
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, Feb. 2016 484

Copyright ⓒ2016 KSII

This research is supported by Korea University Grant, and Brain Korea 21 Program for Leading Universities and

Students (BK21 PLUS) Program.

http://dx.doi.org/10.3837/tiis.2016.02.003 ISSN : 1976-7277

Dynamic Scheduling Method
for Cooperative Resource Sharing

in Mobile Cloud Computing Environments

Kyunglag Kwon
1
, Hansaem Park

1
, Sungwoo Jung

1
, Jeungmin Lee

1

and In-Jeong Chung
1,*

1 Department of Computer and Information Science, Korea University

#302, 2nd Science and Technology Building, Sejong-ro 2511, Sejong City 339-700, Republic of Korea

[e-mail: helpnara, park11232000, sigran0, wjdals543, chung@korea.ac.kr]

*Corresponding author: In-Jeong Chung

Received July 27, 2015; revised October 2, 2015; revised November 16, 2015; accepted December 20, 2015;

published February 29, 2016

Abstract

Mobile cloud computing has recently become a new paradigm for the utilization of a variety of

shared mobile resources via wireless network environments. However, due to the inherent

characteristics of mobile devices, a limited battery life, and a network access requirement, it is

necessary for mobile servers to provide a dynamic approach for managing mobile resources

efficiently in mobile cloud computing environments. Since on-demand job requests occur

frequently and the number of mobile devices is drastically increased in mobile cloud

computing environments, a different mobile resource management method is required to

maximize the computational power. In this paper, we therefore propose a cooperative, mobile

resource sharing method that considers both the inherent properties and the number of mobile

devices in mobile cloud environments. The proposed method is composed of four main

components: mobile resource monitor, job handler, resource handler, and results consolidator.

In contrast with conventional mobile cloud computing, each mobile device under the proposed

method can be either a service consumer or a service provider in the cloud. Even though each

device is resource-poor when a job is processed independently, the computational power is

dramatically increased under the proposed method, as the devices cooperate simultaneously

for a job. Therefore, the mobile computing power throughput is dynamically increased, while

the computation time for a given job is reduced. We conduct case-based experiments to

validate the proposed method, whereby the feasibility of the method for the purpose of

cooperative computation is shown.

Keywords: Mobile resource management and sharing, mobile computing, job scheduling,

cooperative computing

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016 485

1. Introduction

Cloud computing is a model for sharing a large number of on-demand services and

configured computing resources via a heterogeneous, broad network access. The model eases

the burdens of a rich set of computational requirements such as infrastructure, flexibility, and

resources [1]. According to a Forrester research report, the broad market is expected to reach

$241 billion in 2020, while in 2010 it was $40.7 billion [2]. Cloud computing is a fast-growing

technology, making it possible for cloud service consumers to share varieties of software

applications, hardware platforms, and infrastructures in the form of services such as

Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service

(IaaS) that are delivered over the Internet [3]. Cloud service providers allow their customers to

perform numerical computations with a high time complexity such as big data processing for

scientific or business purposes. They also provide their customers with large-scale online

storage, databases, and applications for on-demand consumer requests in real time, enabling

their consumers to concentrate on their core tasks instead of concerns regarding infrastructure,

flexibility, or resource availability [4].

However, each mobile resource management server should be able to provide dynamic load

balancing for efficient mobile resource sharing and job scheduling in real time because of the

characteristics that are inherent to mobile devices such as the large quantity in existence, a

limited computational power and battery life, and the need for network access. In addition,

on-demand job requests in mobile cloud computing environments are frequently received by

mobile cloud service providers. Furthermore, mobile resources need to be managed with a

method that is different from those that are used in conventional cloud computing

environments, since the number of mobile devices that are controlled by a service provider is

drastically increased to maximize the computational power.

Our main goal is to design a cooperative, mobile resource sharing method that enables

powerful computation in mobile cloudlets. We therefore considered both the intrinsic

properties and the number of mobile devices to propose a cooperative mobile resource sharing

method. In the proposed method, we divided participants into the following two groups:

service providers and service consumers. In contrast to the conventional monitoring and

allocation approaches for resources in server-based cloud computing environments [4, 5], a

service’s consumers can also participate as service providers. This means that the idle

resources in their mobile devices may be utilized for jobs that are requested by fellow

consumers to improve the computational power that is available for problem solving. Next, we

describe the scenario-based experiments that we conducted in a performance study using the

suggested method. We then demonstrate how the method works by measuring the execution

times for the given jobs and show the way in which a great amount of resources can be

managed by the cooperative computational model.

The remainder of this paper is organized as follows. Section 2 provides background and an

overview of related work, and Section 3 gives the problem statement. Section 4 presents the

cooperative mobile resource sharing method in detail. The performance study, including data,

experiments, and validation of the suggested method, is described in Section 5. Finally, we

conclude our paper with implications and further research directions in Section 6.

486 Kwon et al.: Dynamic Scheduling Method for Cooperative Resource Sharing in Mobile Cloud Computing Environments

2. Related Works

Recently, the increasing popularity of mobile devices and the rapid development of wireless

network technologies have shown the feasibility of applying the previous cloud computing

paradigm to mobile environments, leading to the emergence of mobile cloud computing.

Mobile cloud computing is a combination of cloud computing and mobile computing that

allows mobile users to use rich computational resources via wireless networks in

heterogeneous environments [6-8]. In contrast with conventional mobile cloud computing,

each mobile device in this paper can be either a service consumer or a part of a service provider

in the cloud, since the computational power of each mobile device is drastically increased.

Each device has a low computational power when a job is processed independently, but the

computational power can increase dramatically when numerous mobile devices cooperate to

process a job simultaneously. This cooperation provides a rich throughput of computation and

a decrease of the computational time for a problem with a given time complexity.

Cloud computing technology is composed of a variety of service models, including the

previously mentioned SaaS, PaaS, and IaaS [1], as well as Desktop-as-a-Service (DaaS) and

Resource-as-a-Service (RaaS) [9]. In addition, as the number of mobile devices increases

greatly, a new hierarchical cloud computing architecture has emerged [10]. The corresponding

issues, however, include pricing and lease duration, resource granularity, market-driven

resource pricing, and a tiered service provision [9]. To address these issues, resource

monitoring and allocation within the cloud need to be properly conducted. It allows

resource-poor mobile devices to leverage elastic, powerful resources in heterogeneous cloud

environments toward unlimited functionality (i.e., computational power), storage, and

mobility [6, 8]. Moreover, there are models specified for mobile cloud computing paradigm

such as Mobile as a Service consumer (MaaSC), Mobile as a Service Provider (MaaSP),

Mobile as a Service Broker (MaaSB), and Mobile as a Representor (MaaR) [11].

A large amount of research has been conducted on mobile resource sharing methods for the

efficient allocation or reallocation of resources in mobile cloud computing environments [6-8,

12]. Mobile cloud computing comprises the following two different models: the client–server

communication model and the peer-to-peer communication model [12]. In the first model, the

remote cloud provides data storage and computing services while the mobile devices are

clients that access the service through wireless networks. The vast computational resources of

remote cloud servers can enable computation-intensive applications on mobile devices. In

contrast to the first model, the second model has emerged due to the increasing memory and

computational power of mobile devices. A group of neighboring mobile devices can thus

connect via a wireless network to form a mobile cloudlet, enabling them to provide their

resources, as service providers, for other mobile devices. In [12], the authors introduce terms

such as “initiator,” “cloudlet properties” (cloudlet size, cloudlet node’s lifetime, and reachable

time), “upper” and “lower bounds” on computing capacity, and “long-term computing speed”

of a mobile cloudlet, and they define them in a mathematical way. However, the methods that

are proposed in [12] and [13] make many assumptions. In [13], the authors propose a mobile

resource allocation method that is based on priority and time consumption, whereby the

ALSALAM algorithm that subdivides jobs and represents them according to a graphical

presentation method is used. In this paper, the proposed method uses a different architecture

that allocates mobile resources based on priority, the performances of mobile resources, and

the demanded resources. Since our method consists of a resource handler, it considers

dynamicity and practicality in terms of resource reallocation, whereas the method in [13]

assumes that the job must be processed to avoid its reallocation. Moreover, we focus on

comparing the performance measurement with optimal and heuristic solutions. For the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016 487

proposed method, we demonstrate the effectiveness of its resource management by examining

the usage of the available mobile resources and the allocation of these resources to tasks,

whereas the method of [13] focuses on the results of the analyses of the relationships among

the major obstruction factors in mobile cloud environments.

In this paper, we describe a mobile resource allocation problem in mobile cloud computing

environments and then formulate the problem by specifying the mobile resource availability

constraints. We do not consider mobile devices to be resource-poor inasmuch as large

manufacturers have announced the ample resources of their devices such as multicore CPUs

(even quad- or octal-core CPUs in 2015), and RAM and data storage that exceed 2 GB and 16

GB, respectively, which is in contrast with previous devices [10, 11]. Such developments

suggest that the combined computing power may be sufficient when many mobile devices

cooperate with each other in mobile cloudlets via wireless networks in a cooperative

computation approach. A group of mobile resources (called a “mobile cloudlet”) can therefore

process a huge job that is composed of many small, independent sub-tasks. Building on these

assumptions, we take full advantage of these mobile devices by using them concurrently in a

mobile cloudlet under a cooperative, mobile resource sharing method.

3. Problem Statement

Mobile cloud computing environments have the following accompanying requirements. First,

many aperiodic, on-demand jobs are submitted to mobile cloud service providers in real time,

and each job is composed of multiple independent tasks that are to be properly distributed to

remote resources. In this study, we assume that a job can be partitioned into several tasks and

that these tasks are not interdependent. To meet the requirement of a real-time capability, a

mobile cloud service provider needs to manage a high number of increasing mobile resources

with a low time-complexity method. This is because of the characteristics that are inherent in

wireless network mobility such as network instability and energy resources that are in

themselves limited; therefore, an appropriate resource scheduling algorithm is required.

Secondly, the status of mobile resources in the cloud should be monitored and managed

dynamically. As the mobile environment is dependent on each user’s preferences and is in

constant flux because of sudden calls, texting, web browsing, etc., the resource availability

status of each mobile device is too erratic to monitor consistently; therefore, the service

provider should check the status when a job is submitted. In addition, basic mobile

functionalities should be guaranteed for mobile participants while they are providing their

resources for the cloud. We therefore suggest a cooperative mobile resource sharing method

regarding the monitoring and management of resources. We also has been devised in

consideration of the previously mentioned mobile device characteristics such as unstable

network access and limited energy (battery) resources.

Since many problems in big data processing take a lot of time due to repetitive computations,

we have employed the proposed, cooperative method to solve these problems. The

characteristic of big data processing lies in that one big job is divided into many small tasks

that require many repetitive computations. Thus, it takes a long time to solve one big problem

in an entire system. For this reason, we propose a dynamic scheduling method for cooperative

resource sharing in mobile cloud computing environments. The proposed method is applicable

to a variety of fields in the big data processing. For example, such a variety of application

ranges not only from social network analysis or graph theory in social web environments, but

also to matrix multiplication problems as well as Time Projection Chamber (TPC) tracking

algorithm [14, 15], etc. As demonstrated in Fig. 1, a job in TPC tracking in physics consists of

488 Kwon et al.: Dynamic Scheduling Method for Cooperative Resource Sharing in Mobile Cloud Computing Environments

many events and each event consists of tasks such as sector tracker, cluster finder and TPC

sector. Each task in the event can be processed in parallel, and is performed as the unit of

sector independently.

Fig. 1. An example of application scenario where a task can be divided into several independent tasks

4. Proposed Methodology

Fig. 2. Overall workflow of the proposed architecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016 489

Fig. 2 shows the overall workflow of the proposed system architecture that consists of four

main components such as mobile resource monitor, job handler, resource handler, and results

consolidator. In this paper, we explain four modules, which execute tasks cooperatively to

process a large job in mobile cloud computing environments. In Fig. 2, we get information on

the available amount of resources and the amount required by each task from mobile resource

monitor module and job handler. Job handler is responsible for dividing a big job into small

tasks to collect amount of resource required by each task. The resource handler then assigns

mobile resources to each task by using our proposed scheduling algorithm based on collected

resource information. Lastly, there is the results consolidator to collect results for a given task.

All these four modules perform each function efficiently to process a large job in mobile cloud

computing environments. Mobile participants can be both consumers and providers of a cloud

service. A mobile cloud service consumer can submit a new job request to a cloud service

provider, and a mobile cloud service provider can provide consumers with its own resources

for the processing of a given task(s) within the cloud service provider.

4.1 Mobile resource monitor

Fig. 3 demonstrates how the mobile resource monitor of the proposed method works and

collects mobile resource statuses in the hypervisor under a variety of conditions. In Fig. 3, the mobile

resource monitor periodically requests and receives data regarding the current network

availability, remaining battery life, CPU, and memory before the allocation of resources and

the assignment of requested jobs. The module asks for the current battery status for each

mobile device since mobile device performance is inherently dependent on battery life,

whereas cloud resources with a constant supply of power (e.g. servers) are not.

If there is no response from the registered mobile device within a predefined time limit

(caused by, for example, link loss or timeout), the module considers it an unavailable resource

at that time, as shown in the timeout case of the mobile device in Fig. 3; in this case, the

network availability value is 0. Otherwise, the module dynamically adds the device to the

available resource list (pool), or removes it from the list, and then marks its availability status,

as shown in Fig. 3 (in this case, the network availability value is 1). Another case is that of a

mobile participant with enough CPU and memory resources, but with a low battery percentage

such as the mobile device in Fig. 3; in this case, the monitoring module does not add the

participant to the available resource pool. To be specific, the performance of each mobile

device is highly dependent on the amount of remaining battery life. In general, most of mobile

devices in real lives have a power saving mode to extend battery life by restricting applications

in background, or reducing use of features such as brightness of display, vibration, sensors, etc.

when battery is low (at 15-20% battery level). This is the reason why we say that the battery

level affects other resources such as CPU and memory seriously, and is thus one of the

important factors in mobile computing. Furthermore, the remaining battery life needs to be

high enough to allow for additional demands, since a mobile participant may receive a sudden

call or text message, making it difficult to provide cloud service consumers with sufficient

resources. Regarding memory, the memory usage of mobile devices is quite stable, ranging

from 70% to 90% (i.e., 10-30% free battery) regardless of the user’s usage patterns;

consequently, the available resource pool in this example contains the four mobile devices

 , and .

To determine the minimum clustering criteria for the addition of an available mobile

resource to a specific cloudlet, we measure the devices’ CPUs and memory usage every five

seconds for a week under various conditions such as idle state, normal use, and video

streaming or downloading, as shown in Fig. 4. We do not measure the battery usage of each

490 Kwon et al.: Dynamic Scheduling Method for Cooperative Resource Sharing in Mobile Cloud Computing Environments

device because the device is changed into the power saving mode when the remaining battery

falls below 15-20 percent. Most of mobile devices in the power saving mode are restricted of

their resources. Therefore, we directly use this percentage (e.g. 15 or 20) as minimum

clustering criteria.

Fig. 3. Collection of received mobile resource statuses in the hypervisor under a variety of conditions

In this paper, we regard the status information from mobile devices’ manufacturers as

correct. To be specific, the remaining resource information such as CPU, memory, and battery,

provided by native libraries on each mobile device, is correct unless the device is out of order.

Therefore, if the given information proves incorrect, we consider the mobile device out of

order. For example, we trust that the information (e.g. current time and today’s date) provided

by a mobile device is always correct with no doubt. Another example is that when we drive a

car, we also implicitly believe that the gauge of the car displays a correct driving speed. In the

resource monitoring module, we consider devices inoperable if their network status is unstable

or disconnected. The reason is that we cannot reliably receive the status information about the

mobile device periodically while processing a job. For these reasons, we establish the

minimum clustering criteria for mobile cloudlet membership, as follows:

 Network availability = 1 (connected) or 0 (disconnected)

 Remaining battery > 15

 Remaining CPU > 30

 Remaining memory > 10

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016 491

Using these constraints, we define the factors of both mobile availability and resource

throughput.

Fig. 4. Measurement of mobile device resources under a variety of conditions

Definition 1: Mobile availability. Mobile availability is given as a decimal value to

indicate whether a mobile resource in a mobile cloudlet meets the minimum clustering criteria

on demand or not. If one of the conditions does not meet one of the predefined minimum

clustering criteria, the mobile availability is set to zero; otherwise, it is the product of all four

values. It can be computed using the ternary conditional operator that is found in computer

languages. A ternary conditional operator is defined as follows:

 expression1 ? expression2 : expression3

 The first operand expression1 is implicitly converted to its Boolean value (i.e., true or

false).

 If expression1 evaluates to true (1), the second operand expression2 is evaluated;

otherwise, the third operand expression3 is evaluated.

In Table 1, for example, for the mobile resource , the value is ((94 > 15) ? 94 : 0) × ((4 >

30) ? 4 : 0) × ((85 > 10) ? 85 : 0) = 94 × 0 × 85 = 0, indicating that the mobile resource does not

meet one of the minimum clustering criteria (in this case, remaining CPU). Alternatively, for

492 Kwon et al.: Dynamic Scheduling Method for Cooperative Resource Sharing in Mobile Cloud Computing Environments

the mobile resource , the value is computed as ((29 > 15) ? 29 : 0) × ((59 > 30) ? 59 : 0) ×

((35 > 10) ? 35 : 0) = 29 × 59 × 35 = 59,885, indicating the resource meets all of the minimum

clustering criteria for being an available resource in the mobile cloudlet. If the value is greater

than zero, the mobile resource can be a mobile resource provider in the resource pool;

otherwise, the mobile resource is unavailable.

Table 1. Examples of collected statuses for each mobile resource

List () of

resources

in the

cloud

Network

availability

Remaining

battery

Remaining

CPU

Remaining

memory

Mobile

availability

Mobile

resource

throughput

 - - - - - -

 - - - - - -

 1 94 4 85 - -

 1 29 59 35 59,885 42.2

 1 95 7 39 - -

 1 36 25 88 - -

 - - - - - -

 - - - - - -

 1 68 90 91 556,920 81.4

 - - - - - -

 1 58 98 38 215,992 70.0

 - - - - - -

 1 75 87 51 332,775 75.0

 1 53 48 91 231,504 58.6

 1 78 62 40 193,440 64.0

 1 92 44 92 372,416 72.8

Total 525.8 8

Definition 2: Resource throughput . Resource throughput is the resource

amount that can be provided by a mobile device in a mobile cloudlet. The resource

throughput is computed according to the following equation:

 , where

 (1)

where is the transpose of a weighting vector for the set of constraints (remaining battery,

remaining CPU, and remaining memory), and is the resource status vector for the constraints.

The weighting vector is determined by an observation-based heuristic approach. Based on the

observations of usage of each resource in real mobile devices in Fig. 4, we can see that each

usage variation of CPU and battery resources are relatively higher (more fluctuated) than that

of memory resource. In determining weight values on each resource, we set more weight

values on each CPU and battery compared to that of memory based on the empirical

observations from Fig. 4. As this weight value changes, the number of available mobile

resources is determined, and it can influence the entire scheduling function.

We use the weight vector to represent the characteristics of problems. To be specific, by

adjusting the weight vector, we differentiate the problems that require resources with high

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016 493

throughput of CPU from other resources with high throughput of memory. Since we focus on

the problems with high throughput of CPU resources, we add more weights on CPU resources

in this paper. We also add more weights on battery resources because the performance of CPU

resources closely depends on the remaining battery power. In addition, by putting more weight

vectors, we can collect available resource information from each mobile device by changing

three different values (CPU, memory, and battery) of each mobile into one scalar value. These

values of each mobile device are used to order mobile devices by its performance in the mobile

resource monitor. With these values, the proposed system can remove the extreme or

abnormal mobile resources such as a mobile device with high throughput of CPU (or memory)

and very low remaining battery. As mentioned in previous section, because the battery level

affects other resources seriously, it is an important factor in mobile computing. Since the goal

is to solve problems that require many repetitive computations by using CPUs, we thus set

higher weight values on CPU and battery than that of memory in experiments. Each value of

weighted vector can be changed, depending on the problems to be solved.

In this paper, we thus set the weights for the remaining battery life and remaining CPU to

0.4, which are twice the value of the remaining memory weight. This is because the memory

usage is much more stable than usage of the other constraints, regardless of a user’s usage

pattern. This indicates that memory usage is less important than the other factors in the

processing of a job. These two vectors are then multiplied together to indicate the amount of

available mobile resource in a range from 0 to 100; for instance, in Table 1, for mobile

resource , the resource throughput is computed as the following equation (2):

 (2)

In the same manner, we collect all of the statuses of the registered mobile resources and

added them to the mobile resource pool so that , thereby enabling us

to easily monitor the status of the mobile resources in a cloud. From the example data in Table

1, the total number of available mobile resources and their total throughput for the mobile

cloudlet are 8 and 525.8, respectively. We then divide the possible states of the mobile

participants (resources) into the following: available, running, and finished. First, a mobile

device in an available state refers to the device that meets the minimum clustering criteria for

participating in job processing through the initial mobile resource monitor. Secondly, the

mobile device moves to a running state to process a received task. Lastly, a mobile device in a

finished state refers to the device in which a job handler is ready to reallocate an unprocessed

task such as unexceptional situations (e.g. task miss or task fail). The job handler does not have

to monitor available mobile devices again after a task has been allocated and successfully

processed by the mobile resource. It enables the job handler to reallocate the task directly by

reducing unnecessary steps such as monitoring of new mobile resources in the mobile resource

monitor module and job scheduling in the resource handler.

4.2 Job handler

When a mobile cloud customer submits a job to the proposed system (mobile cloud service

provider), the job handler partitions the job into several tasks (job partitioning) and creates the

mobile cloudlet (cloudlet creation). The job handler then allocates each task to the appropriate

mobile resource (mobile resource allocation) using the following assumptions:

 A job can be partitioned into several tasks, and the tasks are independent of each other.

494 Kwon et al.: Dynamic Scheduling Method for Cooperative Resource Sharing in Mobile Cloud Computing Environments

 A brief duration is required to process each task, but the number of tasks is very large.

 We already know the amount of resources that each tasks needs.

 No more than two tasks can be allocated to one resource to guarantee the intrinsic

functionalities of the mobile devices.

 When a job failure occurs due to an unknown resource problem, we reallocate the task

rather than trying to model incoming or outgoing mobile resources in the mobile cloudlet.

For example, a factorial computation problem can be separated into sub-factorial problems,

and a matrix multiplication problem can be composed of a set of small multiplication problems

with respect to its row and column indices. In the job partition step, a set of jobs is represented

by . Each job is composed of tasks: .

Based on the following criteria, each task in -th job is pushed into one of two queues, as

shown in Fig. 5: The waiting task queue is in charge of abnormally processed or unprocessed

tasks, and tasks with a throughput higher than that of a mobile resource. The priority task

queue is responsible for normal tasks that should be processed.

Fig. 5. Partitioning of a submitted job into several tasks in the job handler

Table 2. Example of a job submitted to the job handler

Tasks in job 1 2 3 4 5 6 7 8 9 30 Total

Required throughput 27 34 21 28 15 65 4 92 77 56 1456.0

Tasks are pushed into or popped from the queue(s), and a mobile cloudlet is formed for each

job (after the processing is finished for a job, this mobile cloudlet is eliminated). Next, a job

handler takes charge of the allocation of tasks to each service participant based on the list of

available resources in the mobile resource monitor, as shown in Fig. 6. The job handler

decides which mobile participant is appropriate for each task and processes the task based on

the information from the mobile resource monitor at the current moment, as shown in Fig. 6.

The job handler does not assign a new task to the participants if the predefined resource usage

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016 495

limit is exceeded, since a user may abruptly use his or her mobile device for other purposes,

such as calling, messaging, or gaming. This allows the cloud service provider to guarantee the

basic functionalities of mobile devices for its users. The resource handler therefore has a

predefined policy for the appropriate allocation of the requested jobs from the job handler; in

Fig. 5, for instance, the first four tasks are allocated to four mobile participants in the mobile

cloudlet. When job is submitted to the job handler, as shown in Table 2, the job handler

allocates each task to an appropriate mobile resource(s). From Table 1, the available resource

information from the mobile resource monitor is already known. From Table 2, the total

number of tasks and their total required throughput are 30 and 1456.00, respectively.

Fig. 6. Cloudlet creation and resource allocation workflow in the job handler

Since the required mobile resource throughput for a given task may be larger than the

available mobile resource throughput of a mobile device, not all of the mobile resources are

suitable for processing the given task. In this case, the processing time for the given task is

longer than those of other cases (i.e., we assume that a mobile resource can process a task with

a required throughput that is higher than the available throughput of the resource). For

example, if the required throughput of the given task is 100 and the throughput of a mobile

resource is 50 (e.g. the task 8), it will take twice as long for the mobile resource to process the

task. We then construct a scheduling algorithm to allocate each task to an appropriate mobile

resource in the mobile cloudlet. To construct the job scheduling algorithm, we formulate the

496 Kwon et al.: Dynamic Scheduling Method for Cooperative Resource Sharing in Mobile Cloud Computing Environments

objective function for the efficient allocation of jobs under the monitored mobile resources.

The following equation and inequalities express the objective function to minimize the total

processing time with constraints:

 ,

 subject to

 ,

 ,

 and (3)

where the performance value indicates that the -th task is assigned to the -th

resource . is computed by dividing the required throughput by the available

resource throughput . The constant value is the minimum number of iterations for the

given job and the mobile resources, and is computed by

 (e.g.

 iterations in the cases of Table 1 and Table 2). The index is determined by the

performance value and is based on the proposed job scheduling algorithm in Table 3.

Table 3. Proposed job scheduling algorithm

Algorithm (Job scheduling)

Input A set of mobile resources , a set of tasks for the -th job
Output

 // total job processing time

Method

 01: sumOfTotalCost = 0;

 02: compute ;

 03: construct a matrix and fill in values;

 04: numOfTasks = ;
 05: while (> 0)

 06: numOfAvailableR = ;

 07: maxF = ;

 08: sumOfTotalCost += maxF;

 09: while (numOfAvailableR > 0 && numOfTasks > 0)

 10: find in matrix , where is not in use and maxF;

 11: assign a task to a resource ;

 12: mark ‘0’ on all elements in -th row;

 13: numOfAvailableR--;

 14: numOfTasks--;

 15: end while

 16: --;

 17: end while

 18: return sumOfTotalCost;

In Table 3, we use a set of mobile resources and a set of tasks in the -th job as

input parameters, and a total job processing time is given as an output; for example, and

 can be represented by Table 1 and Table 2. In line 2, is computed by

 ,

indicating that each resource can be allocated a maximum of four tasks. The algorithm then

constructs a matrix whose elements are composed of the throughput values

 with respect to the -th task and -th mobile resource, as shown in Table 4. Next, the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016 497

algorithm finds the for each task , because the task requires the longest

processing time even though the task is allocated to the mobile resource that has the highest

throughput (e.g., resource in Table 4). We regard the processing time as 1 when the

requested resource is equal to the throughput of the mobile resource. For example, if mobile

device processes task in Table 4, the processing time is 1.227 because the throughput of

mobile device is 75 which is less than the required throughput of the given task . In the

proposed method, the mobile resource with the highest throughput processes the most

time-consuming task to minimize each iteration time. Since several mobile resources work in

parallel on the given tasks, the most time-consuming task should be processed in as short a

time as possible. As the time that a task consumes increases, the overall performance of the

system is reduced more drastically, because other processed tasks must wait for the task to be

processed. For this reason, the algorithm chooses another task and a suitable resource with a

value very close to, but not greater than maxF in the next sub-while loop (line 10). From line

11 to line 15, the algorithm repeats in the same manner until all of the given resources are

allocated to tasks, representing one iteration of the overall workflow. The iteration is

performed until all of the tasks are assigned to mobile resources. For example, in Table 4, the

eight tasks are simultaneously assigned to appropriate

mobile resources (marked as yellow-colored cells in Table 4) at the first iteration, and it is

likely that the processing times for all of them are very similar, ranging from 1.161 to 1.229.

Table 4. Example of constructed matrix and the resources allocated at the first iteration

Resource

Task

- 42.2 81.4 70.0 75.0 58.6 64.0 61.8 72.8

 27 0.332 0.640 0.332 0.386 0.360 0.461 0.422 0.437 0.371

 34 0.418 0.806 0.418 0.486 0.453 0.580 0.531 0.550 0.467

 92 1.130 2.180 1.130 1.314 1.227 1.570 1.438 1.489 1.264

 77 0.946 1.825 0.946 1.100 1.027 1.314 1.203 1.246 1.058

 85 1.044 2.014 1.044 1.214 1.133 1.451 1.328 1.375 1.168

 72 0.885 1.706 0.885 1.029 0.960 1.229 1.125 1.165 0.989

 4 0.049 0.095 0.049 0.057 0.053 0.068 0.063 0.065 0.055

 79 0.971 1.872 0.971 1.129 1.053 1.348 1.234 1.278 1.085

 75 0.921 1.777 0.921 1.071 1.000 1.280 1.172 1.214 1.030

 78 0.958 1.848 0.958 1.114 1.040 1.331 1.219 1.262 1.071

 49 0.602 1.161 0.602 0.700 0.653 0.836 0.766 0.793 0.673

 28 0.344 0.664 0.344 0.400 0.373 0.478 0.438 0.453 0.385

 7 0.086 0.166 0.086 0.100 0.093 0.119 0.109 0.113 0.096

 86 1.057 2.038 1.057 1.229 1.147 1.468 1.344 1.392 1.181

 100 1.229 2.370 1.229 1.429 1.333 1.706 1.563 1.618 1.374

 8 0.098 0.190 0.098 0.114 0.107 0.137 0.125 0.129 0.110

 86 1.057 2.038 1.057 1.229 1.147 1.468 1.344 1.392 1.181

 56 0.688 1.327 0.688 0.800 0.747 0.956 0.875 0.906 0.769

Table 5 shows the final task allocation results after four iterations have been performed. In

Table 5, the yellow, green, blue, and gray cells represent the allocation results for the first,

498 Kwon et al.: Dynamic Scheduling Method for Cooperative Resource Sharing in Mobile Cloud Computing Environments

second, third, and fourth iterations, respectively. After all of the tasks have been assigned to

mobile resources, we compute the total job-processing time by adding together the longest

times that were consumed by each iteration. In the example, the total job processing time is

 . The proposed algorithm takes

1.349 times as long as the expected optimal time .

Table 5. Final results of task allocation

0.437

 0.806

0.300

 0.664

0.200

1.109

 0.095

1.227

1.027

1.155

0.029

0.344

0.516

1.168

1.229

0.063

1.129

1.214

1.219

 1.161

0.478

0.160

0.261

1.192

0.113

1.229

1.229

0.137

1.181

0.906

From the theoretical viewpoint, an optimal solution is possible for given tasks and resources.

However, in reality, it is not easy to find an optimal solution in a limited period since the

amount of mobile resources varies greatly and each task requires a different amount of

resource throughputs. For example, let the available resource from a mobile device be x. If the

situation requires an exact x in a random task, an optimal job distribution is possible in such a

circumstance. However, in reality, a possibility always exists for surplus resources being

occurred since a majority of tasks requires a different amount of resources from that of x. In

theory, it is ideal to maintain zero status for surplus resources when processing each task.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016 499

However, it is not easy to find an optimal solution for resource allocations and job scheduling

in a reasonable time; sometimes, we cannot find the optimal solution at all. The reason is that

most of cases happen under the condition that the required throughputs of each task are not

equivalent to the available resource throughputs of each mobile. In real cases, the throughput

of required resources is not always equal to that of available mobile resources. When the

optimal method processes a job, it always needs at least more than one iteration. During the

time of iterations, the optimal method should maximize the usage of mobile resources. Thus, it

minimizes the total processing time. In this paper, we consider this case as the optimal one,

and its performance can be computed by . For example, if the amount of

required resources for the given job is 100 and that of available mobile resources is 20, then the

number of iterations and the maximum throughput of mobile resources in each iteration are 5

and 20, respectively. Therefore, we can compute the performance of optimal method as

 .

4.3 Resource handler

The resource handler is responsible for rerouting the current mobile participant to another

mobile resource to handle unexpected situations, as demonstrated in Fig. 7.

Fig. 7. Example of an unexpected occurrence situation in the cloud

The resource handler prevents job processing failures or delays that are caused by a resource

issue. It notifies the mobile resource monitor and the job handler when the requested job is not

properly processed for unknown reasons. For instance, in the processing of a task or a job, the

processing time can be longer than the expected time for unknown reasons, such as connection

loss, the reaching of a resource’s throughput limit (CPU, memory, and/or battery), or a delay

of the notification messages between the results consolidator and the participants in the mobile

cloudlet. In addition, when mobile participants leave the range of the cloud or they are

500 Kwon et al.: Dynamic Scheduling Method for Cooperative Resource Sharing in Mobile Cloud Computing Environments

disconnected due to a breakdown in wireless communications, the capacity of the cloud’s

resource availability can be dramatically decreased. To address the issue of fault tolerance and

to prevent the worst possible cases, we are therefore suggesting a model for the calculation of

the minimum threshold of the acceptable resource power for a mobile cloud in the mobile

resource monitor. In that case, the task is rerouted to other mobile resources based on the

proposed job scheduling algorithm. However, we do not try to model the event wherein a

mobile resource moves into or out of range. This is because we assume that all of the mobile

participants that are entering or leaving the cloudlet (or networks) follow a Poisson

distribution [16, 17], and the probability that these cases will occur is quite low and they are

therefore negligible (e.g., 14% for |R| = 8). To deal with an unexpected situation, the resource

handler checks for the existence of a mobile participant that has already finished its requested

task. If so, the resource handler reallocates the unfinished or unprocessed task to the other

mobile resource. Otherwise, the resource handler asks the mobile resource monitor whether

another resource exists and, in the case of an affirmative response, reallocates the task to it.

4.4 Results consolidator

The processed results from the job handler (or resource handler) are collected and combined in

the results consolidator. Whenever a task in the mobile participant is successfully processed

within the predefined time limit, the mobile participant sends a notification message to the

results consolidator. Otherwise, the results consolidator sends a notification message to the

resource handler. Lastly, the finished tasks are combined into one final job in the results

consolidator that is then delivered to the cloud service consumer.

5. Performance Study

5.1 Experimental setup

For the experiments, we created randomly generated data including the throughputs of the

required resources for each task and those of the available mobile resources. We then

implemented the proposed method by using the Python programming language to compute the

sum of the values that were extracted from each iteration with ,

where = [10, 20, 30, …, 980, 990] and = [100, 300, 500, 1000]. Next, we compared

the sum of the values with and without the suggested method. Lastly, we

demonstrated that the proposed method outperforms the existing method, and analyzed the

experiment results including a comparison with the optimal solution. All of the experiments

were conducted on a computer with eight Intel® Core™ i7-3770 CPUs @ 3.40 GHz and 16

GB RAM, running Windows 7. In the experiments, we assumed that each mobile device has

only one virtual machine, which means that each device is capable of processing only one task

at a time (per iteration). The reason is an ability to guarantee the basic mobile functionalities of

mobile devices such as call, text messaging, and Web browsing, thereby allowing users to use

their mobile devices for other purposes and minimizing any corresponding inconvenience.

5.2 Results

In the experiment results, as the value of the sum of approaches 0, the

associated job is processed more rapidly in the mobile cloudlet; alternatively, as the value of

the sum of increases, the processing time for the given job in the mobile

cloudlet is increased. Fig. 8 shows comparisons of the experiment results of the proposed

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016 501

method with those of other methods such as First-In-First-Out (FIFO), random, and the

optimal method.

According to the results of the experiment in Fig. 8, the proposed method outperforms two

conventional methods, in that it achieves its purpose of resource allocation and the calculation

of the expected optimal time for the given jobs. As shown in Fig. 8, the

performance of our newly proposed method is very close to the optimal one with comparisons

to the conventional scheduling algorithms. Furthermore, the proposed method has a low time

complexity (less than 1 second per iteration) because the method is based on heuristic

approach, and thus uses small size of matrix computations to allocate mobile resources in a

mobile cloudlet. A further examination of comparison of results confirms this favorable

performance, whereby a great difference was not found between the expected time consumed

and the expected optimal time, even though the number of mobile resources or tasks for a

given job increases.

Fig. 8. Results of proposed method and other methods (random, FIFO, optimal)

6. Conclusion

In this paper, we proposed an efficient method of cooperative mobile resource sharing for the

monitoring of mobile devices on demand and the scheduling of requested tasks across the

mobile resources in mobile cloud environments. The proposed method is composed of the

following four components: mobile resource monitor, job handler, resource handler, and

results consolidator. To validate the proposed method, we conducted experiments and

502 Kwon et al.: Dynamic Scheduling Method for Cooperative Resource Sharing in Mobile Cloud Computing Environments

demonstrated that the method performs mobile resource sharing for cooperative computation

in mobile cloudlets, while taking into account both the intrinsic properties and the number of

mobile devices. The experiment results show that the mobile resources in a mobile cloudlet

can play a significant role in the processing of a job that consists of many independent tasks.

We have therefore shown that the method is feasible in terms of the attainment of a

cooperative computational power. In future works, we will examine how an idle mobile

resource in a mobile cloudlet can be reallocated to another job in a parallel fashion. Moreover,

we will conduct research to address a case wherein mobile devices enter and leave the mobile

cloudlet. We will also improve the proposed job scheduling method to deal with much more

complicated cases in dynamic cloud computing environments.

References

[1] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," National Institute of

Standards and Technology, 2011. Article (CrossRef Link)

[2] S. Ried, H. Kisker, P. Matzke, A. Bartels, and M. Lisserman, "Sizing The Cloud–Understanding

And Quantifying The Future Of Cloud Computing," Forrester Research, Cambridge, MA, 2011.

Article (CrossRef Link)

[3] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. Ullah Khan, "The rise of

“big data” on cloud computing: Review and open research issues," Information Systems, vol. 47,

pp. 98-115, 2015. Article (CrossRef Link)

[4] G. Aceto, A. Botta, W. D. Donato, and A. Pescapè, "Cloud monitoring: A survey," Computer

Networks, vol. 57, pp. 2093-2115, 2013. Article (CrossRef Link)

[5] H. Lee, Y.-S. Jeong, and H. Jang, "Performance analysis based resource allocation for green

cloud computing," The Journal of Supercomputing, vol. 69, pp. 1013-1026, 2014.

Article (CrossRef Link)

[6] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, "A survey of mobile cloud computing: architecture,

applications, and approaches," Wireless communications and mobile computing, vol. 13, pp.

1587-1611, 2013. Article (CrossRef Link)

[7] L. Fangming, S. Peng, J. Hai, D. Linjie, Y. Jie, N. Di, et al., "Gearing resource-poor mobile

devices with powerful clouds: architectures, challenges, and applications," Wireless

Communications, IEEE, vol. 20, pp. 14-22, 2013. Article (CrossRef Link)

[8] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, "Cloud-Based Augmentation for

Mobile Devices: Motivation, Taxonomies, and Open Challenges," Communications Surveys &

Tutorials, IEEE, vol. 16, pp. 337-368, 2014. Article (CrossRef Link)

[9] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, "The Rise of RaaS: The

Resource-as-a-Service Cloud," Communications of the ACM, vol. 57, pp. 76-84, 2014.

Article (CrossRef Link)

[10] M. Jo, T. Maksymyuk, B. Strykhalyuk, and C.-H. Cho, "Device-to-device-based heterogeneous

radio access network architecture for mobile cloud computing," Wireless Communications, IEEE,

vol. 22, pp. 50-58, 2015. Article (CrossRef Link)

[11] D. Huang, T. Xing, and H. Wu, "Mobile cloud computing service models: a user-centric

approach," Network, IEEE, vol. 27, pp. 6-11, 2013. Article (CrossRef Link)

[12] Y. Li and W. Wang, "Can Mobile Cloudlets Support Mobile Applications?," in Proc. of IEEE

INFOCOM, 2014. Article (CrossRef Link)

[13] A. Khalifa and M. Eltoweissy, "Collaborative autonomic resource management system for

mobile cloud computing," in Proc. of CLOUD COMPUTING 2013, The Fourth International

Conference on Cloud Computing, GRIDs, and Virtualization, pp. 115-121, 2013.

Article (CrossRef Link)

[14] D. Rohr, "ALICE TPC online tracker on GPUs for heavy-ion events," in Proc. of Cellular

Nanoscale Networks and Their Applications (CNNA), 2012 13th International Workshop on, pp.

1-6, 2012. Article (CrossRef Link)

http://dx.doi.org/10.6028/nist.sp.800-145
https://www.forrester.com/Sizing+The+Cloud/fulltext/-/E-RES58161?objectid=RES58161
http://dx.doi.org/10.1016/j.is.2014.07.006
http://dx.doi.org/10.1016/j.comnet.2013.04.001
http://dx.doi.org/10.1007/s11227-013-1020-x
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1109/MWC.2013.6549279
http://dx.doi.org/10.1109/SURV.2013.070813.00285
http://dx.doi.org/10.1145/2627422
http://dx.doi.org/10.1109/MWC.2015.7143326
http://dx.doi.org/10.1109/MNET.2013.6616109
http://dx.doi.org/10.1109/infocom.2014.6848036
https://www.thinkmind.org/index.php?view=article&articleid=cloud_computing_2013_5_20_20136
http://dx.doi.org/10.1109/cnna.2012.6331460

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016 503

[15] D. Rohr, S. Gorbunov, A. Szostak, M. Kretz, T. Kollegger, T. Breitner, et al., "ALICE HLT TPC

Tracking of Pb-Pb Events on GPUs," Journal of Physics: Conference Series, vol. 396, p. 012044,

2012. Article (CrossRef Link)

[16] I. Psaras and L. Mamatas, "On demand connectivity sharing: Queuing management and load

balancing for user-provided networks," Computer Networks, vol. 55, pp. 399-414, 2011.

 Article (CrossRef Link)

[17] L. Massoulie and J. W. Roberts, "Bandwidth sharing and admission control for elastic traffic,"

Telecommunication systems, vol. 15, pp. 185-201, 2000. Article (CrossRef Link)

Kyunglag Kwon received the B.S. and M.S. degrees in Computer and Information

Science from Korea University, Korea, in 2008 and 2010, respectively. He is a Ph.D.

student at Korea University, Korea. Recently, he is listed as a research scientist in the 2016

33rd edition of "Marquis Who's Who in the World" for his work in the field of computer

science. His research interests include soft computing, sentic computing, artificial

intelligence, intelligent information systems, social web, and data mining.

Hansaem Park received a B.S. degree in Computer and Information Science from Korea

University, Korea, in 2014. He is a Master student at Korea University, Korea. His research

interests include social web, data mining, and content recommendation system.

Sungwoo Jung is a B.S. student in Computer and Information Science from Korea

University, Korea. His research interests include collective intelligence, data mining, and

content recommendation.

Jeungmin Lee received a B.S. degree in Computer and Information Science from Korea

University, Korea, in 2014. He is a Master student at Korea University, Korea. His research

interests include social network analysis, and social semantic web.

In-Jeong Chung earned a B.S. degree from Seoul National University, Korea in 1978, a

M.S. degree in Computer Science from Korean Advanced Institute of Science and

Technology (KAIST), Korea in 1980, and a Ph.D. degree from University of Iowa, USA in

1989. He is a professor in the Department of Computer and Information Science, and

Founding Director of the Intelligent Information Systems Laboratory at Korea University,

South Korea from 1990. Recently he registered on Marquis, Who's Who in Science and

Engineering (2008-2009). His research interests include semantic web, intelligent web

service, information retrieval, data mining, decision support system, agent, and expert

system.

http://dx.doi.org/10.1088/1742-6596/396/1/012044
http://dx.doi.org/10.1016/j.comnet.2010.08.015
http://dx.doi.org/10.1023/A:1019138827659

