
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, Oct. 2016 4787
Copyright ⓒ2016 KSII

OFPT: OpenFlow based Parallel Transport
in Datacenters

Bo Liu1, Bo XU1, Chao Hu1,2, Hui Hu1 and Ming Chen1

1College of Command Information Systems, PLA University of Science and Technology, Nanjing, China
2Key Laboratory of Computer Network and Information Integration (Southeast University),

Ministry of Education, Nanjing, China
 [e-mail: lbo.xidian@163.com]
*Corresponding author: Bo XU

Received July 4, 2015; revised May 6, 2016; accepted September 3, 2016;

published October 31, 2016

Abstract

Although the dense interconnection datacenter networks (DCNs) (e.g. FatTree) provide
multiple paths and high bisection bandwidth for each server pair, the single-path TCP (SPT)
and ECMP which are widely used currently neither achieve high bandwidth utilization nor
have good load balancing. Due to only one available transmission path, SPT cannot make full
use of all available bandwidth, while ECMP’s random hashing results in many collisions. In
this paper, we present OFPT, an OpenFlow based Parallel Transport framework, which
integrates precise routing and scheduling for better load balancing and higher network
throughput. By adopting OpenFlow based centralized control mechanism, OFPT computes the
optimal path and bandwidth provision for each flow according to the global network view. To
guarantee high throughput, OFPT dynamically schedules flows with Seamless Flow Migration
Mechanism (SFMM), which can avoid packet loss in flow rerouting. Finally, we test OFPT on
Mininet and implement it in a real testbed. The experimental results show that the average
network throughput in OFPT is up to 97.5% of bisection bandwidth, which is higher than
ECMP by 36%. Besides, OFPT decreases the average flow completion time (AFCT) and
achieves better scalability.

Keywords: Datacenter; Traffic Engineering; OpenFlow; Multipath; Flow completion time

This work is supported by the State Key Development Program for Basic Research of China under Grant No.
2012CB315806, the National Natural Science Foundation of China under Grant Nos. 61103225 and 61379149,
Jiangsu Province Natural Science Foundation of China under Grant No. BK20140070, Jiangsu Future Networks
Innovation Institute Prospective Research Project on Future Networks under Grant No. BY2013095-1-06.

http://dx.doi.org/10.3837/tiis.2016.10.009 ISSN : 1976-7277

4788 Liu et al.: OFPT: OpenFlow based Parallel Transport in Datacenters

1. Introduction

In the past decade, the Internet applications, computing and data storage are migrating to
datacenters. Because mass data are stored in distributed circumstance, the data migration and
some bandwidth-intensive applications (e.g. MapReduce) have triggered significant increase
of inter-datacenter traffic. Some novel frameworks (e.g. FatTree [1]) have been presented to
improve the connectivity and robustness of datacenter network, which engender multiple
parallel transmission paths and high bisection bandwidth for each server pair. However,
traditional TCP/IP architecture applies SPT, it makes some links congested while other links’
loads are very light, and the average bandwidth utilization is only 20%~30%. Therefore, how
to improve the load balancing as well as the throughput of DCNs is an urgent problem in
DCNs.

Researchers have proposed many multipath transport schemes in DCNs to improve the load
balancing, including flow-level schemes [1], [2], [3], packet-level schemes [4], [5], [6], [7]
and flowlet (or flowcell)-level schemes [8], [9], [10]. Besides, Hedera [11] and MicroTE [12]
have proposed centralized control mechanism in DCNs for improving the network throughput,
and they proposed using OpenFlow [13] to improve the load balancing. By separating the
control plane from data plane, OpenFlow enhances the instant management and provides
fine-grained control on network resources distribution owing to the advantages of centralized
control mechanism. Google firstly employs OpenFlow to reform its wide area network B4 [14]
in 2010. After the reconstruction, the bandwidth utilization of B4 has increased from
20%~30% to nearly 100%, and B4 has realized load balancing and differentiated services.
Therefore, applying OpenFlow and multipath transport mechanism to solve the DCN traffic
engineering (TE) issue is an appropriate choice.

This paper targets on addressing the issues of DCNs via OpenFlow. There is serious packet
disordering issue in packet-level schemes, which will seriously impair the user experience as
well as the network throughput. Meanwhile, although flowlet-level scheme can efficiently
improve datacenter’s throughput, it will add more overheads on OpenFlow controller as well
as more flow tables on OpenFlow switches, which will impair the scalability of DCNs.
Therefore, we believe flow-level scheme is more suitable in OpenFlow network.
Unfortunately, the performance of existing OpenFlow based flow-level schemes is still far
from the optimal for short of the consideration on current load of links or precise routing and
scheduling. For example, Hedera and MicroTE adopt ECMP routing for short flows, which
will hurt the performance of short flows. In this paper, we propose OpenFlow based Parallel
Transport (OFPT) framework, a flow-level multipath transmission scheme to improve load
balancing and network throughput. Referring to the idea of parallel computing, we regard the
end-to-end traffic as a task, while the available bandwidth of transmission links is abstracted
as the resource pool. The end servers just inject the traffic into the network, and the OpenFlow
controller conducts the optimal allocation of network resource. More specifically, by
maintaining the global network view, including the available bandwidth of each link, the
sending rate and routing information of each flow, OFPT computes the optimal path and
bandwidth provision for each flow. The controller updates the network view periodically and
schedules flows to lighter paths with SFMM for better load balancing. The main contributions
of this paper are as follows:

1) We design OFPT framework, which has the following advantages: a) OFPT is a
flow-level scheme, which can avoid packet disordering problem; b) OFPT adopts an accurate

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4789

routing algorithm, which can avoid flow collision that ECMP suffers; c) OFPT complies with
the OpenFlow standards and does not need any modifications on switches, thus is easy to
deploy; d) OFPT decreases FCT and increases the throughput as well.

2) We present the mathematical model of OFPT and the corresponding algorithms of
routing and scheduling, which makes DCN achieving better load balancing and higher
throughput.

3) We design the seamless flow migration mechanism, which can keep away from packet
loss during flow rerouting.

The remainder of this paper is organized as follows. In Section 2, we discuss the related
work about TE issues in DCNs. We describe the motivation in Section 3 and the framework of
OFPT in Section 4, and present the mathematical optimization model and the corresponding
algorithms of OFPT in Section 5. In Section 6, we introduce our experimental methodology
and results. Finally, our work is concluded in Section 7.

2. Related Works
DCNs have three main goals: increasing the bisection bandwidth for high network throughput,
achieving good load balancing for the increase of bandwidth utilization, and decreasing the
average flow completion time for improving user experience. To realize these goals, some
novel structures of datacenter network are presented to increase the bisection bandwidth, and
multipath transport schemes are employed for load balancing in the dense interconnection
DCNs. Moreover, OpenFlow based software-defined networks (SDN) is introduced to the
innovation of DCNs.

Traditional DCNs generally adopt a hierarchical tree structure, which is composed of edge
layer, aggregation layer and core layer. Racks of servers directly connect to top-of-rack
switches (ToR switches) at the edge layer, and ToR switches connect to the aggregation
switches (Agg switches) through a certain structure for bandwidth aggregation. Finally,
aggregation switches connect to the core layer switches (Spine switches). This type of DCNs’
structure has many shortcomings. For example, due to the low connectivity, datacenter
networks have a limited bisection bandwidth, and the robustness and scalability are far away
from practical requirements. Some researchers try to design new DCN fabric to increase the
DCN’s bisection bandwidth. These new datacenter fabrics can be divided into two classes: one
is network-centric solution, in which the switches are only responsible for packet forwarding,
such as FatTree and VL2; and the other is server-centric solution, such as BCube [15], in
which the switches forward the packet and store some data as servers. The new DCNs have
high connectivity among servers, so they efficiently increase the bisection bandwidth and
improve the robustness. Fig. 1 shows the k=4 FatTree DCN topology. We can find that there
are four parallel transmission paths between any two servers in different pods.

Although there are multiple parallel paths between each server pair in dense interconnection
datacenter networks, SPT only uses one path in data transmission and thus has a low
throughput. Multipath transmission schemes have been proposed to solve this problem. ECMP
[1] adopts random load balancing mechanism, in which each router chooses the next hop for
each packet by hashing the five-tuple, including source/destination IP address,
source/destination port number and the protocol of the transport layer. SPAIN [2] splits the
multiple paths into different VLANs, and an offline network controller system pre-computes
and pre-installs the transmission path for each flow. VL2 [3] adopt Valiant Load Balancing to
spread traffic uniformly across network paths. However, none of them can fully utilize the
bisection bandwidth for lack of precise routing and they are unaware of the current network

4790 Liu et al.: OFPT: OpenFlow based Parallel Transport in Datacenters

load. In DRB [4], for each outgoing packet, the source server selects one of the highest level
switch (Spine switch) based on the measured latency introduced by the end-server network
stack to be bouncing switch, and sends the packet to that switch. The bouncing switch then
bounces the packet to the destination. FlowBender [5] is based on ECMP and uses
end-host-driven rehashing to trigger dynamic flow-to-path assignment when detecting
congestion. RPS [6] and DeTail [7] place the burden of load balancing the traffic upon the
switches themselves at the packet level, which requires hardware changes at the switches and
thus makes it hard to be deployed. Resorting to the multiple addresses servers, MPTCP [8]
separates one (long) flow into multiple subflows and then delivers each subflow in different
paths, and all subflows use a coupling congestion control algorithm. Presto [9] utilizes edge
vSwitches to break each flow into flowcells, and distributes them evenly to near-optimally
load balance the network. CONGA [10] splits TCP flows into flowlets, estimates real-time
congestion on fabric paths, and allocates flowlets to paths with small load based on feedback
from remote switches.

Spine
switch

Agg
switch

TOR
switch

Server

pod

Fig. 1. k=4 FatTree datacenter network topology

The advent of OpenFlow based SDN fabric provides a new way to solve the datacenter

issues, such as TE, flexibility, robustness and rapid configuration. Compared with TCP/IP
architecture, SDN adopts a centralized control mechanism, in which the logical control
functions and the high-level network policy are accomplished by the controller, and the
controller maintains the flow table structure on OpenFlow switches. In the OpenFlow network,
packets are forwarded according to the flow tables, while the generation, maintenance and
configuration of flow tables are implemented by the central controller. The improvement of
Google’s datacenter B4 via OpenFlow demonstrates that it is feasible to achieve better traffic
scheduling through centralized control mechanism, and Hedera [11] and MicroTE [12] have
also shown the OpenFlow based global resource allocation scheme can efficiently increase the
network throughput.

3. Motivation
In this section, we introduce some key observations in achieving high throughput in high
connectivity network topology. As shown in Fig. 2, each link’s bandwidth is 100Mbps. There
are four flows transmitting from h1 to h2, and the size of flows is shown in Table 1. We use
four different routing schemes in the example, which are SPT, ECMP, MPTCP and the
optimal routing scheme, respectively. The routing is shown in 2(a)~2(d), and correspondingly
optimal scheduling (short job first, SJF) are shown in 2(e)~2(h). In MPTCP, we just divide the
flows which size is more than 50Mb into two subflows due to only two paths between the
server pair in our example.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4791

Table 1. flows’ size used in example
Flow number f1 f2 f3 f4

Size (Mb) 20 80 60 40

(a) Routing with SPT (b) Routing with
ECMP

(c) Routing with
MPTCP

(d) Optimal routing
(OR)

(e) Scheduling for SPT (f) Scheduling for

ECMP
(g) Scheduling for

MPTCP (h) Scheduling for OR

Fig. 2. An explanatory example, where (a)~(d) indicate different routing schemes, and (e)~(h)
indicate the optimal scheduling schemes for (a)~(d).

The first observation is that multipath transport scheme is more efficient than SPT in

improving throughput and decreasing flow completion time. We can learn from Fig. 2(e)~Fig.
2(h) that SPT has the lowest throughput in four schemes, and especially its throughput is only
half of the optimal, while ECMP and MPTCP achieve 83.3% and 90.9% of the optimal,
respectively. What’s more, the FCT of f2 is 2s in SPT while 1s in OR, and the FCT is 1.2s in
both ECMP and MPTCP, so we can conclude that multipath transport scheme can efficiently
decrease FCT.

The second observation is that global optimization is more efficient than distributed control.
We can learn from Fig. 2(f) and Fig. 2(h) that ECMP gets only 83.3% of the optimal scheme
in throughput. Moreover, the throughput in ECMP only achieves 50% of the optimal when the
four flows route on S1→S2→S4 (or S1→S3→S4) at the same time due to random hashing.

The third observation is that both routing and scheduling are demanded and they should be
integrated in improving throughput and decreasing FCT. We can learn that routing is essential
for improving the network throughput and load balancing from Fig. 2(f) to Fig. 2(h). If we
schedule long flow first (LFF), the FCT of f1 and f2 in Fig. 2(h) will be 1.0s and 0.8s
respectively, but they are 0.2s and 1.0s in the optimal scheduling, which demonstrates the FCT
of f1 will increase by 400% in LFF. Therefore, scheduling is also essential in DCNs. MPTCP
achieves better throughput and load balancing than ECMP, but it also impairs some short
flow’s FCT. For example, f4 should be scheduled before f3 based on SJF, but it is scheduled
later than f3 in MPTCP, which results in the increase of f4’s FCT (the FCT of f4 in ECMP is
0.4s while is 0.7s in MPTCP).

In conclusion, we should integrate centralized control mechanism, multipath transport,
precise routing and scheduling in improving the throughput of DCNs. In our example, the
highest throughput and the minimal FCT can be achieved by combining the optimal multiple
transport scheme, routing and scheduling in Fig. 2(d) and Fig. 2(h). We design OFPT
framework to accomplish this target.

4792 Liu et al.: OFPT: OpenFlow based Parallel Transport in Datacenters

4. Design Overview
OFPT aims at optimally decomposing the traffic on all available paths to improve the network
throughput. Specifically, for each flow OFPT determines which path carries it, when to start it
and how much bandwidth should be allocated for it. Therefore, OFPT needs to perceive the
load and available bandwidth of each link, and it also requires more detail of each flow, such
as size and sending rate. OFPT assumes that the information about each flow can be derived
from the upper layer applications or using the state-of-the-art prediction techniques, and it
mandates that flows less than 100KB are considered as short flows. The key ideas of OFPT
are:

To achieve scalability, OFPT mainly orchestrates long flows, while short flows are treated
as background traffic. To decrease short flows completion time (SFCT), background traffic is
transmitted along the preinstalled flow tables installed by controller, which can overleap the
extra RTTs for installing flow tables. OFPT installs flow tables for short flows based on
server-lever load balancing.

We describe the OFPT framework in algorithm 1, which is invoked whenever a new flow
comes, an existing flow finishes or the pooling time is up. In more details, when a new flow
comes, OFPT is triggered to compute the routing and bandwidth provision for it. When an
existing flow finishes and the bandwidth is released, OFPT is also triggered to determine
which flow uses the available bandwidth. To decrease AFCT, OFPT uses the well-known
minimum remaining time first (MRTF) as the scheduling policy. Furthermore, OFPT carries
out a periodic polling operation to improve the load balancing.

Algorithm 1: The OFPT Framework
Input:

Fc←{fauc}/* all uncompleted flows*/
Rc←{(pfi, bfi)}, fi∈Fc/* current routing*/

Output:
 Fu /* updated flows set*/
 Ru /* updated routing*/

1: while Fc≠Ø do
2: Ru=Maximize_Throughput(Fc, Rc) /*compute the maximum throughput

 for each flow, and the routing and bandwidth provision */
3: Scheduling(Ru)
4: end while
5: return Fu, Ru

In algorithm 1, all the (long) flows which are uncompleted are put into the flow set Fc as the

optimization object. We regard the Fc and the current routing set Rc as the input, and OFPT will
compute the transmission path, bandwidth provision and sending order for each flow in Fc.
There are two key issues that OFPT has to address, one is to allocate the maximum bandwidth
provision for each flow, and the other is to realize transparent flow rerouting for end server.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4793

5. Details of OFPT
In this section, we will present the key algorithms of OFPT. Firstly, we present the
mathematical model of OFPT in 5.1, and then give the bandwidth distribution algorithm. In
5.2, we present the scheduling and incremental update algorithms, and we design the Seamless
Flow Migration Mechanism in 5.3.

5.1 Maximize the network throughput
We use directed graph G = (V, E) to describe the network model. We assume that the network
is composed of a set of nodes V, and they connect to each other with a set of directed links E.
Moreover, f(e) and c(e) represent the current traffic and the link capacity of link e (e∈E),
respectively, and NH(u, d) denotes the set of next hop nodes from u to d.

Given two servers s and d, all path <s,u0,…uk, d> from the source server s to the destination
server d will be termed as reachable path if (uj-1,uj)∈E and {uj}=NH(uj-1，d) for j=1,2, …,k,
and the set of reachable paths between s and d is denoted by Psd. Besides, let Wsd represent the
bisection bandwidth between s and d.

Optimization target 1: Optimal Load Balancing

The first target of OFPT is to improve the load balancing, which is to decrease the
bandwidth utilization θ of a given link, i.e., we prefer to put more traffic on the lightest link
first. We describe this purpose of traffic decomposition as the following optimization problem.

minimize θ　
Subject to

() () () ()

() ()

() ()0
sd

sd sd
e p

sd sd
p P

sd

x p f e c e e E p P

x p W i V d V

x p p

θ
∈

∈

 + ≤ ∀ ∈ ∈

 ≤ ∀ ∈ ∈ 

 ≥ ∀

∑

∑

　 　 　　　　１

　　 　 　 ２

　 　 　　　 　 ３

where xsd(p) denotes the traffic constituent on the path p from s to d.
The first constraint condition demonstrates that the sum of the existing traffic f(e) and all

new arriving traffic portion xsd(p) on link e must be less than the product of the maximum link
utilization θ and the capacity of the link c(e). The second constraint condition means that the
total arriving traffic cannot exceed the bisection bandwidth Wsd, and the third constraint
condition is to ensure the non-negative characteristic.
Where xsd(p) denotes the traffic constituent on the path p from s to d.

Optimization target 2: Maximize Throughput

The second target of OFPT is to improve the network throughput, i.e., improving the
utilization λ of a given bisection bandwidth. We introduce the following optimization problem
to describe the goal of traffic decomposition.

maximize λ　
Subject to

() () () () ()

() ()

() ()0
sd

sd sd
e p

sd sd
p P

sd

x p c e f e b e e E p P

x p W s V d V

x p p

λ
∈

∈

 ≤ − ∀ ∈ ∈

 ≤ ∀ ∈ ∈ 

 ≥ ∀

∑

∑

= 　 　 　　4

　　 　 　 　5 　

　 　　 　　　　 6

4794 Liu et al.: OFPT: OpenFlow based Parallel Transport in Datacenters

where xsd(p) denotes the traffic constituent on the path p from s to d, and b(e) represents the
available bandwidth of link e.

The first constraint condition indicates that the sum of the existing traffic f(e) and all new
arriving traffic xsd(p) on link e must be less than the capacity of the link c(e). The second
constraint condition means that the total arriving traffic cannot exceed the product of the
maximum link utilization λ and the bisection bandwidth Wsd, and the third constraint condition
ensures that the flow on any path is non-negative.

OFPT aims to minimize the bandwidth utilization of each link in the network for the given
traffic, which is equivalent to keeping the capacities of the link fixed but scale the injected
traffic. Therefore, the optimization target 1 is in accordance with the optimization target 2 in
nature, and we choose optimization model 2 as our optimization model of traffic
decomposition. In this model, we assumed that values f(e) and Wsd are known, but OFPT needs
to update their values based on instant workload. Fortunately, both f(e) and Wsd are easy to
calculate because OFPT can be easy to get each flow’s information in OpenFlow network.
Although the problem is a NP-complete problem and has an exponential number of variables,
we can solve the problem with a primal-dual algorithm.

We introduce dual variables l(e) for constraint (4) and zsd for constraints (5), where l(e) is
the cost of link and zsd is the path with the lightest load from s to d. The dual can be written as

() ()
e E

minimize b e l e
∈
∑　

Subject to
() ()

()

() ()

1

0

sd sd
e p

sd sd
s V d V

l e z e E p P

z W

l e e E

∈

∈ ∈

 ≥ ∀ ∈ ∈

 ≥

 ≥ ∀ ∈

∑

∑∑

　　 　 　　　7

　 　　　8 　

　 　　　　 9
 Let Lsd denote the lightest path from s to d which use the link cost l(e) of e. The dual can now

be rewritten as
() ()

e E
minimize b e l e

∈
∑　

Subject to
()

() ()

1

0

sd sd
s V d V

W L

l e e E
∈ ∈

 ≥

 ≥ ∀ ∈

∑∑ 　 　　　10
　

　 　　　　 11

In other words, given any non-negative set of link costs l(e),
() () / sd sde E s V d V

b e l e W L
∈ ∈ ∈∑ ∑ ∑ is the upper bound of the dynamic routing problem. We use

Fully Polynomial Time Approximation Scheme (FPTAS) to solve this problem, which is
simple to implement and runs significantly faster than a general linear programming solver in
OFPT.

FPTAS provides the following performance guarantees: for any 0ε > , the solution has
objective function value within ()1 ε+ − factor of the optimal, and the running time is at most a
polynomial function of the network size and 1/ ε . FPTAS in our case is a primal dual
algorithm, and we implement some optimization on FPTAS to decrease the running times via
dynamic graph algorithms [16]. We optimize the primal dual algorithm with the following
approaches.

1) In the FatTree network, given an arbitrary feasible traffic matrix, if a routing algorithm
can evenly spread the traffic xij from server i to server j among all the possible uplinks at every

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4795

layer, then all the links, including all the downlinks, are not overloaded, which has been
verified in [4]. Moreover, for FatTree network, once the spine switch is chosen, the routing
path from the source to the destination is decided without ambiguity. Therefore, we just need
to precisely compute the routing from the source server to the spine switch, thus it decreases
the running time of the algorithm. For VL2, we can also generalize the similar conclusion
according to the related algorithm presented in [4].

2) OFPT maintains path information in the controller, which can provide all path
information for a flow directly rather than compute everything from scratch. For any s d→ ,
the path information is expressed as { }1 2: , :,sd aP B path b path b← , where Ba represents the
available bandwidth of the heaviest load path in Psd, while b is the available bandwidth of a
given path. By using path information, we only compute the multipath only once for a given
ToR switches pair.

The primal dual algorithm for our problem works as follows: The algorithm first computes a
value δ that is the function of the desired accuracy level ε and the number of switch n, then
get all uncompleted flows sdF sorted according to MRTF in ascend order and computes all
available paths Psd for a given s d→ . In each primal phase

f
w∑ units of flows are routed

along a path p until 0b∆ < , where p ab b B∆ = − and aB is the available bandwidth of the
heaviest path in Psd. This process of augmenting flow and updating the dual length is repeated
until the problem is dual feasible. More details of the algorithm are given in algorithm 2.

Algorithm 2: Maximize_Throughput (Fc, Rc)
Input: Fc, Rc
Output: λ, Fc, Rc //updated flow and routing information
1: () ()()1/1 / 1 n θδ ε ε= + + where ()1θ ε ε= +
2: LD δ← , ()l e e Eδ← ∈　 , (),sdR s dφ← ∀　
3: for s d→ s V∀ ∈ , d V∈ do
4: while 1LD < do
5: { }:sd fF f w← /* sort flows according to MRTF in ascend order*/
6: [] []{ }1 2, : , , : ,sd aP B path b b path b b← ∆ ∆ , ,sd p sdW b p P← ∀ ∈∑
7: for path p in Psd do
8: ab b B∆ ← −
9: while 0b∆ ≥ do
10: Augment flows fw∑ along the path p until 0b∆ <
11: sd sd fB B w← + ∑
12: for each link e in p do. ()() ()(1 /)fl e l e w c ee← + ∑
13: for each link e in p do. () () fb e b e w← − ∑
14: () ()LD b e l e← ∑ , a fB b w← − ∑
15: end while
16: end for
17: end while
18: end for
19: return Ru, u sdF F←
22 output: ()max /sd sdB Wλ = , uF

4796 Liu et al.: OFPT: OpenFlow based Parallel Transport in Datacenters

This algorithm follows the same vein in [16], and the time complexity of the algorithm
is ()2 logO mn mε − , where m is the number of links, and the final flow is a

()1 3ε− -approximation to the optimal flow. In each iteration, algorithm 2 computes
near-optimal routing and the corresponding bandwidth provision for each flow to maximize
the throughput of the whole network. Unlike the algorithm in [16], the computation is
organized on ToR pair rather than server pair, and we use precise path information for these
grouped flows instead of a random path set. More important, we distribute many flows on
multipath at the same time complexity based on the path information, which is totally different
from finding admissible pair algorithm in [16].

5.2 Scheduling and incremental update

Although algorithm 2 has calculated the optimal path and corresponding bandwidth provision
for all uncompleted flow, it is hard to implement the new routing immediately because the
controller cannot install flow tables for all flows at the same time. Installing flow table for
MRTF flows firstly is a basic principle for decreasing FCT, which provides a guide for us to
enforce routing update. However, this principle cannot help us to accelerate the process of
(re)routing. Therefore, we introduce incremental update and flow aggregation mechanisms to
decrease the (re)routing time, and these two mechanisms can decrease the number of flow
tables which can strengthen the scalability of this scheme. More specifically, when we install
flow tables for the flows in Ru, we firstly remove the flow from Ru for which their routings
unchanged, i.e., we only update the incremental routing, and we call this mechanism as
incremental update. Moreover, we aggregate some flows which have part of or entire overlap
path into a new flow. We put incremental routing information into { } oR∆ and { } nR∆ , where
{ } 0R∆ is the set of flows which are already in network, while { } nR∆ represents the new flows.
For routing information in { } 0R∆ , we need to execute flow rerouting with SFMM, while we
just need to install flow table in { } nR∆ . More details are shown in algorithm 3.

Algorithm 3: Scheduling and incremental update
Input: Rc，Ru
Output: Ru
1: { } u cR R R∆ ← − /*{ }R∆ : incremental update routing information*/
2: classify { }R∆ into { } 0R∆ and { } nR∆ /* { } 0R∆ is the set of flows which are

already in network, while { } nR∆ represents the new flows*/
3: sort all the flows in { } 0R∆ according to their remaining FCT in descend order
4: for f in { } 0R∆ do
5: Rerouting_flow(f) /* implemented with seamless flow migration mechanism*/
6: end for
7: sort all the flows in { } nR∆ according to their remaining FCT in ascend order
8: for f in { } nR∆ do
9: Install path for f
10: end for
11: return c uR R←

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4797

In algorithm 3, we prefer to reroute the flow with large remaining FCT in { } 0R∆ or with
small remaining FCT in { } nR∆ first to decrease AFCT.

5.3 Seamless Flow Migration
To guarantee that the flow transmission will not be disrupted and suffer any packet loss during
flow rerouting, we introduce the seamless flow migration mechanism, which can realize
transparent rerouting for end servers. In OpenFlow networks, the essence of flow rerouting is
that the controller installs a new path for the flow. In OpenFlow specification v1.5.1 [17], the
flow will choose the flow entry with higher priority when it simultaneously matches two flow
table entries. Therefore, when we carry out flow migrating, we can build a new path by
installing the flow entry with lower priority, and then delete the old flow entry to realize
seamless flow migration. More details are shown in algorithm 4.

Algorithm 4: Seamless Flow Migration
1: for f in { } 0R∆ do
2: compute(new_path); new_path is lower than that of old_path*/
3: find cutover_switch(new_path, old_path);
4: find bottleneck link e
5: while e do
6: find(sw∈cutover_switch);/*sw is migration switch before bottleneck link*/
7: delete flow table of old_path in sw;
8: end while
9: end for

We illustrate the flow migration algorithm with an example. Fig. 3 shows a VL2 datacenter

network topology, and there is a flow transmitting from s to d. Now the flow is going to
migrate to a new path <s,3,4,1,9,10,d> from the path <s,3,2,1,7,10,d>, and the cutover switch
set will be {3,1,10}. When we install the flow entries in the cutover switch set for the new path,
we must ensure that the priority of the new flow entries is lower than that of the old flow
entries, which is to prevent the new flow table from disrupting the data transmission, because
it is unable to install all flow entries simultaneously. The controller should wait till all flow
table entries are installed, and then execute the flow migration algorithm.

1 6

2 4 97

3 5 8 1
0

s d

Spine
switch

Agg
switch

TOR
switch

Server

Fig. 3. VL2 datacenter network

During flow migration, the flow entries in the bottleneck link should be deleted firstly to get

away from the congestion quickly. Regard to the other flow table entries, we adopt passive
method, i.e., the flow table will be deleted automatically because of timeout. For example, if

4798 Liu et al.: OFPT: OpenFlow based Parallel Transport in Datacenters

the link between switch 1 and switch 7 is the bottleneck, we will preferentially remove the old
flow entries from 1 to 7. In this migration mechanism, there always has at least one available
path during the migration, and none of packets will be lost, so the flow migration is transparent
for the end servers.

6. Performance Evaluation
We evaluate the performance of OFPT in Mininet [18] emulator. Mininet is a high-fidelity
network emulation framework built on Linux container based virtualization, which creates a
virtual network, switches and application code on a single machine. Its scale is smaller than
production data center networks due to the single-machine CPU limitation (tens of Mbps link
bandwidth compared to 1Gbps). Mininet has been shown to faithfully reproduce
implementation results from [11], [8] with high fidelity [18], and has been used as a flexible
testbed for networking experiments [3]. We realize OFPT on POX-carp [19] controller system.
Moreover, both FatTree and VL2 are selected as the datacenter topology in our simulation, and
we compare the performance of OFPT with TCP, ECMP and MPTCP under the same
workloads which abide by the typical datacenter traffic patterns. In order to improve the
accuracy of the experiment, each set of experiment runs for 10 runs lasting 200s, and we
choose the average value as the experimental results.

6.1 Methodology
A. Topology

We set up the parameters of our test topologies according to [18], and the experimental
scenarios are set as follows.
 k=8 FatTree. There are 128 servers and 80 switches, and each ToR switch connects with 4

servers, and the maximum parallel transmission path for each end-to-end connection in
different pods is 8. We set the switch port buffer is 100 packets, and the link bandwidth
between server and switch is 1Mbps and the link bandwidth between switches is 2Mbps.

 k=4 FatTree. There are 16 servers and 20 switches, and each ToR switch connects with 2
servers, and the maximum parallel transmission path for each end-to-end connection in
different pods is 4. We set the switch port buffer is 100 packets, and the link bandwidth is
1Mbps.

 d0=2，d1=4，d2=4 VL2, where d0，d1 and d2 present the number of 10Gbps Ethernet
ports in each ToR switch, aggregation switch and spine switch, respectively. There are 80
servers and 10 switches, and each ToR switch connects with 20 servers, and the
maximum parallel transmission path for each end-to-end connection in different pods is 4.
We set the switch port buffer is 100 packets, and the link bandwidth between server and
switch is 1Mbps and the link bandwidth between switches is 10Mbps.

B. Benchmark workloads

 Both [20] and [21] found that the traffic at the datacenter edge can be characterized by
ON-OFF patterns, and the ON and OFF periods, and packet interval time draw from 3
different log normal processes, thus the traffic follows a heavy tailed distribution and bursty.
We consider one flow size distribution from a cluster running web search [22], and the
workloads exhibit heavy-tailed characteristics with a mix of small and long flows. In the web
search workload, over 95% of the bytes are from 30% of flows larger than 1MB. In our

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4799

experiments, we use iperf traffic generation tool to generate ON-OFF flows on each server
which abides by the traffic pattern above.

C. Communication model

In datacenters, the communication pattern between servers includes one-to-one,
one-to-multi and all-to-all communication models [1], [3], [8], [19].
 One-to-one communication. One server only communicates with another server at the

same time, and we use Stride(N/2) scheme as in [11]. In this scheme, a server with
index x sends to the server with index (x+N/2) mod N, where N is the total number of
servers.

 One-to-multi communication. One server communicates with multiple servers at the
same time, and these servers are selected randomly.

 All-to-all communication. One server simultaneously communicates with all other
servers, and the representative is Map-Reduce.

D. Schemes Compared

1) TCP：Standard TCP-New Reno is used as the baseline of our evaluation. The initial
window is set to 12KB, and switches use DropTail queues with a buffer size of 100
packets. These are standard settings used in many studies [1].

2) ECMP：We use standard ECMP algorithm [1]. Other parameters are same as TCP.
3) MPTCP: We use standard MPTCP algorithm [8], and the number of subflow is

determined by the number of available path. Other parameters are same as TCP.
4) OFPT：Our design is described in section 5，and we use TCP-New Reno in servers.

Other parameters are same as TCP. We set the pooling time to be 5s.
Metrics: We use throughput and fairness to evaluate the performance of OFPT. The

throughput is calculated by flowB
Bisection Bandwidth　

, where flowB is the throughput of the flow,

and Bisection Bandwidth is the available bandwidth provided by network. Fairness is not an
abstract concept for many distributed applications; for example, when a search application is
distributed across many machines, the overall completion time is determined by the slowest
machine. Hence worst-case performance matters significantly.

6.2 Experimental Results
6.2.1 Impact of Different Routing Mechanisms

We firstly test the performance of OFPT in one-to-one workload, and compare it with TCP,
ECMP and MPTCP. Fig. 4 presents the average throughput and CDF of single flow bisection
bandwidth utilization in both k=8 FatTree and VL2 under different routing mechanisms.

Throughput Fig. 4(a) and 4(b) show the throughput of TCP, ECMP, MPTCP (the number
of subflow is from 2 to 8, and we use 2 to represent the MPTCP with 2 subflows) and OFPT in
k=8 FatTree and VL2. We can learn that OFPT achieves the highest throughput in both FatTree
and VL2. The performance of MPTCP depends on the number of subflow, and more subflows
lead to higher throughput, which has been verified in [4] and [19]. Specifically, the throughput
achieves 92.3% with 8 subflows, while 62.7% with 2 subflows in FatTree. In contrast, the
throughput of OFPT is 98.1%, which is more than that of MPTCP with 8 subflows by 5.8%.
Because only one path is available, the performance of TCP is rather poor, and just 43.5% of
the bisection bandwidth can be utilized. ECMP also performs worse than OFPT due to its
random hashing collisions, and its throughput is less than 67.5%. Due to only 4 paths existing

4800 Liu et al.: OFPT: OpenFlow based Parallel Transport in Datacenters

between each server pair in VL2, the number of subflow we select in MPTCP is less than 4.
We get the similar conclusion that OFPT can efficiently improve the network throughput.

TCP ECMP 2 3 4 5 6 7 8 OFPT
0

0.2

0.4

0.6

0.8

1

Routing Algorithm

Th
ro

ug
hp

ut

FatTree

 TCP ECMP 2 3 4 OFPT
0

0.2

0.4

0.6

0.8

1

Routing Algorithm

Th
ro

ug
hp

ut

VL2

(a) Throughput in FatTree (b) Throughput in VL2

0 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

Rank of flow

C
D

F

FatTree

TCP
ECMP
MPTCP(8)
OFPT

0 50 100 150 2000

0.2

0.4

0.6

0.8

1

Rank of flow

C
D

F

VL2

TCP
ECMP
MPTCP(4)
OFPT

(c) Distribution of throughput in FatTree (d) Distribution of throughput in VL2

Fig. 4. Throughput and bandwidth utilization distribution in k=8 FatTree and
VL2 under different routing mechanisms

Fairness Fig. 4(c) and 4(d) show the bandwidth utilization of each flow with TCP, ECMP,

MPTCP and OFPT in FatTree and VL2 respectively. Every flow’s throughput is shown in
ascend order. It is clear that both the bandwidth utilization and the fairness are improved in
OFPT. In TCP, only few flows perform well, and the bisection bandwidth obtained by many
flows is less than 0.5. ECMP performs better than TCP, but it still cannot make full use of all
available bandwidth, and more than 23% flows’ throughput are less than 0.5. In MPTCP with 8
subflows, more than 95.3% MPTCP flows utilize at least 0.8 of the bisection bandwidth, and
none of them is less than 0.7. Compared with the other methods, OFPT achieves the best
performance, and the throughput of each flow is higher than 0.9 in both FatTree and VL2.

In conclusion, OFPT can efficiently improve the throughput and fairness in both FatTree
and VL2 under one-to-one communication model. We also find that each routing algorithm
achieves better throughput in VL2 than in FatTree. It is VL2 that use a 10Mbps link among
switches which coped with more bursty traffic, and this conclusion has also been shown in [4].

6.2.2 Impact of Different workloads

In order to verify the performance of OFPT in different communication patterns, we test the
performance of OFPT under different workload in this section. Due to the CPU limitation, we
test OFPT in k=4 FatTree, and we choose four communication workloads, i.e., one-to-one,
one-to-two, one-to-four and all-to-all in our experiment. The experimental results are shown in
Fig. 5.

Throughput Fig. 5(a) presents the throughput of OFPT under four different workloads, and
we can learn that OFPT efficiently improve the network throughput in all workload models.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4801

More specifically, OFPT achieves more than 0.97 throughput in every workload, and it even
achieves 0.989 in all-to-all workload.

In contrast to one-to-one workload, one-to-n workload achieves better throughput, where n
represents the number of servers that each source server communicates with. In one-to-n
workload, there are n flows competing for the link bandwidth between the server and its ToR
switch, so each flow can only get 1/n of the link bandwidth. Therefore, the transmitting
bandwidth of each flow is smaller in one-to-n than in one-to-one workload. As OFPT adopt
flow-level flow scheduling mechanism, smaller flows can achieve better performance on load
balancing, and the throughput is improved as well. This conclusion is in accordance with the
experimental results.

one-to-one one-to-two one-to-four all-to-all
0.9

0.92

0.94

0.96

0.98

1

Different Workload

Th
ro

ug
hp

ut

FatTree

0 100 200 300 400

0.84

0.88

0.92

0.96

1

Rank of flow

C
D

F

FatTree

one-to-one workload
one-to-two workload
one-to-four workload
all-to-all workload

(a) Throughput (b) Bandwidth utilization

Fig. 5. Throughput and bandwidth utilization distribution of OFPT in k=4 FatTree under four
different workloads

Fairness Fig. 5(b) presents the bandwidth utilization distribution of OFPT under four

different workloads. In general, OFPT achieves good fairness in each workload, and the least
throughput of single flow is still more than 0.838, while more than 98% flows reach 0.9 in our
experimental results. However, in one-to-n workload, the fairness becomes worse with the
increase of n. For example, the least bandwidth utilization is 0.965 in one-to-one workload,
while the least bandwidth utilization is 0.838 in all-to-all workload. From the experimental
results, we think that the number of flows in all-to-all workload is several times of that in
one-to-one workload, and the number of flow assigns to each link is also increasing, which
results in more congestion and thus some flows’ throughput decreases. Although the fairness
becomes slightly worse in all-to-all workload, the average throughput is still improved.
Therefore, OFPT is still excellent in one-to-n workload.

6.2.3 Impact of Network Scale

In order to evaluate the scalability of OFPT algorithm, we test the performance in both k=4 and
k=8 FatTree under one-to-one workload and one-to-four workload. Fig. 6 shows the
experimental results under different parameters.

Fig. 6(a) shows the throughput in different topologies and workloads. We can learn that
OFPT achieves good throughput in both k=4 and k=8 FatTree, where their throughput is both
more than 0.97. Furthermore, OFPT achieves better throughput in one-to-four workload than
in one-to-one workload. Fig. 6(b) and 6(c) shows the CDF of single flow’s bandwidth
utilization, and we can learn that the network scale has little impact on the fairness of flows in
the same workload model. Therefore, we can conclude that OFPT has a good scalability.

4802 Liu et al.: OFPT: OpenFlow based Parallel Transport in Datacenters

one-to-one one-to-four
0.9

0.92

0.94

0.96

0.98

1

Different Topology

Th
ro

ug
hp

ut

FatTree

FatTree: k=4
FatTree: k=8

0 100 200 300

0.9

0.92

0.94

0.96

0.98

1

Rank of flow
C

D
F

FatTree

FatTree k=4
FatTree k=8

0 400 800 1200 1600

0.8

0.84

0.88

0.92

0.96

1

Rank of flow

C
D

F

Fat Tree

FatTree k=4
FatTree k=8

(a) Throughput (b) one-to-one workload (c) one-to-four workload

 Fig. 6. Throughput and bandwidth utilization distribution in k=4 and k=8 FatTree under one-to-one
workload and one-to-four workload

6.2.4 Flow Completion Time

While improving the throughput of datacenter network, OFPT also decreases flow completion
times by using the MRTF scheduling and distribute bandwidth for short flow first. We test the
FCT performance of OFPT in FatTree with k=8, and we set the link delay between server and
ToR switches to be 5ms, and the link delay between switches to be 1ms as in [18]. Fig. 7
shows the completion time of flows whose sizes are less than 100KB, 1MB, 10MB and
100MB under one-to-one workload, respectively. In our simulation scenario, the theoretical of
bisection bandwidth is 1Mbps, so the optimal transmission time is equal to the value of
average flow size dividing 1Mbps bandwidth.

No matter the flows are long or short, the AFCT in OFPT does not exceed the optimal value
by 10%. Specifically, for short flows, the AFCT in OFPT is only more than the optimal by 4%,
while TCP and ECMP increase by 84% and 60%, respectively. In addition, although MPTCP
promotes the throughput to 95.3%, it extremely affects the AFCT of short flows. For example,
the MPTCP with 8 subflows increases the AFCT of short flows (flow size is less than 100KB)
by 24.6% and 129% compared to TCP and the optimal respectively, and this outcome is not
unacceptable in datacenter. In summary, only OFPT can improve the throughput and decrease
AFCT at the same time.

Optimal TCP ECMPMPTCP(8) OFPT
0

0.4

0.8

1.2

1.6

2

2.4

2.8
100k workload

Routing Algorithm

FC
T(

s)

Optimal TCP ECMP MPTCP(8) OFPT

0

4

8

12

16

20

24

28

Routing Algorithm

FC
T(

s)

1M workload

Optimal TCP ECMP MPTCP(8) OFPT

0

50

100

150

200

250

300

Routing Algorithm

FC
T(

s)

10M workload

Optimal TCP ECMP MPTCP(8) OFPT

0

400

800

1200

1600

2000

Routing Algorithm

FC
T(

s)

100M workload

(a) FCT of 100KB (b) FCT of 1MB (c) FCT of 10MB (d) FCT of 100MB

Fig. 7. Flow completion time of TCP, ECMP, MPTCP and OFPT under one-to-one workload

6.2.5 Complexity of OFPT

To further verify the practicability of OFPT, we implement it in a testbed shown in Fig. 8 and
compare its performance with existing OpenFlow based scheme Hedera [11], which provides
a deep discuss on the control overhead. Note that the Global First Fit (GFF) is only measured
because Simulated Annealing is significantly more complex but does not provide much
performance gain. In the testbed, there are nine Lenovo PCs with 2-core Intel Core i5-3470
3.2GHz CPUs, 4GB of RAM and one 1TB 7200RPM HDD, which run Ubuntu 12.04.5 LTS

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4803

operating system. One PC works as controller, and other eight PCs play the role of end servers.
The OpenFlow switch is Pica8, and the bandwidth of each link is 1Gbps.We test the
performance of OFPT and Hedera with different load under web search workload, and use
average FCT, 95th percentile FCT and CPU utilization percent three metrics to present their
performance. Specifically, we use CPU utilization percent of controller to evaluate the
complexity of OFPT and Hedera, because their main functions are realized in the controller,
and we can conclude that OFPT is practicable if the CPU utilization percent of OFPT is less
than Hedera’s. The experimental results are shown in Fig. 9.

1

... ...

TOR
switch

Root
switch

host

3

2

4

4 servers 4 servers

Fig. 8. Testbed topology

FCT. From Fig. 9(a) and 9(b), we can learn that OFPT performs better than Hedera in both

average FCT and 95th percentile FCT. Specifically, OFPT provides 17% and 89.5% speedup
than Hedera in AFCT and 95th percentile FCT respectively, which means that OFPT can
realize better load balancing, i.e., each flow gets more transmitting bandwidth and thus suffers
small FCT. With load increasing, OFPT gets obvious performance improvement due to more
efficient bandwidth allocation algorithm than Hedera’s GFF, because GFF cannot guarantee
each flow getting the optimal transmitting path. Especially, OFPT obtains large performance
improvement in 95th percentile FCT, which is due to bandwidth allocation and SFMM
algorithm that can provide a better transmitting path for flows.

0.1 0.3 0.5 0.7 0.90

0.1

0.2

0.3

0.4

0.5

Load

Av
er

ag
e

FC
T(

s)

Web search workload

Hedera
OFPT

0.1 0.3 0.5 0.7 0.90

500

1000

1500

Load

95
-th

 F
C

T(
s)

Web search workload

Hedera
OFPT

0.1 0.3 0.5 0.7 0.90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Load

C
PU

(%
)

Web search workload

Hedera
OFPT

 (a) Average FCT (b) 95th percentile FCT (c) CPU utilization percent

Fig. 9. The performance of OFPT and Hedera in web search workload

CPU. From Fig. 9(c) we can see OFPT produces smaller overhead on the SDN controller

than Hedera overall, which means OFPT has better scalability and availability than Hedera.
The good performance of Hedera has been verified by [11], which manifests that OFPT can be
implemented in DCNs. When load=0.1, OFPT produces more overhead because OFPT
maintains path information and computes more excellent path for flows. However, OFPT does
not add more overhead on the controller because the CPU utilization of controller is less than
10%, thus OFPT is practicable. OFPT preinstalls flow tables for short flows, and it will
decrease plenty of overheads on the controller for installing flow tables for short flows. In Fig.

4804 Liu et al.: OFPT: OpenFlow based Parallel Transport in Datacenters

9(c), we can see the CPU utilization of controller is less than 43% in OFPT when load is heavy.
In all, OFPT achieves better performance as well as better scalability and availability.

6.2.5 Seamless flow migration mechanism

A. Experimental design

We employ iperf as our simulation tool and use a diamond topology shown in Fig. 10.
Furthermore, we set the link bandwidth to be 1 Mbps and the size of switch buffer to be 100
packets. In order to simplify the experiment, we adopt static routing mechanism.

We choose UDP flows as workloads to avoid the impact of TCP congestion control.
Simultaneously, we can easily derive the information about the packet loss and out-of-order
issues.

In practical, the bandwidth occupied by UDP flow is 1Mbps and this flow lasts 10s. The
flow delivers along the path <h1, S1, S3, S2, h2> in the first 5s, and then switches to the path
<h1, S1, S4, S2, h2> in the later 5s. If the flow migration process has no packet loss around the
5th second, we can deem that SFMM realizes seamless flow migration.

The configuration process of static routing is as follows. When the switch connects to the
controller, the controller installs two groups of flow entries in switch S1. The first group of
flow entries is from S1 to S3, while the second group is from S1 to S4. We set the priority of
the second group to be lower than the first group, so that the flow can transmit along the first
path, and we simultaneously set the timeout of the first group to be 5s and the timeout of the
second group to be 10s, so the flow will transmit along the second path due to timeout and the
deletion of the flow entries.

B. Experimental results

The experimental results are shown in Fig. 11. When we send a 1Mbps UDP flow in h1, the
throughput gets in h2 fluctuates between 964Kbps and 988Kbps, but there is no packet lost in
the time interval of 4.5s-5.5s. If the sending rate of the UDP flow decreases to 0.8Mbps in h1,
the throughput of h2 always is 800kbps and there is no packet lost in the experiment yet.
Therefore, we think SFMM can realize the seamless flow migration.

We repeat this experiment for 10 times by loading UDP flows with different sending rate,
and we find that SFMM can guarantee the flow migration without packet loss. However, there
are 2 runs that the flow suffers slight out-of-order (2 packets) issue. From the experimental
results, we find that the out-of-order issue is mainly caused by the buffered packets in the old
path. When the flow migrates to the new path, the packets in the new path may reach h2 ahead
of the packets buffered in the old path, and TCP can ideally deal with the slight disordered
packets.

Fig. 10. Experimental Topology Fig. 11. Throughput

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4805

7. Conclusion
This paper mainly focuses on solving the issues of low throughput and poor load balancing
existing in datacenters. We propose OFPT, which adopts the centralized control mechanism of
OpenFlow and makes use of the parallel paths in dense interconnection datacenter networks,
to allocate the traffic to all available paths. We also present a seamless flow migration
mechanism, which can guarantee the flow does not suffer any packet loss during flow
migration.

Both the theoretical analysis and experimental results show that OFPT can efficiently
improve the throughput and load balancing in DCNs. The experimental results also show that
OFPT increases the throughput up to 97.5% in both FatTree and VL2, which exceeds the TCP
and ECMP by 74.7% and 36% respectively. Besides, OFPT achieves better load balancing and
reduces AFCT. We also show that OFPT is scalable，both the network scale and network load
models have little impact on its performance. Therefore, OFPT effectively addresses the
datacenter TE issues. In the future work, we will devote to decrease the short flow completion
time with OpenFlow technology in datacenter.

References
[1] M. Al-Fares, A. Loukissas and A. Vahdat, “A scalable, commodity data center network

architecture,” in Proc. of SIGCOMM, pp. 63-74, August 17–22, 2008. Article (CrossRef Link).
[2] J. Mudigonda, P. Yalagandula, M. Al-Fares and J. C. Mogul, “Spain: Cots data-center ethernet for

multipathing over arbitrary topologies,” in Proc. of NSDI, pp. 265-280, April 28-30, 2010.
[3] A. Greenberg et al, “VL2: a scalable and flexible data center network,” in Proc. of SIGCOMM,

pp.51-62, August 17–21, 2009. Article (CrossRef Link).
[4] J. Cao, R. Xia, P. Yang, et al, “Per-packet load-balanced, low-latency routing for clos-based data

center networks,” in Proc. of CoNEXT, pp. 49-60, December 9-12, 2013. Article (CrossRef Link).
[5] A. Kabbani, B. Vamanan, J. Hasan, et al, “FlowBender: Flow-level adaptive routing for improved

latency and throughput in datacenter networks,” in Proc. of CoNEXT, pp.149-160, December 2–5,
2014. Article (CrossRef Link).

[6] A. Dixit, P. Prakash, Y. Hu and R. Kompella, “On the impact of packet spraying in data center
networks,” in Proc. of INFOCOM, pp. 2130-2138, April 14-19, 2013. Article (CrossRef Link).

[7] D. Zats, T. Das, P. Mohan, D. Borthakur and R. Katz, “Detail: reducing the flow completion time
tail in datacenter networks,” in Proc. of SIGCOMM, pp. 139-150, August 13–17, 2012.
Article (CrossRef Link).

[8] C. Raiciu, S. Barr´e, C. Pluntke, et al, “Improving datacenter performance and robustness with
multipath TCP,” in Proc. of SIGCOMM, pp.266-277, August 15–19, 2011.
Article (CrossRef Link).

[9] K. He, E. Rozner, K. Agarwal, et al, “Presto: Edge-based load balancing for fast datacenter
networks,” in Proc. of SIGCOMM, pp. 465-478, August 17–21, 2015. Article (CrossRef Link).

[10] M. Alizadeh, T. Edsall, S. Dharmapurikar, et al, “CONGA: Distributed congestion-aware load
balancing for datacenters,” in Proc. of SIGCOMM, pp. 503-514, August 17–22, 2014.
Article (CrossRef Link).

[11] M. Al-Fares, S. Radhakrishnan, B. Raghavan, et al, “Hedera: Dynamic flow scheduling for
datacenter networks,” in Proc. of NSDI, pp. 19-33, April 28-30, 2010.

[12] T. Benson, A. Anand, A. Akella and M. Zhang, “MicroTE: Fine grained traffic engineering for
datacenters,” in Proc. of CoNEXT, pp. 8-19, December 6–9, 2011. Article (CrossRef Link).

[13] N. McKeown, T. Anderson, H. Balakrishnan, et al, “OpenFlow: enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, March,
2008. Article (CrossRef Link).

http://dx.doi.org/doi:10.1145/1402958.1402967
http://dx.doi.org/doi:10.1145/1594977.1592576
http://dx.doi.org/doi:10.1145/2535372.2535375
http://dx.doi.org/doi:10.1145/2674005.2674985
http://dx.doi.org/doi:10.1109/INFCOM.2013.6567015
http://dx.doi.org/doi:10.1145/2377677.2377711
http://dx.doi.org/doi:10.1145/2043164.2018467
http://dx.doi.org/doi:10.1145/2829988.2787507
http://dx.doi.org/doi:10.1145/2740070.2626316
http://dx.doi.org/doi:10.1145/2079296.2079304
http://dx.doi.org/doi:10.1145/1355734.1355746

4806 Liu et al.: OFPT: OpenFlow based Parallel Transport in Datacenters

[14] S. Jain et al, “B4: Experience with a globally-deployed software defined WAN,” in Proc. of
SIGCOMM, pp.3-14, August 12–16, 2013. Article (CrossRef Link).

[15] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang and S. Lu, “BCube: a High
Performance, Server-Centric Network Architecture for Modular Datacenters,” in Proc. of
SIGCOMM, pp. 63-74, August 17–21, 2009. Article (CrossRef Link).

[16] Madry A, “Faster approximation schemes for fractional multicommodity flow problems via
dynamic graph algorithms,” in Proc. of the forty-second ACM symposium on Theory of computing,
pp. 121-130, May, 2010. Article (CrossRef Link).

[17] OpenFlow Switch Specification, Version 1.5.1. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/ope
nflow/openflow-switch-v1.5.1.pdf, 2015.

[18] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz and N. McKeown, “Reproducible Network
Experiments Using Container-Based Emulation,” in Proc. of CoNEXT, pp. 253-264, December
10–13, 2012. Article (CrossRef Link).

[19] Pox-carp. [Online]. Available: https://github.com/noxrepo/pox/.
[20] T. Benson, A. Akella and D. Maltz, “Network Traffic Characteristics of Datacenters in the Wild,”

in Proc. of IMC, pp. 267-280, November 1–3, 2010. Article (CrossRef Link).
[21] Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang and K. Xu, “A First Look at Inter-Datacenter Traffic

Characteristics via Yahoo! Datasets,” in Proc. of INFOCOM, pp. 1620-1628, April 10-15, 2011.
Article (CrossRef Link).

[22] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta and M.
Sridharan, “Datacenter TCP (DCTCP),” in Proc. of SIGCOMM, pp. 63-74, August 30–September
3, 2010. Article (CrossRef Link).

Bo Liu is currently a Ph.D. student at PLA University of Science and Technology. His
research interests include network measurement and monitor, performance evaluation,
software defined networking and datacenter network. E-mail: lbo.xidian@163.com

Bo Xu is currently an assistant-professor in the college of command information systems
at PLA University of Science and Technology, Nanjing, China. His research interests
include network measurement and software defined networking. Email:
xubo820@163.com.

http://dx.doi.org/doi:10.1145/2486001.2486019
http://dx.doi.org/doi:10.1145/1592568.1592577
http://dx.doi.org/doi:10.1145/1806689.1806708
http://dx.doi.org/doi:10.1145/2413176.2413206
http://dx.doi.org/doi:10.1145/1879141.1879175
http://dx.doi.org/doi:10.1109/INFCOM.2011.5934955
http://dx.doi.org/doi:10.1145/1851182.1851192

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 4807

Chao Hu is currently an assistant-professor in the college of command information
systems at PLA University of Science and Technology, Nanjing, China. His research
interests include peer-to-peer multimedia communications, network modeling and
software defined networking. E-mail: huchaonj@126.com

Hui Hu is currently a graduate student in the college of command information systems at
PLA University of Science and Technology. Her research interests include network
measurement and monitor, performance evaluation, software defined networking. E-mail:
huhui_email@126.com.

Ming Chen received the Ph.D. degree from Nanjing Institute of Communication
Engineering, China, in 1991. He is currently a professor in the college of command
information systems at PLA University of Science and Technology, Nanjing, China. He
held visiting position at Columbia University in 1999. He has published extensively in
network architecture, network measurement and monitor, performance evaluation,
distributed computing. E-mail: mingchennj@163.com

	3. Motivation
	4. Design Overview
	5. Details of OFPT
	5.1 Maximize the network throughput
	5.2 Scheduling and incremental update
	5.3 Seamless Flow Migration

	6. Performance Evaluation
	6.1 Methodology
	6.2 Experimental Results
	6.2.1 Impact of Different Routing Mechanisms
	6.2.2 Impact of Different workloads
	6.2.3 Impact of Network Scale
	6.2.4 Flow Completion Time
	6.2.5 Complexity of OFPT
	6.2.5 Seamless flow migration mechanism
	A. Experimental design
	B. Experimental results

	7. Conclusion
	References

