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Abstract 
 

It is well known that the constant modulus algorithm (CMA) presents a large steady-state 
mean-square error (MSE) for high-order quadrature amplitude modulation (QAM) signals. 
In this paper, we propose a low-complexity hybrid adaptive blind equalization algorithm, 
which augments the CMA error function with a novel constellation matched error (CME) 
term. The most attractive advantage of the proposed algorithm is that it is computationally 
simpler than concurrent CMA and soft decision-directed (SDD) scheme (CMA+SDD), and 
modified CMA (MCMA), while the approximation of steady-state MSE of the proposed 
algorithm is same with CMA+SDD, and lower than MCMA. Extensive simulations 
demonstrate the performance of the proposed algorithm. 
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1. Introduction 

In the past, single-carrier communication was the modulation format of choice. In this 
context, inter-symbol interference (ISI) becomes the main factor affecting system 
performance. Recently, the orthogonal frequency division multiplexing (OFDM) protocol 
is being used in the transmission scheme for the majority of new communications systems. 
One of the most important advantages of OFDM systems is their robustness to multipath 
channels, thanks to the introduction of a cyclic prefix (CP), which efficiently combats ISI 
in time-dispersive channels. However, the insertion of a CP is pure redundancy, which 
decreases the spectral efficiency [1]. Additionally, when the CP length is shorter than the 
channel length, the effect of frequency-selective fading cannot be completely eliminated, 
and the intercarrier interference and ISI will be introduced. Blind equalization techniques 
without regular training/pilot symbols can be utilized to mitigate the problems [2, 3]. 

The constant modulus algorithm (CMA), pioneered by Godard [2], is by far the most 
popular blind equalization algorithm, since it can be easily implemented with good 
convergence properties [4]. For constant modulus signals, such as 4-QAM, a CMA-based 
fractionally spaced equalizer (FSE) can achieve a zero steady-state mean-square error 
(MSE) in noiseless channels. For non-constant modulus signals, such as high-order QAM 
signals which have been used for a long time in LTE mobile networks [5], it suffers a 
relatively large misadjustment resulting in a large steady-state MSE [4, 6].  

A possible solution is to enable CMA until the eye diagram opens, and then switch to 
another adaptive equalization to minimize the residual error and compensate the phase 
offset. However, ensuring such a transfer is challenging, and sensitive to signal 
constellation, channel characteristics, and signal-to-noise (SNR) [7]. To this end, several 
soft-switching methods have been proposed. Weerackody et al. [8] provided a dual-mode 
type algorithm. In such an algorithm, the blind equalization mode works at higher error 
levels, while the mode similar to decision-direct (DD) works at lower error levels. De 
Castro et al. [7] suggested a typical low-complexity concurrent CMA and DD scheme 
(CMA+DD). Rather than switching to DD adaptation if CMA converges, they proposed 
enabling a DD equalizer concurrently with a CMA equalizer. The weight adaptation of DD 
equalizer follows that of CMA. To avoid error propagation due to incorrect decisions, the 
DD adjustment only works if the CMA adaptation is judged to be successful. At a cost of 
complexity, CMA+DD equalizer can obtain a dramatic performance improvement over 
CMA. To ease computational requirements in CMA+DD, Chen [9] proposed a concurrent 
CMA and soft DD scheme (CMA+SDD), wherein the soft DD part is an exponential 
weighted function of the distance between the equalizer soft output and the tentative 
decision. This soft decision enables a simultaneous update of both CMA and SDD weight 
vectors without error propagation. Compared with CMA+DD, CMA+SDD is reported to 
have simpler computational requirements, faster convergence rate and identical 
steady-state equalization performance. As a tradeoff, Xie et al. [10] proposed a concurrent 
dithered signed-error CMA (DSE-CMA) and SDD algorithm which can compensate the 
phase shift and provide better convergence and steady-state behavior than DSE-CMA 
while with less computation than CMA+SDD. Silva et al. [11] proposed a soft-switching 
blind equalization based on a convex combination of a blind equalization algorithm and a 
DD algorithm. The combination is adapted in a blind manner, and can automatically switch 
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between the component filters, avoiding MSE level settings a priori. Like CMA+SDD, this 
combination algorithm provides faster convergence rate and lower steady-state MSE than 
CMA+DD. Although its computational complexity was not clearly discussed, it still 
suffers high computation complexity because of the update of mixing parameters.  

Recently, some hybrid blind equalization algorithms have attracted attention due to their 
relative simplicity and good performance. This hybrid approach, named constellation 
matched error (CME), combines CMA criterion with a penalty term, and with zero values 
at constellation points coordinates [12]. The most common CME functions encountered in 
the literature are polynomials of high order and powers of cosine functions [13, 14]. 
Afterwards, Thaiupathumpa et al. [15] added a CME to the cost function of generalized 
Sato algorithm [16]. He [17] added a CME to the cost function of multimodulus algorithm 
[18]. Sheikh and Fan [19] added a CME to the cost function of sliced multimodulus 
algorithm [20]. Labed et al. [21] introduced a CME, which is the product of l1-norm of the 
deviations of equalizer output from the constellation points [22]. 

In this paper, we propose a low-complexity hybrid adaptive blind equalization algorithm 
in which the hybrid cost function is a weighted sum of two separate well-defined error 
terms; one is identical to the CMA case, and the other is a new CME term based on a simple 
coordinate transformation. The approximation of the steady-state MSE of the proposed 
algorithm is derived, which is the same as that of the CMA+SDD [9] and lower than that of 
the modified CMA (MCMA) [14]. The most attractive advantage of the proposed 
algorithm is that, it is computationally simpler than CMA+SDD and MCMA. Extensive 
simulations demonstrate the performance of the proposed algorithm.  

In Section 2, we review the blind equalization based on conventional CMA, CMA+SDD, 
and MCMA, respectively. In Section 3, a novel hybrid blind equalization algorithm is 
proposed. Section 4 addresses the computational complexity per weight update and the 
steady-state MSE analysis of the proposed algorithm. Section 5 presents simulation results 
in different situations. Finally, Section 6 provides the main conclusions of the paper. 

2. Blind Equalization Using CMA, CMA+SDD, and MCMA 
Equalization algorithms can be implemented in symbol-spaced form or fractionally spaced 
equalizer form (FSE). Here, we concentrate on fractionally spaced implementations due to 
their inherent advantages [23]. The schematic diagram of the T/2 FSE without channel 
noise is shown in Fig. 1. Given a fractionally spaced channel of finite length 2M, the even 
and odd sets of channel coefficients can be collected into vectors as 

T
e Mccc )]22(,),2(),0([ −= c  and T

o Mccc )]12(,),3(),1([ −= c , respectively. Similarly, 
given a fractionally spaced equalizer of finite length 2N, the even and odd sets of equalizer 
coefficients can be collected into vectors as T

e Nfff )]22(,),2(),0([ −= f  and 
T

o Nfff )]12(,),3(),1([ −= f , respectively. 
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Fig. 1. Structure of T/2 FSE 
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A pair of NNM ×−+ )1(  convolution matrices oC  and eC  are given by 
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We define the transmitted symbol vector as )]2(,),1(),([ +−−−= NMkakakak a , and 

the compound matrix and vector quantities as 
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Then, the output of the equalizer can be expressed as 

 
 Cfakkz =)(  (3) 
 

In Fig. 1, )(kxo  and )(kxe  are the outputs of 2 sub-channels oc  and ec , respectively. 
Define T

oooko Nkxkxkx )]1(,),1(),([, +−−= x  and T
eeeke Nkxkxkx )]1(,),1(),([, +−−= x , 

the input of the equalizer is thus given by 
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Then 

 
 fxT

kkz =)(  (5) 
 

2.1 CMA 
In the T/2 FSE, the most popular adaptive blind equalization algorithm CMA2-2 [1] (CMA 
for simplicity) can be used to minimize a cost function defined by the CM criterion 
 
 4/])|)([(|E)( 22 RkzJCM −=f  (6) 
 
where R  is a fixed value of the transmitted sequence )}({ ⋅a  and defined as 
 
 ]|)([|E/]|)([|E 24 kakaR =  (7) 
 

CMA seeks to minimize the cost function (6) using stochastic gradient; hence, the 
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weight vector of the equalizer is updated by 
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with a step-size µ . Here, the symbol * denotes complex conjugate transposition, and )(keo  
denotes an instantaneous error. 

Obviously, the CM criterion penalizes deviations in the modulus (i.e. magnitude) of the 
equalized signal |)(| kz  away from the fixed value R . The CM criterion can successfully 
equalize signals characterized by source alphabets not possessing a constant modulus (e.g., 
16-QAM), as well as those possessing a constant modulus (e.g., 4-QAM) (see Fig. 2). 
Unfortunately, toward non-constant modulus and constant modulus signals, CMA shows 
different performance. 
 

  
(a) (b) 

Fig. 2. (a) Nonconstant modulus source constellation (16-QAM) versus (b) constant modulus 
source constellation (4-QAM). 

 
For a constant modulus signal, a CMA-based FSE can achieve perfect equalization (i.e. 

0MSE = ) in a noiseless environment. For example, for a 4-QAM constant modulus signal as 
shown in Fig. 2(b), constellation points are }1{ j±±  and 2=R , if )()( kakz =  (i.e. 

}2{|)(| =kz ) in the steady state, then 0)( =keo  which terminates the updating of the 
weight vector, i.e., 0MSE = . 

For a non-constant modulus signal, a CMA-based FSE cannot achieve perfect 
equalization. For example, for a 16-QAM nonconstant modulus signal as shown in Fig. 
2(a), constellation points are }33,3,31,1{ jjjj ±±±±±±±±  and 2.13=R , if )()( kakz =  

(i.e. }18,10,2{|)(| =kz ) then 0)( ≠keo  which results in the weight vector keeps 
updating with a non-vanishing term and vibrates around the mean solution. Thus, 

)()( kakz ≠ , i.e. 0MSE ≠ . 
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The steady-state MSE of CMA for the complex-valued cases can be approximated by [6] 
 

 
6 4 2 2 2

CMA 2
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where }||{||E 2

kx  is the received signal norm. 
 

2.2 CMA+SDD 
Chen [9] proposed a blind equalization scheme consisting of a CMA equalizer and a SDD 
equalizer. The output of CMA+SDD is 
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where cf  and df  are the weight vectors with the same length 2N of the CMA equalizer 
and the SDD equalizer, respectively. 

The CMA equalizer adjusts the weight vector cf  as (8) 
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where µ  is the step-size of the CMA equalizer. 

The weight vector df  of the SDD equalizer is updated by [9] 
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where UMQ 2==  and U  is an integer, dµ  is the step-size of the SDD equalizer, and 

pqa  are four symbol points in a decision region which the equalizer output )(kz  belongs to. 
Typically, ρ  is chosen to be 1< . 

Compared with CMA+DD, CMA+SDD blind equalizer has simpler computational 
requirements, faster convergence rate and identical steady-state equalization performance. 
For obtaining the approximate steady-state MSE of CMA+SDD, CMA+SDD is equivalent 
to the blind equalizer described by a hybrid cost function [24]. The two time evolution 
equations (11) and (12) are changed to be one time evolution with respect to one tap weight 
vector 
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where dc fff +=  and /da µ µ= . 

Now the steady-state MSE of CMA+SDD for the complex-valued cases can be 
approximated by [24] 
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2.3 MCMA 
The Modified CMA (MCMA) [14] is the state-of-the-art hybrid method for the CMA, 
which augments the CMA error function with a constellation matched error (CME) term. 
The CME term provides MCMA with knowledge of the constellation allowing for faster 
convergence rate and greater reduction of MSE. The general form of the cost function for 
the MCMA is given by 
 
 ))]}(())(([4/)|)({(|E)( 22 kzgkzgRkzJ irMCM ++−= βf  (15) 
 
where the subscripts r and i correspond to the real and imaginary components, respectively, 
and β  is the CME weighting factor. The weight vector of MCMA is updated by 
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where kη  is the CME term defined as [14] 
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where )(gg  is the CME function. The following CME function for QAM constellations is 
zero at symbol points [14] 
 
 )2/(sin1)( 2 dg n gπg −=  (18) 
 
where n  is an integer number and d2  is the minimum distance between symbols. In this 
paper, d  is set to be 1. 
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For 1=n , the CME function is a cosine square, i.e. )2/(cos)( 2 gπg =g , as shown in Fig. 
3(a). In this case, it has the lowest complexity, and )(keo  in (16) is expressed as 
 

 )]})(sin[)])({sin[
2

]|)(|)[()( 2 ππ
π

β kzjkzkzRkzke iro ++−=  (19) 

 
The difference between MCMA and CMA+SDD is that MCMA is based on one filter, 

while CMA+SDD has two filters. For CMA+SDD, its output is the sum of the output of the 
two filters, which operates under two cost functions. The MCMA equalizer, on the other 
hand, has one filter, whose weight vector is updated according to one cost function, which 
includes both CMA and CME terms. While in [24], the CMA+SDD blind equalizer can be 
equivalent to the blind equalizer described by a hybrid cost function, whose SDD part can 
be set to be a CME term, as shown in (13). 

For 1=n  and 1=d , the steady-state MSE of MCMA can be approximated by [14] 
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where 2 / 2π β  is usually larger than 2R . 

3. Proposed Algorithm 

3.1 The CME term of the proposed algorithm 
In our algorithm, construction of the CME term according to the transmitted symbol 
characteristics is the key to improve algorithm performance. We assume a transmitted 
symbol a  has coordinates ),( ir aa , i.e. ir jaaa += , in a constellation diagram. For 
M-QAM, we have 
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where g , h , and L  are integers, and the minimum distance between symbol points is set 
to be 2 (as shown in Fig. 2) for simplicity. For high-order QAM signals, 2≥L .  

To form the CME term of the proposed algorithm, we firstly introduce a coordinate 
transformation criterion 
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where )sgn(⋅  is a sign function, n  is an integer between 1 and 1−L , and 1−Lχ  is the new 
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coordinate transformed from the original coordinate 0χ  by using (22). 
In (22), let rr a=,0χ  and ii a=,0χ , then rL ,1−χ  and iL ,1−χ  can be obtained as rs  and is , 

respectively. Then the process of change for different high-order M-QAM signals can be 
described as follows. 

1) For a 16-QAM signal ( 2=L ) with }3,1{ ±±== ir aa , 
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2) For a 64-QAM signal ( 3=L ) with }7,5,3,1{ ±±±±== ir aa , 
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3) For a 256-QAM signal ( 4=L ) with }15,13,11,9,7,5,3,1{ ±±±±±±±±== ir aa , 
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It is clear that the following functions take zero values at every symbol point of 

high-order M-QAM signals by using the coordinate transformation criterion 
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For the equalizer output signal ( ir jzzz += ), let rr z=,0χ  and ii z=,0χ  in (22), then 

rL ,1−χ  and iL ,1−χ  are obtained as ry  and iy  respectively, 
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when the output signals are the same as the transmitted signals. 

So the CME function of the proposed algorithm is given by 
 
 2

11 )]sgn([)( −− −= LLg χχχ  (28) 
 

Take a 16-QAM signal for example, from (23) and (28) the CME function of the 
proposed algorithm, as shown in Fig. 3(b), is 
 
 2)]}sgn(2sgn[)]sgn(2{[)( χχχχχ −−−=g  (29) 
 

From Fig. 3(b), the CME function (29) of the proposed algorithm satisfies the following 
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properties. 
1) The function is symmetric with respect to each alphabet when 44 ≤≤− χ . 
2) The minimum values are zeros and only occur at the constellation points 1±  and 3± . 

If the equalizer output is near the constellation points, it has a local maximum 0.5 which is 
reached at the center points between two consecutive alphabets. If the equalizer output is 
far away from the constellation points, i.e., 4|| >χ , the function will place the higher 
penalty.  

With property 2), the proposed algorithm can provide better performance than MCMA, 
since the minimum values of MCMA’s CME function occur not only at the constellation 
points but also at the unexpected position, as shown in Fig. 3(a). For instance, for a 
16-QAM signal with constellation points 1±  and 3± , if the received signal is far away 
from the constellation points, then this signal is equalized to 5±  (even 7± ) by the CME 
function of the MCMA, since at these points the values of the CME function are also zeros. 
So the CME function of the proposed algorithm has lower misadjustment than that of the 
MCMA, which means the proposed algorithm can obtain better convergence performance. 

From (17) and (28), we get the CME term of the proposed algorithm 
 
 )]}(sgn[)({)](sgn[)( kykyjkyky iirrk −+−=η  (30) 
 
where )(kyr  and )(kyi  are derived from )(kzr  and )(kzi  by using (22), respectively. 
 

  
(a) (b) 

Fig. 3. The CME functions of MCMA (a) and proposed algorithm (b) for the 16-QAM signal. 
 

3.2 Proposed algorithm 
The general form of the cost function of the proposed algorithm is given by 
 

 }})]}(sgn[)({)]}(sgn[)({{
2
1]|)([|

4
1{)( 2222 kykykykyRkzEJ iirrNEW −+−+−= λf  (31) 

 
The weight vector of the proposed algorithm is updated by 
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Like the MCMA, the weighting factor λ  in (32) trades off amplitude and 

constellation-matched errors. Large λ  increases convergence time, whereas small λ  
diminishes the advantage of CME in reducing the steady-state residual errors. Accordingly, 
λ  is chosen to satisfy [14] 
 
 

2
max| ( ) sgn[ ( )] { ( ) sgn[ ( )]} | max | (| | ) |λ

∈
− + − < −r r i i a alphabet

y k y k j y k y k a a R  (33) 
 

The CME function of the proposed algorithm only has a local maximum 0.5, so in (33) 
the local maximum is used. It cannot affect the performance of the proposed algorithm 
because when the equalizer output is far away from the constellation points, the CME 
function places the right higher penalty, i.e. enforces it to be close to the constellation 
points. The above equation translates to 57.6λ <  for 16-QAM, 1120.2λ <  for 64-QAM, 
and 12770λ <  for 256-QAM, respectively. 

4. Performance Analysis 
In this section, we show the complexity of the proposed algorithm. Without loss of 
generality, we derive an analytical expression for the steady-state MSE of the proposed 
algorithm for 16-QAM in a noiseless environment. 
 

4.1 Computational complexity 
The computational requirements of the proposed algorithm (for 16-QAM), CMA, 
CMA+SDD, and MCMA are summarized in Table 1. And the computational requirements 
of the proposed algorithm for different high-order M-QAM signals are shown in Table 2. 
From Table 1, CMA+SDD requires 29212 +× N  multiplications, 21214 +× N  additions 
and 4 exponential operations for each iteration, which indicates a higher complexity than 
that of CMA. Therefore, CMA+SDD obtains a dramatic performance improvement over 
CMA at a cost of complexity. The proposed algorithm requires 1028 +× N  multiplications 
and 628 +× N  additions and 4 sign operations for each iteration. It has the similar 
computational complexity to CMA. So, compared with the CMA+SDD, a considerable 
computational saving is obtained by the proposed algorithm. Moreover, the MCMA 
equalizer for calculating the sine function may be balanced for constraints such as speed, 
accuracy, portability, or range of accepted input values. Hence the computational 
complexity of the proposed algorithm is also simpler than that of the MCMA. 
 

4.2 Steady-state MSE Performance 
Without loss of generality, for the 16-QAM signal we derive the steady-state MSE 
performance of the proposed algorithm without noise using the method proposed in [6]. 
The key formula for evaluating the steady-state MSE of the adaptive algorithm is [6] 
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This implies that the terms T1 and T2 are identical. From this equality, we can obtain an 

approximate expression for the steady-state MSE }|)({|E 2kea . And )(kea  is defined as 
 
 )()()( kzkakea −=  (35) 
 

Table 1. Comparison of computational complexity per weight update 

Equalizer Multiplications Additions exp(.) 
evaluations 

sgn(.) 
evaluations 

sin(.) 
evaluations 

CMA 628 +× N  N28×  - - - 

CAM+SDD 29212 +× N  21214 +× N
 4 - - 

MCMA 1228 +× N  228 +× N  - - 2 
Proposed 
algorithm 1028 +× N  628 +× N  - 4 - 

 
Table 2. The computational requirements of the proposed algorithm per weight update for different 

high-order M-QAM signals 
M-QAM Multiplications Additions sgn(.) evaluations 
16-QAM 1028 +× N  628 +× N  4 
64-QAM 1228 +× N  828 +× N  6 
256-QAM 1428 +× N  1028 +× N  8 

 
The )(keo  of the proposed algorithm is in (32) 

 
 )]}}(sgn[)({)](sgn[)({]|)(|)[()( 2 kykyjkykykzRkzke iirro −+−−−= λ  (36) 
 
where )](sgn[2)()( kzkzky rrr −=  and )](sgn[2)()( kzkzky iii −=  for the 16-QAM signal.  

For the 16-QAM signal, }1{)](sgn[2)()( ±=−= kakaks rrr  and )](sgn[2)()( kakaks iii −=  
}1{±= . And in the steady state, )()](sgn[)](sgn[ ksksky rrr == , )()](sgn[)](sgn[ ksksky iii == , 

)](sgn[)](sgn[ kakz rr = , and )](sgn[)](sgn[ kakz ii = . So in steady state the )(keo  can be 
rewritten as 
 
 )(]|)(|)[()( 2 kekzRkzke ao λ+−=  (37) 
 

The analysis that follows for the proposed algorithm is based on the assumptions made in 
[6] regarding the independence of the transmitted symbol )(ka  and )(kea , and the 
independence of 22 ||)(|| kxµ  and the equalizer output )(kz . Furthermore, we can conclude 
the independence of )(ks  and )(kea , and the independence of 22 ||)(|| kxµ  and )(ky . In 
addition, we drop the time index k  for simplicity and assume the step-size µ  is 
sufficiently small and the value 2|)(| kea  is reasonably small in steady state. 
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For T1, we obtain 
 

 }{)}||()||({ **2*2*
1 aaaa

A
aa eeeeEzRzezRzeET ++−+−= λµµ

  

 (38) 

 
The term A can be approximated by }|{|)||2(2 22

aeERaE −µ  as shown in [6]. Then 
 
 }|{|)||2(2 22

1 aeERaET λµ +−≈  (39) 
 

For T2, we obtain 
 

    
  

F
aa

D
a

B

zRzeezRzEeEzRzET )]}||()||([||{||}||||{||}|)||(|||{|| 2**22222222222
2 −+−++−= xxx λµµλµ  (40) 

 
The term B can be approximated by }||{||}||||2|{| 222462 xEaRaRaE +−µ  as shown in 

[3]. The term D can be neglected for small µ  and small || ae . By substituting z by aea − , 
we get 
 
 )]}|||(|)][||2[(||{|| 2**2*2*22

aaaaaa eaeeaaRaeeaeEF +−−−+−= xλµ  (41) 
 

By expanding F and neglecting the terms containing 22 || aeµ  for some µ  and small 
|| ae  and using the independence of a  and ae , we obtain the approximation 0≈F . Now 

we have 
 
 }||{||}||||2|{| 222462

2 xEaRaRaET +−≈ µ  (42) 
 

From the equality 21 TT = , the steady-state MSE of proposed algorithm can be 
approximated by 
 

 
6 4 2 2 2

2
2

{| | 2 | | | | } || ||{| | }
2 {2 | | }a

E a R a R a EE e
E a R

µ
λ

− +
≈

− +
x  (43) 

 
Similarly, the steady-state MSE expressions for 64-QAM and 256-QAM can be 

calculated, which are the same as the equation (43). 
It is clear that when the weighting factor λ  is zero, equation (43) is identical with the 

steady-state MSE of the conventional stochastic gradient descent CMA as shown in (9). 
The steady-state MSE of the proposed algorithm is linearly proportional to the step-size µ  
and the received signal norm 2|||| xE . In steady state, the weighting factor λ  only exits in 
the denominators of (43), and the MSE will decrease with the increase of λ .  

It is important to note that the MSE expressions of CMA (9), CMA+SDD (14), MCMA 
(20) and proposed algorithm (43) have the same numerator. Therefore, the relationships 
between them depend on the denominators. Specifically, 

1) CMA SDD CMAMSE MSE+ < , since / 0da µ µ= > . 
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2) Proposed algorithm CMAMSE MSE< , since 0λ > . 
3) Proposed algorithm CMA SDDMSE MSE +≈ , when λ a= . 
4) Proposed algorithm CMA SDD MCMA CMAMSE MSE MSE MSE+≈ > > , when 2 / 2λ a π β= = . 

5. Simulation Results 
Firstly, we provide simulation results that compare the experimental performance with the 
one predicted by the analysis in this section. In this simulation, the transmitted data 
symbols are 16-QAM, 64-QAM and 256-QAM, respectively. The channel considered in 
this simulation is given by T]2.0,5.0,1.0,1,3.0,1.0[1 −=c  [6]. A 10-tap FIR filter is used as a 
T/2-FSE. Under different step-size µ  (from 5103 −×  to 5105 −× ) with fixed weighting 
factor 20=λ  and 50=λ , respectively, Fig. 4(a) shows two groups of curves for the 
experimental results of the steady-state MSE and the theoretical results of (43) for 
16-QAM. Under different weighting factor λ  (from 0  to 50 ) with fixed step-size 

5103 −×=µ  and 5104 −×=µ , respectively, Fig. 4(b) shows two groups of curves for the 
experimental results of the steady-state MSE and theoretical results of (43) for 16-QAM. 
From these two figures, we can observe that two steady-state MSEs are matched 
reasonably well, and linearly proportional to the step-size µ , and increase with decreasing 
λ . The similar simulation results for 64-QAM and 256-QAM are shown in Fig. 5 and Fig. 
6, respectively. 

Secondly, the performance of discussed blind equalization algorithms for 64-QAM are 
compared. Additionally, to illustrate the advantage of the proposed algorithm we consider 
the constant norm algorithm (CNA) proposed in [25], which has proven to be particularly 
adapted to square constellations. Since we pay more attention to the CMA+SDD [9], the 
same simulation parameters described in [9] are considered. The channel 2c  in [9, Table 2] 
is used and the parameters of the algorithms are set as follows: N= 11 and 75 10µ −= ×  for 
every algorithm, 400λ =  for the proposed algorithm, λa =  and 0.6ρ =  for the 
CMA+SDD, and 2/2 πλβ =  for the MCMA. Fig. 7 shows the simulation results for four 
different SNRs. The MSE traces of these algorithms shown in Fig. 7 verify that the 
proposed algorithm and the CMA+SDD have the similar steady-state MSE and 
convergence rate which are better than those of CMA, CNA and MCMA. Although in the 
case of lower SNR the steady-state MSE of the proposed algorithm is not much lower than 
that of the MCMA, the convergence rate of the proposed algorithm is much faster than that 
of the MCMA. It is interesting to note that the advantages of the proposed algorithm are 
more significant in higher SNR. 

Finally, we compare the performance of discussed blind equalization algorithms through 
two different channels for 256-QAM. From n=0 to n=40000, we consider the cable channel 

3c  from the signal processing information base (SPIB, located at http://spib.rice.edu/) and 
at n=40000, it is changed abruptly to channel 4 [0.36 0.86 0.36]T=c  [26]. In both cases, the 
remaining parameters of the algorithms are set as follows: N= 21 and 810−=µ  for every 
algorithm, 1800=λ  for the proposed algorithm, λa =  and 7.0=ρ  for the CMA+SDD, 
and 2/2 πλβ =  for MCMA. Additionally, we do not consider CNA in this simulation since 
the CNA is very suitable for high-order QAM constellation but not including 256-QAM 
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[25]. In practice, CMA achieves better performance than CNA for 256-QAM. The learning 
curves of these algorithms are depicted in Fig. 8. We can observe that the proposed 
algorithm has the lowest steady-state MSE, and the fast convergence rate as CMA+SDD 
even in the variable channels. 
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Fig. 4. Theoretical and experimental steady-state MSE curves against step-size µ  (a) and 
weighting factor λ  (b) in a noise free environment for 16-QAM signal and channel 1c . 
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Fig. 5. Theoretical and experimental steady-state MSE curves against step-size µ  (a) and 
weighting factor λ  (b) in noise free environment for 64-QAM signal and channel 1c . 
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Fig. 6. Theoretical and experimental steady-state MSE curves against step-size µ  (a) and 
weighting factor λ  (b) in noise free environment for 256-QAM signal and channel 1c . 
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Fig. 7. Performance comparison of CMA, CNA, MCMA, CMA+SDD, and proposed algorithm for 
64-QAM and channel 2c  with different SNR values. (a) SNR=20dB. (b) SNR=30 dB. (c) SNR= 

40dB. (d) SNR=50 dB. 
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Fig. 8. MSE traces for CMA, MCMA, CMA+SDD, and proposed algorithm for 256-QAM through 

channels 3c  and 4c .  

6. Conclusions 
In this paper, we studied a novel low-complexity hybrid blind equalization algorithm that 
minimizes a cost function made up of CMA and coordinate transformation-based CME 
terms. The steady-state performance analysis of the proposed technique was developed. 
The proposed algorithm has a significantly lower computational complexity than the 
CMA+SDD, and has the same steady-state performance as the CMA+SDD. When 
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compared with the MCMA, the proposed algorithm has lower computational complexity, 
lower steady-state MSE and faster convergence rate. Simulation results for 16-QAM, 
64-QAM, and 256-QAM confirm the effectiveness of the new blind algorithm over 
existing CMA, CAN, CMA+SDD, and MCMA. 

In future work, we will consider applying the proposed algorithm instead of CNA in [27] 
to improve the performance of blind equation used into OFDM/OQAM. In addition, we 
will find a way to combine the linear programming technique with the proposed blind 
equalization to further improve the performance, since the recent research of linear 
programming applied to blind equalization has proved a significant advance [28]. 
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