. In a cognitive radio system, secondary systems can work in 
the spectrum of primary systems with spectrum sensing while ensuring that the interference to 
primary systems is below an acceptable level. Because of the coexistence of different systems, 
the interference suppression is an important issue in cognitive system. Multiple input multiple 
output (MIMO) has been exploited in cognitive systems, and has emerged as an efficient and 
promising approach to suppress the interference and improve the spectrum efficiency.  

In cognitive MIMO systems, the SBS utilizes multiple antennas to form a directional beam 
which steers energy with beam patterns towards the receiver within a certain area to suppress 
the interference and improve the system performance [2-8]. A novel statistically robust 
cognitive radio beamformer was proposed in [3], where the total SBS transmit power is 
minimized subject to the outage probability constraints of PUs and SUs. Dana [4] proposed an 
iterative transmit beamforming and power allocation technique for interference limited 
cognitive networks. Ref. [5] proposed a robust cognitive beamformer to maximize the 
minimum of the received signal-to-interference-plus-noise ratio of the SUs, while [6] designed 
a new beamformer to maximize the service probability of the SUs. An optimal relay selection 
and beamforming scheme is studied in [7], where the capacity of the secondary user is 
maximized by selecting the best cognitive MIMO relay. The performance of the cognitive 
radio system can also be enhanced by designing the optimal received beamformer. Huiqin Du 
[8] designed a joint transceiver beamformer to improve the performance of MIMO cognitive 
radio networks by using the second-order cone programming method. In a cognitive radio 
system, the existence of the primary system may also cause interference to the secondary 
system and cannot be neglected in some practical scenarios. However, this kind of interference 
is usually not considered in traditional beamforming methods, resulting in the performance 
loss at SUs.  

In this paper, the transceiver optimization scheme is studied and a joint transmit and receive 
beamformer is designed to minimize the transmit power of SBS subject to both 
quality-of-service (QoS) constraints of SUs and interference limits of PUs. In the practical 
cognitive radio scenarios, CSI sometimes cannot be perfectly obtained at SBS [8-10]. 
Therefore, both perfect and imperfect CSI conditions are considered in the algorithm design. 
The interference from PBS to SUs is also taken into account to design the optimal transceiver 
beamformer. Since the original transceiver optimization problem is NP-hard, we propose an 
iterative algorithm by applying variable separation method based on the convex optimization 
theory. Simulation results show that the proposed algorithm can improve the performance of 
secondary system in both perfect and imperfect CSI scenarios and has a fast convergence 
speed.  

The remainder of this paper is organized as follows. In section 2, the system model is 
introduced. The transceiver optimization problem is formulated in Section 3. To solve this 
problem, a novel transceiver beamforming algorithm is introduced in section 4. In section 5, 
simulation results are given and finally, conclusions are drawn in section 6. 
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2. System Model 
The scenario of cognitive radio system is shown in Fig. 1. The multiple SU links consisting of 
one SBS and  SUs coexist with the multiple PU links consisting of one primary base station 
(PBS) and  PUs. The number of antennas equipped at SBS and SUs are  and , 
respectively. The rest of nodes in the system are configured with single antenna. 
 

 
Fig. 1. CR-MIMO System Model 

 
The downlink channels from the SBS to the th SU and the th PU are represented by 

 and , , , respectively. The channel from the PBS to 

the th SU is denoted as . All of above channel coefficients are assumed to be 
independent circularly symmetric complex Gaussian random variables with zero mean and 
unit variance. The received signal at the th SU is given by 
 

                           (1) 

 
where and are the transmit and receive cognitive beamformers for the th 

SU, and . The total transmit power of the SBS is .  is the white Gaussian 

noise at the th SU, whose entries are complex additive Gaussian distributed, i.e., 
, .  and  donate the message-bearing symbols transmitted to 

the th SU and the th PU with the power constraints , , 

respectively.  denotes the transmit power of PBS and the power allocated to each PUs is 
. Then the downlink receiving SINR of the th SU can be written as  
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where the numerator is the desired signal power and the denominator is the interference plus 
noise power. The received interference signal at the l th PU can be expressed as 
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and the interference power at the l th PU can be written as 
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3. Transceiver Optimization with Perfect CSI 
In this section, we formulate the transceiver optimization problem with perfect CSI at the 
transmitter. Given the SINR boundary of SUs and acceptable interference level of PUs, the 
transceiver optimization problem to minimize the transmit power of SBS can be formulated as 
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where kγ  denotes the received SINR requirement of the k th SU, and lξ  is the acceptable 
interference threshold of the l th PU. , , 1,...,k k k K=t r are the transmit and receive 
beamforming vectors of the k th SU. The problem (5) is a non-convex quadratically 
constrained quadratic programming (QCQP) problem which is difficult to be solved by 
traditional methods [3][11]. Instead of solving the problem (5) directly, we introduce a 
two-step strategy to solve this problem. Firstly, transform the optimization problem (5), which 
includes two kinds of variables , , 1,...,k k k K=t r , into two problems with single kind of 
variable. Then solve these two problems separately. Accordingly, we first reformulate the 
problem (5) by fixing kr . The following optimization problem is obtained.  
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According to [12], the problem (6) can be efficiently solved and the optimal transmit 

beamforming vector kt  can be obtained. Then we formulated the other one by fixing the 
remaining variable kt  as follows. 
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The problem (7) can be viewed as a receiving beamformer problem that maximizes the total 

SINR of SUs. The optimal receive beamforming vector kr can be obtained from problem (7) 
by fixing the transmit beamformer kt . The specific steps of algorithm will be given in the next 
section. 

4. Robust Transceiver Optimization with Imperfect CSI  
In section III, we formulate the transceiver optimization problem in the perfect CSI condition 
and introduce a two-step beamforming strategy. In the practical cognitive radio scenarios, the 
CSI between SBS and PU and between PBS and SU cannot be obtained perfectly at SBS and 
PBS. In this section, we consider a more practical scenario that the downlink channels, from 
SBS to PUs and from PBS to SUs, are imperfect due to the inaccurate channel estimation, 
outdated CSI, etc. Assume that the estimations of channels from the SBS to the l th PU and 
from the PBS to the k th SUs, denoted as lg 、 kf , are obtained with errors at SBS. lα 、 kβ are 
donated as estimation errors between the estimated CSI and the true one. Assume that channel 
estimation errors are all bounded. That is, l δ≤α  and k ε≤β , where δ  and ε  are assumed 
to be known at the SBS. Then we can reformulate the problem (6) as: 
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Note that both the SINR boundary and the interference threshold constraints should be 

satisfied in the worst CSI condition. Using the triangle inequality and Cauchy-Schwarz 
inequality, we have 
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Then substitute the above formulas into the problem (8), the problem (9) is obtained. 
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Following [12], the problem (9) can be formulated as a SOCP problem as follows. 
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used to simplify the problem (9), which is defined in [14]. The problem (10) is a convex 
problem and can be solved effectively by interior point methods. Similarly, reformulate the 
problem (7) in imperfect CSI condition as follows. 
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By using the triangle inequality and Cauchy-Schwarz inequality, we have 
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Then the problem (11) can be expressed as 
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Note that the problem (12) can be split into K  independent problems. Transform the k th 

problem into fractional semi-definite programming (SDP) form. 
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By using the Charnes-Cooper transformation [13], the problem (14) can be formulated as a 
convex SDP problem [7]. Let ( ) 2 1tr s

k k k
kns+ =B R and k k kn = M R . The problem (14) can 

be written as  
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The problem (15) is a convex optimization problem which can be solved by using the 
interior point method. Then the optimal received beamformer can be obtained from kM  by 
using randomization technique. 

Accordingly, the original optimization problem can be solved by using the problem (10) 
and the problem (15) iteratively. The specific iterative algorithm can be described as follows. 
At the thm iteration, a new ( 1)m

k
+t  can be obtained from the problem (10) with the fixed ( )m

kr . 
Then fix ( 1)m

k
+t  and update ( 1)m

k
+r from the problem (15). Continue this alternating 

optimization procedure until convergence. Define η  as the stopping criterion of iterations 
which is represented by the difference between the optimal transmit powers obtained in the 
mth and the (m+1)th iterations. The proposed algorithm is summarized in Table 1. 

 
Table 1. Iterative algorithm 
1:  initialization m = 0, (0) [1,0,0,...,0]T

k =r  and 0η >  
2:  repeat 
3:    Fixing ( )m

kr , solve ( 1)m

k
+t  from the problem (10); 

4:    if 0m > and ( 1) ( )2 2

1 1

m m
K K

k k
k k

η+

= =

− <∑ ∑t t , the iterative algorithm converge to a certain point 

and the transceiver  beamformer is obtained; Otherwise, turn to step 5. 
5:    Fixing ( 1)m

k
+t , solve ( 1)m

k
+r  from the problem (15); 

6:    m = m+1; 
7: until the iterative algorithm converges. 

Since the proposed algorithm is an iterative method, the total computational complexity of 
this method depends on the arithmetic complexity in one iteration and the number of iterations. 
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In the proposed method, a SOCP problem and a SDP problem are involved in each iteration. 
According to [15], the arithmetic complexity of the SOCP problem (10) is 3.5(( 1) )tKNο +  and 
the arithmetic complexity of the SDP relaxation problem (15), which has been be broken 
into K  independent problems, can be reduced to 3.5( )rKNο . The number of iterations is 
usually difficult to determine exactly. However, the convergence performance evaluation is 
given in the simulation part. The simulation results show that the proposed algorithm can 
usually converge to a fixed point in less than 10 times. 

5. Simulation Results 
In this section, we present the simulation results to evaluate the performance of the proposed 

method. Since the performance trends will not be affected as the number of SUs and PUs 
increased, the case of 2K =  SUs and 1L =  PU is considered for simplicity in the simulation. 
The SBS is equipped with 8 transmit antennas and each of SUs has two receive antennas. 
Assume that the total transmit power of the PBS is 1W and the noise variance 2 1s

ks = . The 
interference threshold of the PU is 2W. The stopping criterion η during iterations is 610− .  

Fig. 2 depicts the transmit power of the SBS versus the SINR boundary of the SUs with 
different CSI-error boundaries. It indicates that the total transmit power increases when the 
SINR boundary increases. It is also shown that in the perfect CSI conditions (denoted as the 
blue line with square in the condition of 0, 0ε δ= = ), the SBS need minimum transmit power 
to fulfill the QoS of SUs. If CSI is imperfect at SBS, higher transmit power of SBS is needed 
for the downlink transmission, which implies that the channel estimation error, either from 
SBS to PUs or from PBS to SUs, may cause performance loss.  
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Fig. 2. transmit power of SBS versus SINR boundary of SU 
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The interference suppression performance of the proposed algorithm is evaluated in this 
simulation. Fig. 3 shows the total interference from SBS to PUs versus the SINR boundary of 
SUs with different CSI-error boundaries. It depicts that the interference increases when the 
SINR boundary increases, but it will not exceed the interference threshold of PU (2W), which 
indicates that the proposed cognitive transceiver design can efficiently control the interference 
to PU in both perfect and imperfect CSI conditions. It is not surprising that the interference is 
more serious in the imperfect CSI condition than that in the perfect CSI condition.  

Fig. 4 depicts the capacity performance of the proposed algorithm. Note that the proposed 
algorithm considers the interference from primary system to secondary system in the 
beamformer design, while conventional methods usually do not. However, the interference 
from primary system is always suffered from the secondary system and sometimes cannot be 
neglected in the practical scenarios. In order to show the effectiveness of this consideration, 
the traditional algorithm which ignores this interference is also simulated just for comparison. 
Fig. 4 shows that the proposed algorithm outperforms the one which ignore the interference. 
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Fig. 3. interference at the PUs versus SINR boundary of SUs 
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Fig. 5 illustrates the convergence performance of the proposed iterative algorithm. The 

distributed algorithm proposed in [8] is also simulated just for comparison. The SINR 
boundary for SUs is equal to 1. From Fig. 5, it can be concluded that the proposed algorithm 
has better convergence speed, which implies that the proposed one has lower computational 
complexity. Also, we find that the two algorithms converge to the same optimal solution. 
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6. Conclusion 
In this paper, the transceiver optimization problem is studied in the CR MIMO system. A 
novel joint transmit and receive beamformer is designed to minimize the transmit power of 
SBS while satisfying the SINR requirements of SUs and the interference threshold of PUs. 
Both the perfect and imperfect CSI conditions have been considered in this study and the 
proposed method is robust to some CSI errors. Simulation results show that the proposed 
algorithm can enhance the performance of the secondary system while controlling the 
interference to the PUs. 
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