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Abstract 
 

Mobile cloud computing has recently become a new paradigm for the utilization of a variety of 

shared mobile resources via wireless network environments. However, due to the inherent 

characteristics of mobile devices, a limited battery life, and a network access requirement, it is 

necessary for mobile servers to provide a dynamic approach for managing mobile resources 

efficiently in mobile cloud computing environments. Since on-demand job requests occur 

frequently and the number of mobile devices is drastically increased in mobile cloud 

computing environments, a different mobile resource management method is required to 

maximize the computational power. In this paper, we therefore propose a cooperative, mobile 

resource sharing method that considers both the inherent properties and the number of mobile 

devices in mobile cloud environments. The proposed method is composed of four main 

components: mobile resource monitor, job handler, resource handler, and results consolidator. 

In contrast with conventional mobile cloud computing, each mobile device under the proposed 

method can be either a service consumer or a service provider in the cloud. Even though each 

device is resource-poor when a job is processed independently, the computational power is 

dramatically increased under the proposed method, as the devices cooperate simultaneously 

for a job. Therefore, the mobile computing power throughput is dynamically increased, while 

the computation time for a given job is reduced. We conduct case-based experiments to 

validate the proposed method, whereby the feasibility of the method for the purpose of 

cooperative computation is shown. 

 

 

Keywords: Mobile resource management and sharing, mobile computing, job scheduling, 

cooperative computing 
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1. Introduction 

Cloud computing is a model for sharing a large number of on-demand services and 

configured computing resources via a heterogeneous, broad network access. The model eases 

the burdens of a rich set of computational requirements such as infrastructure, flexibility, and 

resources [1]. According to a Forrester research report, the broad market is expected to reach 

$241 billion in 2020, while in 2010 it was $40.7 billion [2]. Cloud computing is a fast-growing 

technology, making it possible for cloud service consumers to share varieties of software 

applications, hardware platforms, and infrastructures in the form of services such as 

Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service 

(IaaS) that are delivered over the Internet [3]. Cloud service providers allow their customers to 

perform numerical computations with a high time complexity such as big data processing for 

scientific or business purposes. They also provide their customers with large-scale online 

storage, databases, and applications for on-demand consumer requests in real time, enabling 

their consumers to concentrate on their core tasks instead of concerns regarding infrastructure, 

flexibility, or resource availability [4]. 

However, each mobile resource management server should be able to provide dynamic load 

balancing for efficient mobile resource sharing and job scheduling in real time because of the 

characteristics that are inherent to mobile devices such as the large quantity in existence, a 

limited computational power and battery life, and the need for network access. In addition, 

on-demand job requests in mobile cloud computing environments are frequently received by 

mobile cloud service providers. Furthermore, mobile resources need to be managed with a 

method that is different from those that are used in conventional cloud computing 

environments, since the number of mobile devices that are controlled by a service provider is 

drastically increased to maximize the computational power.  

Our main goal is to design a cooperative, mobile resource sharing method that enables 

powerful computation in mobile cloudlets. We therefore considered both the intrinsic 

properties and the number of mobile devices to propose a cooperative mobile resource sharing 

method. In the proposed method, we divided participants into the following two groups: 

service providers and service consumers. In contrast to the conventional monitoring and 

allocation approaches for resources in server-based cloud computing environments [4, 5], a 

service’s consumers can also participate as service providers. This means that the idle 

resources in their mobile devices may be utilized for jobs that are requested by fellow 

consumers to improve the computational power that is available for problem solving. Next, we 

describe the scenario-based experiments that we conducted in a performance study using the 

suggested method. We then demonstrate how the method works by measuring the execution 

times for the given jobs and show the way in which a great amount of resources can be 

managed by the cooperative computational model. 

The remainder of this paper is organized as follows. Section 2 provides background and an 

overview of related work, and Section 3 gives the problem statement. Section 4 presents the 

cooperative mobile resource sharing method in detail. The performance study, including data, 

experiments, and validation of the suggested method, is described in Section 5. Finally, we 

conclude our paper with implications and further research directions in Section 6. 
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2. Related Works 

Recently, the increasing popularity of mobile devices and the rapid development of wireless 

network technologies have shown the feasibility of applying the previous cloud computing 

paradigm to mobile environments, leading to the emergence of mobile cloud computing. 

Mobile cloud computing is a combination of cloud computing and mobile computing that 

allows mobile users to use rich computational resources via wireless networks in 

heterogeneous environments [6-8]. In contrast with conventional mobile cloud computing, 

each mobile device in this paper can be either a service consumer or a part of a service provider 

in the cloud, since the computational power of each mobile device is drastically increased. 

Each device has a low computational power when a job is processed independently, but the 

computational power can increase dramatically when numerous mobile devices cooperate to 

process a job simultaneously. This cooperation provides a rich throughput of computation and 

a decrease of the computational time for a problem with a given time complexity. 

Cloud computing technology is composed of a variety of service models, including the 

previously mentioned SaaS, PaaS, and IaaS [1], as well as Desktop-as-a-Service (DaaS) and 

Resource-as-a-Service (RaaS) [9]. In addition, as the number of mobile devices increases 

greatly, a new hierarchical cloud computing architecture has emerged [10]. The corresponding 

issues, however, include pricing and lease duration, resource granularity, market-driven 

resource pricing, and a tiered service provision [9]. To address these issues, resource 

monitoring and allocation within the cloud need to be properly conducted. It allows 

resource-poor mobile devices to leverage elastic, powerful resources in heterogeneous cloud 

environments toward unlimited functionality (i.e., computational power), storage, and 

mobility [6, 8]. Moreover, there are models specified for mobile cloud computing paradigm 

such as Mobile as a Service consumer (MaaSC), Mobile as a Service Provider (MaaSP), 

Mobile as a Service Broker (MaaSB), and Mobile as a Representor (MaaR) [11]. 

A large amount of research has been conducted on mobile resource sharing methods for the 

efficient allocation or reallocation of resources in mobile cloud computing environments [6-8, 

12]. Mobile cloud computing comprises the following two different models: the client–server 

communication model and the peer-to-peer communication model [12]. In the first model, the 

remote cloud provides data storage and computing services while the mobile devices are 

clients that access the service through wireless networks. The vast computational resources of 

remote cloud servers can enable computation-intensive applications on mobile devices. In 

contrast to the first model, the second model has emerged due to the increasing memory and 

computational power of mobile devices. A group of neighboring mobile devices can thus 

connect via a wireless network to form a mobile cloudlet, enabling them to provide their 

resources, as service providers, for other mobile devices. In [12], the authors introduce terms 

such as “initiator,” “cloudlet properties” (cloudlet size, cloudlet node’s lifetime, and reachable 

time), “upper” and “lower bounds” on computing capacity, and “long-term computing speed” 

of a mobile cloudlet, and they define them in a mathematical way. However, the methods that 

are proposed in [12] and [13] make many assumptions. In [13], the authors propose a mobile 

resource allocation method that is based on priority and time consumption, whereby the 

ALSALAM algorithm that subdivides jobs and represents them according to a graphical 

presentation method is used. In this paper, the proposed method uses a different architecture 

that allocates mobile resources based on priority, the performances of mobile resources, and 

the demanded resources. Since our method consists of a resource handler, it considers 

dynamicity and practicality in terms of resource reallocation, whereas the method in [13] 

assumes that the job must be processed to avoid its reallocation. Moreover, we focus on 

comparing the performance measurement with optimal and heuristic solutions. For the 
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proposed method, we demonstrate the effectiveness of its resource management by examining 

the usage of the available mobile resources and the allocation of these resources to tasks, 

whereas the method of [13] focuses on the results of the analyses of the relationships among 

the major obstruction factors in mobile cloud environments.  

In this paper, we describe a mobile resource allocation problem in mobile cloud computing 

environments and then formulate the problem by specifying the mobile resource availability 

constraints. We do not consider mobile devices to be resource-poor inasmuch as large 

manufacturers have announced the ample resources of their devices such as multicore CPUs 

(even quad- or octal-core CPUs in 2015), and RAM and data storage that exceed 2 GB and 16 

GB, respectively, which is in contrast with previous devices [10, 11]. Such developments 

suggest that the combined computing power may be sufficient when many mobile devices 

cooperate with each other in mobile cloudlets via wireless networks in a cooperative 

computation approach. A group of mobile resources (called a “mobile cloudlet”) can therefore 

process a huge job that is composed of many small, independent sub-tasks. Building on these 

assumptions, we take full advantage of these mobile devices by using them concurrently in a 

mobile cloudlet under a cooperative, mobile resource sharing method. 

3. Problem Statement 

Mobile cloud computing environments have the following accompanying requirements. First, 

many aperiodic, on-demand jobs are submitted to mobile cloud service providers in real time, 

and each job is composed of multiple independent tasks that are to be properly distributed to 

remote resources. In this study, we assume that a job can be partitioned into several tasks and 

that these tasks are not interdependent. To meet the requirement of a real-time capability, a 

mobile cloud service provider needs to manage a high number of increasing mobile resources 

with a low time-complexity method. This is because of the characteristics that are inherent in 

wireless network mobility such as network instability and energy resources that are in 

themselves limited; therefore, an appropriate resource scheduling algorithm is required. 

Secondly, the status of mobile resources in the cloud should be monitored and managed 

dynamically. As the mobile environment is dependent on each user’s preferences and is in 

constant flux because of sudden calls, texting, web browsing, etc., the resource availability 

status of each mobile device is too erratic to monitor consistently; therefore, the service 

provider should check the status when a job is submitted. In addition, basic mobile 

functionalities should be guaranteed for mobile participants while they are providing their 

resources for the cloud. We therefore suggest a cooperative mobile resource sharing method 

regarding the monitoring and management of resources. We also has been devised in 

consideration of the previously mentioned mobile device characteristics such as unstable 

network access and limited energy (battery) resources. 

Since many problems in big data processing take a lot of time due to repetitive computations, 

we have employed the proposed, cooperative method to solve these problems. The 

characteristic of big data processing lies in that one big job is divided into many small tasks 

that require many repetitive computations. Thus, it takes a long time to solve one big problem 

in an entire system. For this reason, we propose a dynamic scheduling method for cooperative 

resource sharing in mobile cloud computing environments. The proposed method is applicable 

to a variety of fields in the big data processing. For example, such a variety of application 

ranges not only from social network analysis or graph theory in social web environments, but 

also to matrix multiplication problems as well as Time Projection Chamber (TPC) tracking 

algorithm [14, 15], etc. As demonstrated in Fig. 1, a job in TPC tracking in physics consists of 
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many events and each event consists of tasks such as sector tracker, cluster finder and TPC 

sector. Each task in the event can be processed in parallel, and is performed as the unit of 

sector independently. 

 
Fig. 1. An example of application scenario where a task can be divided into several independent tasks 

4. Proposed Methodology 

 
Fig. 2. Overall workflow of the proposed architecture 
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Fig. 2 shows the overall workflow of the proposed system architecture that consists of four 

main components such as mobile resource monitor, job handler, resource handler, and results 

consolidator. In this paper, we explain four modules, which execute tasks cooperatively to 

process a large job in mobile cloud computing environments. In Fig. 2, we get information on 

the available amount of resources and the amount required by each task from mobile resource 

monitor module and job handler. Job handler is responsible for dividing a big job into small 

tasks to collect amount of resource required by each task. The resource handler then assigns 

mobile resources to each task by using our proposed scheduling algorithm based on collected 

resource information. Lastly, there is the results consolidator to collect results for a given task. 

All these four modules perform each function efficiently to process a large job in mobile cloud 

computing environments. Mobile participants can be both consumers and providers of a cloud 

service. A mobile cloud service consumer can submit a new job request to a cloud service 

provider, and a mobile cloud service provider can provide consumers with its own resources 

for the processing of a given task(s) within the cloud service provider. 

4.1 Mobile resource monitor 

Fig. 3 demonstrates how the mobile resource monitor of the proposed method works and 

collects mobile resource statuses in the hypervisor under a variety of conditions. In Fig. 3, the mobile 

resource monitor periodically requests and receives data regarding the current network 

availability, remaining battery life, CPU, and memory before the allocation of resources and 

the assignment of requested jobs. The module asks for the current battery status for each 

mobile device since mobile device performance is inherently dependent on battery life, 

whereas cloud resources with a constant supply of power (e.g. servers) are not. 

If there is no response from the registered mobile device within a predefined time limit 

(caused by, for example, link loss or timeout), the module considers it an unavailable resource 

at that time, as shown in the timeout case of the mobile device    in Fig. 3; in this case, the 

network availability value is 0. Otherwise, the module dynamically adds the device to the 

available resource list (pool), or removes it from the list, and then marks its availability status, 

as shown in Fig. 3 (in this case, the network availability value is 1). Another case is that of a 

mobile participant with enough CPU and memory resources, but with a low battery percentage 

such as the mobile device    in Fig. 3; in this case, the monitoring module does not add the 

participant to the available resource pool. To be specific, the performance of each mobile 

device is highly dependent on the amount of remaining battery life. In general, most of mobile 

devices in real lives have a power saving mode to extend battery life by restricting applications 

in background, or reducing use of features such as brightness of display, vibration, sensors, etc. 

when battery is low (at 15-20% battery level). This is the reason why we say that the battery 

level affects other resources such as CPU and memory seriously, and is thus one of the 

important factors in mobile computing. Furthermore, the remaining battery life needs to be 

high enough to allow for additional demands, since a mobile participant may receive a sudden 

call or text message, making it difficult to provide cloud service consumers with sufficient 

resources. Regarding memory, the memory usage of mobile devices is quite stable, ranging 

from 70% to 90% (i.e., 10-30% free battery) regardless of the user’s usage patterns; 

consequently, the available resource pool in this example contains the four mobile devices 

        , and   . 

To determine the minimum clustering criteria for the addition of an available mobile 

resource to a specific cloudlet, we measure the devices’ CPUs and memory usage every five 

seconds for a week under various conditions such as idle state, normal use, and video 

streaming or downloading, as shown in Fig. 4. We do not measure the battery usage of each 
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device because the device is changed into the power saving mode when the remaining battery 

falls below 15-20 percent. Most of mobile devices in the power saving mode are restricted of 

their resources. Therefore, we directly use this percentage (e.g. 15 or 20) as minimum 

clustering criteria. 

 

 
Fig. 3. Collection of received mobile resource statuses in the hypervisor under a variety of conditions 

In this paper, we regard the status information from mobile devices’ manufacturers as 

correct. To be specific, the remaining resource information such as CPU, memory, and battery, 

provided by native libraries on each mobile device, is correct unless the device is out of order. 

Therefore, if the given information proves incorrect, we consider the mobile device out of 

order. For example, we trust that the information (e.g. current time and today’s date) provided 

by a mobile device is always correct with no doubt. Another example is that when we drive a 

car, we also implicitly believe that the gauge of the car displays a correct driving speed. In the 

resource monitoring module, we consider devices inoperable if their network status is unstable 

or disconnected. The reason is that we cannot reliably receive the status information about the 

mobile device periodically while processing a job. For these reasons, we establish the 

minimum clustering criteria for mobile cloudlet membership, as follows: 

 Network availability = 1 (connected) or 0 (disconnected) 

 Remaining battery > 15 

 Remaining CPU > 30 

 Remaining memory > 10 
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Using these constraints, we define the factors of both mobile availability and resource 

throughput. 

 
Fig. 4. Measurement of mobile device resources under a variety of conditions 

Definition 1: Mobile availability. Mobile availability is given as a decimal value to 

indicate whether a mobile resource in a mobile cloudlet meets the minimum clustering criteria 

on demand or not. If one of the conditions does not meet one of the predefined minimum 

clustering criteria, the mobile availability is set to zero; otherwise, it is the product of all four 

values. It can be computed using the ternary conditional operator that is found in computer 

languages. A ternary conditional operator is defined as follows: 

 expression1 ? expression2 : expression3 

 The first operand expression1 is implicitly converted to its Boolean value (i.e., true or 

false). 

 If expression1 evaluates to true (1), the second operand expression2 is evaluated; 

otherwise, the third operand expression3 is evaluated. 

 

In Table 1, for example, for the mobile resource   , the value is ((94 > 15) ? 94 : 0) × ((4 > 

30) ? 4 : 0) × ((85 > 10) ? 85 : 0) = 94 × 0 × 85 = 0, indicating that the mobile resource does not 

meet one of the minimum clustering criteria (in this case, remaining CPU). Alternatively, for 
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the mobile resource   , the value is computed as ((29 > 15) ? 29 : 0) × ((59 > 30) ? 59 : 0) × 

((35 > 10) ? 35 : 0) = 29 × 59 × 35 = 59,885, indicating the resource meets all of the minimum 

clustering criteria for being an available resource in the mobile cloudlet. If the value is greater 

than zero, the mobile resource can be a mobile resource provider in the resource pool; 

otherwise, the mobile resource is unavailable. 

 
Table 1. Examples of collected statuses for each mobile resource 

List ( ) of 

resources 

in the 

cloud 

Network 

availability 

Remaining 

battery 

Remaining 

CPU 

Remaining 

memory 

Mobile 

availability 

Mobile 

resource 

throughput 

      

    

   - - - - - -  

   - - - - - -  

   1 94 4 85 - -  

   1 29 59 35 59,885 42.2    

   1 95 7 39 - -  

   1 36 25 88 - -  

   - - - - - -  

   - - - - - -  

   1 68 90 91 556,920 81.4    

    - - - - - -  

    1 58 98 38 215,992 70.0    

    - - - - - -  

    1 75 87 51 332,775 75.0    

    1 53 48 91 231,504 58.6    

    1 78 62 40 193,440 64.0    

         

    1 92 44 92 372,416 72.8    

Total      525.8 8 

 

Definition 2: Resource throughput      . Resource throughput       is the resource 

amount that can be provided by a mobile device    in a mobile cloudlet. The resource 

throughput       is computed according to the following equation: 

 

           , where    

                           

                      
                         

  (1) 

 

where    is the transpose of a weighting vector for the set of constraints (remaining battery, 

remaining CPU, and remaining memory), and   is the resource status vector for the constraints. 

The weighting vector is determined by an observation-based heuristic approach. Based on the 

observations of usage of each resource in real mobile devices in Fig. 4, we can see that each 

usage variation of CPU and battery resources are relatively higher (more fluctuated) than that 

of memory resource. In determining weight values on each resource, we set more weight 

values on each CPU and battery compared to that of memory based on the empirical 

observations from Fig. 4. As this weight value changes, the number of available mobile 

resources is determined, and it can influence the entire scheduling function.  

We use the weight vector to represent the characteristics of problems. To be specific, by 

adjusting the weight vector, we differentiate the problems that require resources with high 
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throughput of CPU from other resources with high throughput of memory. Since we focus on 

the problems with high throughput of CPU resources, we add more weights on CPU resources 

in this paper. We also add more weights on battery resources because the performance of CPU 

resources closely depends on the remaining battery power. In addition, by putting more weight 

vectors, we can collect available resource information from each mobile device by changing 

three different values (CPU, memory, and battery) of each mobile into one scalar value. These 

values of each mobile device are used to order mobile devices by its performance in the mobile 

resource monitor. With these values, the proposed system can remove the extreme or 

abnormal mobile resources such as a mobile device with high throughput of CPU (or memory) 

and very low remaining battery. As mentioned in previous section, because the battery level 

affects other resources seriously, it is an important factor in mobile computing. Since the goal 

is to solve problems that require many repetitive computations by using CPUs, we thus set 

higher weight values on CPU and battery than that of memory in experiments. Each value of 

weighted vector can be changed, depending on the problems to be solved. 

In this paper, we thus set the weights for the remaining battery life and remaining CPU to 

0.4, which are twice the value of the remaining memory weight. This is because the memory 

usage is much more stable than usage of the other constraints, regardless of a user’s usage 

pattern. This indicates that memory usage is less important than the other factors in the 

processing of a job. These two vectors are then multiplied together to indicate the amount of 

available mobile resource in a range from 0 to 100; for instance, in Table 1, for mobile 

resource   , the resource throughput is computed as the following equation (2): 

 

             
   
   
   

 

 

  
  
  
  

       (2) 

 

In the same manner, we collect all of the statuses of the registered mobile resources and 

added them to the mobile resource pool so that                    , thereby enabling us 

to easily monitor the status of the mobile resources in a cloud. From the example data in Table 

1, the total number of available mobile resources and their total throughput for the mobile 

cloudlet are 8 and 525.8, respectively. We then divide the possible states of the mobile 

participants (resources) into the following: available, running, and finished. First, a mobile 

device in an available state refers to the device that meets the minimum clustering criteria for 

participating in job processing through the initial mobile resource monitor. Secondly, the 

mobile device moves to a running state to process a received task. Lastly, a mobile device in a 

finished state refers to the device in which a job handler is ready to reallocate an unprocessed 

task such as unexceptional situations (e.g. task miss or task fail). The job handler does not have 

to monitor available mobile devices again after a task has been allocated and successfully 

processed by the mobile resource. It enables the job handler to reallocate the task directly by 

reducing unnecessary steps such as monitoring of new mobile resources in the mobile resource 

monitor module and job scheduling in the resource handler. 

4.2 Job handler 

When a mobile cloud customer submits a job to the proposed system (mobile cloud service 

provider), the job handler partitions the job into several tasks (job partitioning) and creates the 

mobile cloudlet (cloudlet creation). The job handler then allocates each task to the appropriate 

mobile resource (mobile resource allocation) using the following assumptions: 

 A job can be partitioned into several tasks, and the tasks are independent of each other. 
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 A brief duration is required to process each task, but the number of tasks is very large. 

 We already know the amount of resources that each tasks needs. 

 No more than two tasks can be allocated to one resource to guarantee the intrinsic 

functionalities of the mobile devices. 

 When a job failure occurs due to an unknown resource problem, we reallocate the task 

rather than trying to model incoming or outgoing mobile resources in the mobile cloudlet. 

 

For example, a factorial computation problem can be separated into sub-factorial problems, 

and a matrix multiplication problem can be composed of a set of small multiplication problems 

with respect to its row and column indices. In the job partition step, a set of jobs is represented 

by                    . Each job    is composed of   tasks:                        . 

Based on the following criteria, each task    in  -th job    is pushed into one of two queues, as 

shown in Fig. 5: The waiting task queue is in charge of abnormally processed or unprocessed 

tasks, and tasks with a throughput higher than that of a mobile resource. The priority task 

queue is responsible for normal tasks that should be processed. 

 
Fig. 5. Partitioning of a submitted job into several tasks in the job handler 

Table 2. Example of a job submitted to the job handler 

Tasks       in job    1 2 3 4 5 6 7 8 9   30 Total 

Required throughput 27 34 21 28 15 65 4 92 77   56 1456.0 

 

Tasks are pushed into or popped from the queue(s), and a mobile cloudlet is formed for each 

job (after the processing is finished for a job, this mobile cloudlet is eliminated). Next, a job 

handler takes charge of the allocation of tasks to each service participant based on the list of 

available resources in the mobile resource monitor, as shown in Fig. 6. The job handler 

decides which mobile participant is appropriate for each task and processes the task based on 

the information from the mobile resource monitor at the current moment, as shown in Fig. 6. 

The job handler does not assign a new task to the participants if the predefined resource usage 
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limit is exceeded, since a user may abruptly use his or her mobile device for other purposes, 

such as calling, messaging, or gaming. This allows the cloud service provider to guarantee the 

basic functionalities of mobile devices for its users. The resource handler therefore has a 

predefined policy for the appropriate allocation of the requested jobs from the job handler; in 

Fig. 5, for instance, the first four tasks are allocated to four mobile participants in the mobile 

cloudlet. When job    is submitted to the job handler, as shown in Table 2, the job handler 

allocates each task to an appropriate mobile resource(s). From Table 1, the available resource 

information from the mobile resource monitor is already known. From Table 2, the total 

number of tasks and their total required throughput are 30 and 1456.00, respectively. 

 

 
Fig. 6. Cloudlet creation and resource allocation workflow in the job handler 

Since the required mobile resource throughput for a given task may be larger than the 

available mobile resource throughput of a mobile device, not all of the mobile resources are 

suitable for processing the given task. In this case, the processing time for the given task is 

longer than those of other cases (i.e., we assume that a mobile resource can process a task with 

a required throughput that is higher than the available throughput of the resource). For 

example, if the required throughput of the given task is 100 and the throughput of a mobile 

resource is 50 (e.g. the task 8), it will take twice as long for the mobile resource to process the 

task. We then construct a scheduling algorithm to allocate each task to an appropriate mobile 

resource in the mobile cloudlet. To construct the job scheduling algorithm, we formulate the 
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objective function for the efficient allocation of jobs under the monitored mobile resources. 

The following equation and inequalities express the objective function to minimize the total 

processing time with constraints: 

                    
 
              

     

     
 
    ,  

   subject to       
       
            

   
   , 

               , 

     and            (3) 

 

where the performance value          indicates that the  -th task    is assigned to the  -th 

resource   .          is computed by dividing the required throughput       by the available 

resource throughput      . The constant value   is the minimum number of iterations for the 

given job and the mobile resources, and is computed by  
       

   
  (e.g.    

       

   
         

  iterations in the cases of Table 1 and Table 2). The index   is determined by the 

performance value and is based on the proposed job scheduling algorithm in Table 3. 

 
Table 3. Proposed job scheduling algorithm 

Algorithm (Job scheduling) 

Input A set of mobile resources  , a set of tasks       for the  -th job     
Output                  

 
     // total job processing time 

Method  

 01:  sumOfTotalCost = 0; 

 02:  compute                ; 

 03:  construct a             matrix   and fill in          values; 

 04:  numOfTasks =        ; 
 05:  while (  > 0) 

 06:       numOfAvailableR =    ; 

 07:       maxF =             ; 

 08:       sumOfTotalCost += maxF; 

 09:       while (numOfAvailableR > 0 && numOfTasks > 0) 

 10:            find              in matrix  , where    is not in use and           maxF; 

 11:            assign a task    to a resource   ; 

 12:            mark ‘0’ on all elements in  -th row; 

 13:            numOfAvailableR--; 

 14:            numOfTasks--; 

 15:       end while 

 16:        --; 

 17:  end while 

 18:  return sumOfTotalCost; 

 

In Table 3, we use a set of mobile resources   and a set of tasks in the  -th job          as 

input parameters, and a total job processing time is given as an output; for example,   and 

      can be represented by Table 1 and Table 2. In line 2,   is computed by  
       

   
   , 

indicating that each resource can be allocated a maximum of four tasks. The algorithm then 

constructs a             matrix   whose elements are composed of the throughput values 

         with respect to the  -th task and  -th mobile resource, as shown in Table 4. Next, the 
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algorithm finds the              for each task   , because the task    requires the longest 

processing time even though the task is allocated to the mobile resource    that has the highest 

throughput (e.g., resource    in Table 4). We regard the processing time as 1 when the 

requested resource is equal to the throughput of the mobile resource. For example, if mobile 

device    processes task    in Table 4, the processing time is 1.227 because the throughput of 

mobile device    is 75 which is less than the required throughput of the given task   . In the 

proposed method, the mobile resource    with the highest throughput processes the most 

time-consuming task to minimize each iteration time. Since several mobile resources work in 

parallel on the given tasks, the most time-consuming task should be processed in as short a 

time as possible. As the time that a task consumes increases, the overall performance of the 

system is reduced more drastically, because other processed tasks must wait for the task to be 

processed. For this reason, the algorithm chooses another task and a suitable resource with a 

value very close to, but not greater than maxF in the next sub-while loop (line 10). From line 

11 to line 15, the algorithm repeats in the same manner until all of the given resources are 

allocated to tasks, representing one iteration of the overall workflow. The iteration is 

performed until all of the tasks are assigned to mobile resources. For example, in Table 4, the 

eight tasks                                    are simultaneously assigned to appropriate 

mobile resources (marked as yellow-colored cells in Table 4) at the first iteration, and it is 

likely that the processing times for all of them are very similar, ranging from 1.161 to 1.229. 

 
Table 4. Example of constructed matrix and the resources allocated at the first iteration 

 
Resource    

 
                                 

Task 
      

      
- 42.2 81.4 70.0 75.0 58.6 64.0 61.8 72.8 

   27 0.332 0.640 0.332 0.386 0.360 0.461 0.422 0.437 0.371 

   34 0.418 0.806 0.418 0.486 0.453 0.580 0.531 0.550 0.467 

                      
   92 1.130 2.180 1.130 1.314 1.227 1.570 1.438 1.489 1.264 

   77 0.946 1.825 0.946 1.100 1.027 1.314 1.203 1.246 1.058 

                      
    85 1.044 2.014 1.044 1.214 1.133 1.451 1.328 1.375 1.168 

    72 0.885 1.706 0.885 1.029 0.960 1.229 1.125 1.165 0.989 

    4 0.049 0.095 0.049 0.057 0.053 0.068 0.063 0.065 0.055 

    79 0.971 1.872 0.971 1.129 1.053 1.348 1.234 1.278 1.085 

    75 0.921 1.777 0.921 1.071 1.000 1.280 1.172 1.214 1.030 

    78 0.958 1.848 0.958 1.114 1.040 1.331 1.219 1.262 1.071 

    49 0.602 1.161 0.602 0.700 0.653 0.836 0.766 0.793 0.673 

    28 0.344 0.664 0.344 0.400 0.373 0.478 0.438 0.453 0.385 

                      
    7 0.086 0.166 0.086 0.100 0.093 0.119 0.109 0.113 0.096 

    86 1.057 2.038 1.057 1.229 1.147 1.468 1.344 1.392 1.181 

    100 1.229 2.370 1.229 1.429 1.333 1.706 1.563 1.618 1.374 

    8 0.098 0.190 0.098 0.114 0.107 0.137 0.125 0.129 0.110 

    86 1.057 2.038 1.057 1.229 1.147 1.468 1.344 1.392 1.181 

    56 0.688 1.327 0.688 0.800 0.747 0.956 0.875 0.906 0.769 

 

Table 5 shows the final task allocation results after four iterations have been performed. In 

Table 5, the yellow, green, blue, and gray cells represent the allocation results for the first, 
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second, third, and fourth iterations, respectively. After all of the tasks have been assigned to 

mobile resources, we compute the total job-processing time by adding together the longest 

times that were consumed by each iteration. In the example, the total job processing time is 

     
     

     
 
                                 . The proposed algorithm takes 

1.349 times as long as the expected optimal time                        . 

 
Table 5. Final results of task allocation 

 
                        

   
      

0.437 
 

   0.806 
       

   
  

0.300 
     

   0.664 
       

   
   

0.200 
    

   
    

1.109 
   

   0.095 
       

   
   

1.227 
    

   
   

1.027 
    

    
 

1.155 
      

    
  

0.029 
     

    
     

0.344 
  

    
     

0.516 
  

    
       

1.168 

    
    

1.229 
   

    
     

0.063 
  

    
  

1.129 
     

    
      

1.214 
 

    
     

1.219 
  

    1.161 
       

    
    

0.478 
   

    
 

0.160 
      

    
       

0.261 

    
 

1.192 
      

    
      

0.113 
 

    
  

1.229 
     

    
 

1.229 
      

    
    

0.137 
   

    
       

1.181 

    
      

0.906 
 

 

From the theoretical viewpoint, an optimal solution is possible for given tasks and resources. 

However, in reality, it is not easy to find an optimal solution in a limited period since the 

amount of mobile resources varies greatly and each task requires a different amount of 

resource throughputs. For example, let the available resource from a mobile device be x. If the 

situation requires an exact x in a random task, an optimal job distribution is possible in such a 

circumstance. However, in reality, a possibility always exists for surplus resources being 

occurred since a majority of tasks requires a different amount of resources from that of x. In 

theory, it is ideal to maintain zero status for surplus resources when processing each task. 
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However, it is not easy to find an optimal solution for resource allocations and job scheduling 

in a reasonable time; sometimes, we cannot find the optimal solution at all. The reason is that 

most of cases happen under the condition that the required throughputs of each task are not 

equivalent to the available resource throughputs of each mobile. In real cases, the throughput 

of required resources is not always equal to that of available mobile resources. When the 

optimal method processes a job, it always needs at least more than one iteration. During the 

time of iterations, the optimal method should maximize the usage of mobile resources. Thus, it 

minimizes the total processing time. In this paper, we consider this case as the optimal one, 

and its performance can be computed by                . For example, if the amount of 

required resources for the given job is 100 and that of available mobile resources is 20, then the 

number of iterations and the maximum throughput of mobile resources in each iteration are 5 

and 20, respectively. Therefore, we can compute the performance of optimal method as 

                        . 

4.3 Resource handler 

The resource handler is responsible for rerouting the current mobile participant to another 

mobile resource to handle unexpected situations, as demonstrated in Fig. 7. 

 

 
Fig. 7. Example of an unexpected occurrence situation in the cloud 

The resource handler prevents job processing failures or delays that are caused by a resource 

issue. It notifies the mobile resource monitor and the job handler when the requested job is not 

properly processed for unknown reasons. For instance, in the processing of a task or a job, the 

processing time can be longer than the expected time for unknown reasons, such as connection 

loss, the reaching of a resource’s throughput limit (CPU, memory, and/or battery), or a delay 

of the notification messages between the results consolidator and the participants in the mobile 

cloudlet. In addition, when mobile participants leave the range of the cloud or they are 
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disconnected due to a breakdown in wireless communications, the capacity of the cloud’s 

resource availability can be dramatically decreased. To address the issue of fault tolerance and 

to prevent the worst possible cases, we are therefore suggesting a model for the calculation of 

the minimum threshold of the acceptable resource power for a mobile cloud in the mobile 

resource monitor. In that case, the task is rerouted to other mobile resources based on the 

proposed job scheduling algorithm. However, we do not try to model the event wherein a 

mobile resource moves into or out of range. This is because we assume that all of the mobile 

participants that are entering or leaving the cloudlet (or networks) follow a Poisson 

distribution [16, 17], and the probability that these cases will occur is quite low and they are 

therefore negligible (e.g., 14% for |R| = 8). To deal with an unexpected situation, the resource 

handler checks for the existence of a mobile participant that has already finished its requested 

task. If so, the resource handler reallocates the unfinished or unprocessed task to the other 

mobile resource. Otherwise, the resource handler asks the mobile resource monitor whether 

another resource exists and, in the case of an affirmative response, reallocates the task to it. 

4.4 Results consolidator 

The processed results from the job handler (or resource handler) are collected and combined in 

the results consolidator. Whenever a task in the mobile participant is successfully processed 

within the predefined time limit, the mobile participant sends a notification message to the 

results consolidator. Otherwise, the results consolidator sends a notification message to the 

resource handler. Lastly, the finished tasks are combined into one final job in the results 

consolidator that is then delivered to the cloud service consumer. 

5. Performance Study 

5.1 Experimental setup 

For the experiments, we created randomly generated data including the throughputs of the 

required resources for each task and those of the available mobile resources. We then 

implemented the proposed method by using the Python programming language to compute the 

sum of the              values that were extracted from each iteration with            , 

where     = [10, 20, 30, …, 980, 990] and         = [100, 300, 500, 1000]. Next, we compared 

the sum of the              values with and without the suggested method. Lastly, we 

demonstrated that the proposed method outperforms the existing method, and analyzed the 

experiment results including a comparison with the optimal solution. All of the experiments 

were conducted on a computer with eight Intel® Core™ i7-3770 CPUs @ 3.40 GHz and 16 

GB RAM, running Windows 7. In the experiments, we assumed that each mobile device has 

only one virtual machine, which means that each device is capable of processing only one task 

at a time (per iteration). The reason is an ability to guarantee the basic mobile functionalities of 

mobile devices such as call, text messaging, and Web browsing, thereby allowing users to use 

their mobile devices for other purposes and minimizing any corresponding inconvenience. 

5.2 Results 

In the experiment results, as the value of the sum of              approaches 0, the 

associated job is processed more rapidly in the mobile cloudlet; alternatively, as the value of 

the sum of              increases, the processing time for the given job in the mobile 

cloudlet is increased. Fig. 8 shows comparisons of the experiment results of the proposed 
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method with those of other methods such as First-In-First-Out (FIFO), random, and the 

optimal method.  

According to the results of the experiment in Fig. 8, the proposed method outperforms two 

conventional methods, in that it achieves its purpose of resource allocation and the calculation 

of the expected optimal time                   for the given jobs. As shown in Fig. 8, the 

performance of our newly proposed method is very close to the optimal one with comparisons 

to the conventional scheduling algorithms. Furthermore, the proposed method has a low time 

complexity (less than 1 second per iteration) because the method is based on heuristic 

approach, and thus uses small size of matrix computations to allocate mobile resources in a 

mobile cloudlet. A further examination of comparison of results confirms this favorable 

performance, whereby a great difference was not found between the expected time consumed 

and the expected optimal time, even though the number of mobile resources or tasks for a 

given job increases. 

 
Fig. 8. Results of proposed method and other methods (random, FIFO, optimal) 

6. Conclusion 

In this paper, we proposed an efficient method of cooperative mobile resource sharing for the 

monitoring of mobile devices on demand and the scheduling of requested tasks across the 

mobile resources in mobile cloud environments. The proposed method is composed of the 

following four components: mobile resource monitor, job handler, resource handler, and 

results consolidator. To validate the proposed method, we conducted experiments and 
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demonstrated that the method performs mobile resource sharing for cooperative computation 

in mobile cloudlets, while taking into account both the intrinsic properties and the number of 

mobile devices. The experiment results show that the mobile resources in a mobile cloudlet 

can play a significant role in the processing of a job that consists of many independent tasks. 

We have therefore shown that the method is feasible in terms of the attainment of a 

cooperative computational power. In future works, we will examine how an idle mobile 

resource in a mobile cloudlet can be reallocated to another job in a parallel fashion. Moreover, 

we will conduct research to address a case wherein mobile devices enter and leave the mobile 

cloudlet. We will also improve the proposed job scheduling method to deal with much more 

complicated cases in dynamic cloud computing environments. 
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