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Abstract 

 
Although the dense interconnection datacenter networks (DCNs) (e.g. FatTree) provide 
multiple paths and high bisection bandwidth for each server pair, the single-path TCP (SPT) 
and ECMP which are widely used currently neither achieve high bandwidth utilization nor 
have good load balancing. Due to only one available transmission path, SPT cannot make full 
use of all available bandwidth, while ECMP’s random hashing results in many collisions. In 
this paper, we present OFPT, an OpenFlow based Parallel Transport framework, which 
integrates precise routing and scheduling for better load balancing and higher network 
throughput. By adopting OpenFlow based centralized control mechanism, OFPT computes the 
optimal path and bandwidth provision for each flow according to the global network view. To 
guarantee high throughput, OFPT dynamically schedules flows with Seamless Flow Migration 
Mechanism (SFMM), which can avoid packet loss in flow rerouting. Finally, we test OFPT on 
Mininet and implement it in a real testbed. The experimental results show that the average 
network throughput in OFPT is up to 97.5% of bisection bandwidth, which is higher than 
ECMP by 36%. Besides, OFPT decreases the average flow completion time (AFCT) and 
achieves better scalability. 
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1. Introduction 

In the past decade, the Internet applications, computing and data storage are migrating to 
datacenters. Because mass data are stored in distributed circumstance, the data migration and 
some bandwidth-intensive applications (e.g. MapReduce) have triggered significant increase 
of inter-datacenter traffic. Some novel frameworks (e.g. FatTree [1]) have been presented to 
improve the connectivity and robustness of datacenter network, which engender multiple 
parallel transmission paths and high bisection bandwidth for each server pair. However, 
traditional TCP/IP architecture applies SPT, it makes some links congested while other links’ 
loads are very light, and the average bandwidth utilization is only 20%~30%. Therefore, how 
to improve the load balancing as well as the throughput of DCNs is an urgent problem in 
DCNs. 

Researchers have proposed many multipath transport schemes in DCNs to improve the load 
balancing, including flow-level schemes [1], [2], [3], packet-level schemes [4], [5], [6], [7] 
and flowlet (or flowcell)-level schemes [8], [9], [10]. Besides, Hedera [11] and MicroTE [12] 
have proposed centralized control mechanism in DCNs for improving the network throughput, 
and they proposed using OpenFlow [13] to improve the load balancing. By separating the 
control plane from data plane, OpenFlow enhances the instant management and provides 
fine-grained control on network resources distribution owing to the advantages of centralized 
control mechanism. Google firstly employs OpenFlow to reform its wide area network B4 [14] 
in 2010. After the reconstruction, the bandwidth utilization of B4 has increased from 
20%~30% to nearly 100%, and B4 has realized load balancing and differentiated services. 
Therefore, applying OpenFlow and multipath transport mechanism to solve the DCN traffic 
engineering (TE) issue is an appropriate choice. 

This paper targets on addressing the issues of DCNs via OpenFlow. There is serious packet 
disordering issue in packet-level schemes, which will seriously impair the user experience as 
well as the network throughput. Meanwhile, although flowlet-level scheme can efficiently 
improve datacenter’s throughput, it will add more overheads on OpenFlow controller as well 
as more flow tables on OpenFlow switches, which will impair the scalability of DCNs. 
Therefore, we believe flow-level scheme is more suitable in OpenFlow network. 
Unfortunately, the performance of existing OpenFlow based flow-level schemes is still far 
from the optimal for short of the consideration on current load of links or precise routing and 
scheduling. For example, Hedera and MicroTE adopt ECMP routing for short flows, which 
will hurt the performance of short flows. In this paper, we propose OpenFlow based Parallel 
Transport (OFPT) framework, a flow-level multipath transmission scheme to improve load 
balancing and network throughput. Referring to the idea of parallel computing, we regard the 
end-to-end traffic as a task, while the available bandwidth of transmission links is abstracted 
as the resource pool. The end servers just inject the traffic into the network, and the OpenFlow 
controller conducts the optimal allocation of network resource. More specifically, by 
maintaining the global network view, including the available bandwidth of each link, the 
sending rate and routing information of each flow, OFPT computes the optimal path and 
bandwidth provision for each flow. The controller updates the network view periodically and 
schedules flows to lighter paths with SFMM for better load balancing. The main contributions 
of this paper are as follows: 

1) We design OFPT framework, which has the following advantages: a) OFPT is a 
flow-level scheme, which can avoid packet disordering problem; b) OFPT adopts an accurate 
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routing algorithm, which can avoid flow collision that ECMP suffers; c) OFPT complies with 
the OpenFlow standards and does not need any modifications on switches, thus is easy to 
deploy; d) OFPT decreases FCT and increases the throughput as well. 

2) We present the mathematical model of OFPT and the corresponding algorithms of 
routing and scheduling, which makes DCN achieving better load balancing and higher 
throughput. 

3) We design the seamless flow migration mechanism, which can keep away from packet 
loss during flow rerouting. 

The remainder of this paper is organized as follows. In Section 2, we discuss the related 
work about TE issues in DCNs. We describe the motivation in Section 3 and the framework of 
OFPT in Section 4, and present the mathematical optimization model and the corresponding 
algorithms of OFPT in Section 5. In Section 6, we introduce our experimental methodology 
and results. Finally, our work is concluded in Section 7. 

2. Related Works 
DCNs have three main goals: increasing the bisection bandwidth for high network throughput, 
achieving good load balancing for the increase of bandwidth utilization, and decreasing the 
average flow completion time for improving user experience. To realize these goals, some 
novel structures of datacenter network are presented to increase the bisection bandwidth, and 
multipath transport schemes are employed for load balancing in the dense interconnection 
DCNs. Moreover, OpenFlow based software-defined networks (SDN) is introduced to the 
innovation of DCNs. 

Traditional DCNs generally adopt a hierarchical tree structure, which is composed of edge 
layer, aggregation layer and core layer. Racks of servers directly connect to top-of-rack 
switches (ToR switches) at the edge layer, and ToR switches connect to the aggregation 
switches (Agg switches) through a certain structure for bandwidth aggregation. Finally, 
aggregation switches connect to the core layer switches (Spine switches). This type of DCNs’ 
structure has many shortcomings. For example, due to the low connectivity, datacenter 
networks have a limited bisection bandwidth, and the robustness and scalability are far away 
from practical requirements. Some researchers try to design new DCN fabric to increase the 
DCN’s bisection bandwidth. These new datacenter fabrics can be divided into two classes: one 
is network-centric solution, in which the switches are only responsible for packet forwarding, 
such as FatTree and VL2; and the other is server-centric solution, such as BCube [15], in 
which the switches forward the packet and store some data as servers. The new DCNs have 
high connectivity among servers, so they efficiently increase the bisection bandwidth and 
improve the robustness. Fig. 1 shows the k=4 FatTree DCN topology. We can find that there 
are four parallel transmission paths between any two servers in different pods. 

Although there are multiple parallel paths between each server pair in dense interconnection 
datacenter networks, SPT only uses one path in data transmission and thus has a low 
throughput. Multipath transmission schemes have been proposed to solve this problem. ECMP 
[1] adopts random load balancing mechanism, in which each router chooses the next hop for 
each packet by hashing the five-tuple, including source/destination IP address, 
source/destination port number and the protocol of the transport layer. SPAIN [2] splits the 
multiple paths into different VLANs, and an offline network controller system pre-computes 
and pre-installs the transmission path for each flow. VL2 [3] adopt Valiant Load Balancing to 
spread traffic uniformly across network paths. However, none of them can fully utilize the 
bisection bandwidth for lack of precise routing and they are unaware of the current network 
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load. In DRB [4], for each outgoing packet, the source server selects one of the highest level 
switch (Spine switch) based on the measured latency introduced by the end-server network 
stack to be bouncing switch, and sends the packet to that switch. The bouncing switch then 
bounces the packet to the destination. FlowBender [5] is based on ECMP and uses 
end-host-driven rehashing to trigger dynamic flow-to-path assignment when detecting 
congestion. RPS [6] and DeTail [7] place the burden of load balancing the traffic upon the 
switches themselves at the packet level, which requires hardware changes at the switches and 
thus makes it hard to be deployed. Resorting to the multiple addresses servers, MPTCP [8] 
separates one (long) flow into multiple subflows and then delivers each subflow in different 
paths, and all subflows use a coupling congestion control algorithm. Presto [9] utilizes edge 
vSwitches to break each flow into flowcells, and distributes them evenly to near-optimally 
load balance the network. CONGA [10] splits TCP flows into flowlets, estimates real-time 
congestion on fabric paths, and allocates flowlets to paths with small load based on feedback 
from remote switches.  

 
Spine 
switch

Agg 
switch

TOR 
switch

Server

pod

 
 

Fig. 1. k=4 FatTree datacenter network topology 
  
The advent of OpenFlow based SDN fabric provides a new way to solve the datacenter 

issues, such as TE, flexibility, robustness and rapid configuration. Compared with TCP/IP 
architecture, SDN adopts a centralized control mechanism, in which the logical control 
functions and the high-level network policy are accomplished by the controller, and the 
controller maintains the flow table structure on OpenFlow switches. In the OpenFlow network, 
packets are forwarded according to the flow tables, while the generation, maintenance and 
configuration of flow tables are implemented by the central controller. The improvement of 
Google’s datacenter B4 via OpenFlow demonstrates that it is feasible to achieve better traffic 
scheduling through centralized control mechanism, and Hedera [11] and MicroTE [12] have 
also shown the OpenFlow based global resource allocation scheme can efficiently increase the 
network throughput. 

3. Motivation 
In this section, we introduce some key observations in achieving high throughput in high 
connectivity network topology. As shown in Fig. 2, each link’s bandwidth is 100Mbps. There 
are four flows transmitting from h1 to h2, and the size of flows is shown in Table 1. We use 
four different routing schemes in the example, which are SPT, ECMP, MPTCP and the 
optimal routing scheme, respectively. The routing is shown in 2(a)~2(d), and correspondingly 
optimal scheduling (short job first, SJF) are shown in 2(e)~2(h). In MPTCP, we just divide the 
flows which size is more than 50Mb into two subflows due to only two paths between the 
server pair in our example. 
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Table 1. flows’ size used in example 
Flow number f1 f2 f3 f4 

Size (Mb) 20 80 60 40 
 

    

(a) Routing with SPT (b) Routing with 
ECMP 

(c) Routing with 
MPTCP 

(d) Optimal routing 
(OR) 

    
(e) Scheduling for SPT (f) Scheduling for 

ECMP 
(g) Scheduling for 

MPTCP (h) Scheduling for OR 

Fig. 2. An explanatory example, where (a)~(d) indicate different routing schemes, and (e)~(h) 
indicate the optimal scheduling schemes for (a)~(d). 

 
The first observation is that multipath transport scheme is more efficient than SPT in 

improving throughput and decreasing flow completion time. We can learn from Fig. 2(e)~Fig. 
2(h) that SPT has the lowest throughput in four schemes, and especially its throughput is only 
half of the optimal, while ECMP and MPTCP achieve 83.3% and 90.9% of the optimal, 
respectively. What’s more, the FCT of f2 is 2s in SPT while 1s in OR, and the FCT is 1.2s in 
both ECMP and MPTCP, so we can conclude that multipath transport scheme can efficiently 
decrease FCT.  

The second observation is that global optimization is more efficient than distributed control. 
We can learn from Fig. 2(f) and Fig. 2(h) that ECMP gets only 83.3% of the optimal scheme 
in throughput. Moreover, the throughput in ECMP only achieves 50% of the optimal when the 
four flows route on S1→S2→S4 (or S1→S3→S4) at the same time due to random hashing. 

The third observation is that both routing and scheduling are demanded and they should be 
integrated in improving throughput and decreasing FCT. We can learn that routing is essential 
for improving the network throughput and load balancing from Fig. 2(f) to Fig. 2(h). If we 
schedule long flow first (LFF), the FCT of f1 and f2 in Fig. 2(h) will be 1.0s and 0.8s 
respectively, but they are 0.2s and 1.0s in the optimal scheduling, which demonstrates the FCT 
of f1 will increase by 400% in LFF. Therefore, scheduling is also essential in DCNs. MPTCP 
achieves better throughput and load balancing than ECMP, but it also impairs some short 
flow’s FCT. For example, f4 should be scheduled before f3 based on SJF, but it is scheduled 
later than f3 in MPTCP, which results in the increase of f4’s FCT (the FCT of f4 in ECMP is 
0.4s while is 0.7s in MPTCP).  

In conclusion, we should integrate centralized control mechanism, multipath transport, 
precise routing and scheduling in improving the throughput of DCNs. In our example, the 
highest throughput and the minimal FCT can be achieved by combining the optimal multiple 
transport scheme, routing and scheduling in Fig. 2(d) and Fig. 2(h). We design OFPT 
framework to accomplish this target. 
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4. Design Overview 
OFPT aims at optimally decomposing the traffic on all available paths to improve the network 
throughput. Specifically, for each flow OFPT determines which path carries it, when to start it 
and how much bandwidth should be allocated for it. Therefore, OFPT needs to perceive the 
load and available bandwidth of each link, and it also requires more detail of each flow, such 
as size and sending rate. OFPT assumes that the information about each flow can be derived 
from the upper layer applications or using the state-of-the-art prediction techniques, and it 
mandates that flows less than 100KB are considered as short flows. The key ideas of OFPT 
are: 

To achieve scalability, OFPT mainly orchestrates long flows, while short flows are treated 
as background traffic. To decrease short flows completion time (SFCT), background traffic is 
transmitted along the preinstalled flow tables installed by controller, which can overleap the 
extra RTTs for installing flow tables. OFPT installs flow tables for short flows based on 
server-lever load balancing. 

We describe the OFPT framework in algorithm 1, which is invoked whenever a new flow 
comes, an existing flow finishes or the pooling time is up. In more details, when a new flow 
comes, OFPT is triggered to compute the routing and bandwidth provision for it. When an 
existing flow finishes and the bandwidth is released, OFPT is also triggered to determine 
which flow uses the available bandwidth. To decrease AFCT, OFPT uses the well-known 
minimum remaining time first (MRTF) as the scheduling policy. Furthermore, OFPT carries 
out a periodic polling operation to improve the load balancing. 

 
Algorithm 1: The OFPT Framework 
Input:  

Fc←{fauc}/* all uncompleted flows*/ 
Rc←{(pfi, bfi)},  fi∈Fc/* current routing*/ 

Output:  
         Fu /* updated flows set*/ 
         Ru /* updated routing*/       

1: while Fc≠Ø  do 
2:      Ru=Maximize_Throughput(Fc, Rc) /*compute the maximum  throughput 

     for each flow, and the routing and bandwidth provision */                                                  
3:      Scheduling(Ru) 
4: end while 
5: return Fu, Ru 

 
In algorithm 1, all the (long) flows which are uncompleted are put into the flow set Fc as the 

optimization object. We regard the Fc and the current routing set Rc as the input, and OFPT will 
compute the transmission path, bandwidth provision and sending order for each flow in Fc. 
There are two key issues that OFPT has to address, one is to allocate the maximum bandwidth 
provision for each flow, and the other is to realize transparent flow rerouting for end server. 
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5. Details of OFPT 
In this section, we will present the key algorithms of OFPT. Firstly, we present the 
mathematical model of OFPT in 5.1, and then give the bandwidth distribution algorithm. In 
5.2, we present the scheduling and incremental update algorithms, and we design the Seamless 
Flow Migration Mechanism in 5.3. 

5.1 Maximize the network throughput 
We use directed graph G = (V, E) to describe the network model. We assume that the network 
is composed of a set of nodes V, and they connect to each other with a set of directed links E. 
Moreover, f(e) and c(e) represent the current traffic and the link capacity of link e (e∈E), 
respectively, and NH(u, d) denotes the set of next hop nodes from u to d. 

Given two servers s and d, all path <s,u0,…uk, d> from the source server s to the destination 
server d will be termed as reachable path if (uj-1,uj)∈E and {uj}=NH(uj-1，d) for j=1,2, …,k, 
and the set of reachable paths between s and d is denoted by Psd. Besides, let Wsd represent the 
bisection bandwidth between s and d. 

Optimization target 1: Optimal Load Balancing 

The first target of OFPT is to improve the load balancing, which is to decrease the 
bandwidth utilization θ of a given link, i.e., we prefer to put more traffic on the lightest link 
first. We describe this purpose of traffic decomposition as the following optimization problem. 

minimize θ　  
Subject to 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )0
sd

sd sd
e p

sd sd
p P

sd

x p f e c e e E p P

x p W i V d V

x p p
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∈
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where xsd(p) denotes the traffic constituent on the path p from s to d.  
The first constraint condition demonstrates that the sum of the existing traffic f(e) and all 

new arriving traffic portion xsd(p) on link e must be less than the product of the maximum link 
utilization θ and the capacity of the link c(e). The second constraint condition means that the 
total arriving traffic cannot exceed the bisection bandwidth Wsd, and the third constraint 
condition is to ensure the non-negative characteristic. 
Where xsd(p) denotes the traffic constituent on the path p from s to d.  

Optimization target 2: Maximize Throughput 

The second target of OFPT is to improve the network throughput, i.e., improving the 
utilization λ of a given bisection bandwidth. We introduce the following optimization problem 
to describe the goal of traffic decomposition. 

maximize λ　  
Subject to 

( ) ( ) ( ) ( ) ( )

( ) ( )
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sd
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where xsd(p) denotes the traffic constituent on the path p from s to d, and b(e) represents the 
available bandwidth of link e.  

The first constraint condition indicates that the sum of the existing traffic f(e) and all new 
arriving traffic xsd(p) on link e must be less than the capacity of the link c(e). The second 
constraint condition means that the total arriving traffic cannot exceed the product of the 
maximum link utilization λ and the bisection bandwidth Wsd, and the third constraint condition 
ensures that the flow on any path is non-negative. 

OFPT aims to minimize the bandwidth utilization of each link in the network for the given 
traffic, which is equivalent to keeping the capacities of the link fixed but scale the injected 
traffic. Therefore, the optimization target 1 is in accordance with the optimization target 2 in 
nature, and we choose optimization model 2 as our optimization model of traffic 
decomposition. In this model, we assumed that values f(e) and Wsd are known, but OFPT needs 
to update their values based on instant workload. Fortunately, both f(e) and Wsd are easy to 
calculate because OFPT can be easy to get each flow’s information in OpenFlow network. 
Although the problem is a NP-complete problem and has an exponential number of variables, 
we can solve the problem with a primal-dual algorithm. 

We introduce dual variables l(e) for constraint (4) and zsd for constraints (5), where l(e) is 
the cost of link and zsd is the path with the lightest load from s to d. The dual can be written as 

( ) ( )
e E

minimize b e l e
∈
∑　  
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( ) ( )
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 Let Lsd denote the lightest path from s to d which use the link cost l(e) of e. The dual can now 

be rewritten as 
( ) ( )

e E
minimize b e l e

∈
∑　  
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( )

( ) ( )

1

0

sd sd
s V d V

W L

l e e E
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In other words, given any non-negative set of link costs l(e),  
( ) ( ) / sd sde E s V d V

b e l e W L
∈ ∈ ∈∑ ∑ ∑  is the upper bound of the dynamic routing problem. We use 

Fully Polynomial Time Approximation Scheme (FPTAS) to solve this problem, which is 
simple to implement and runs significantly faster than a general linear programming solver in 
OFPT. 

FPTAS provides the following performance guarantees: for any 0ε > , the solution has 
objective function value within ( )1 ε+ − factor of the optimal, and the running time is at most a 
polynomial function of the network size and 1/ ε . FPTAS in our case is a primal dual 
algorithm, and we implement some optimization on FPTAS to decrease the running times via 
dynamic graph algorithms [16]. We optimize the primal dual algorithm with the following 
approaches. 

1)  In the FatTree network, given an arbitrary feasible traffic matrix, if a routing algorithm 
can evenly spread the traffic xij from server i to server j among all the possible uplinks at every 
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layer, then all the links, including all the downlinks, are not overloaded, which has been 
verified in [4]. Moreover, for FatTree network, once the spine switch is chosen, the routing 
path from the source to the destination is decided without ambiguity. Therefore, we just need 
to precisely compute the routing from the source server to the spine switch, thus it decreases 
the running time of the algorithm. For VL2, we can also generalize the similar conclusion 
according to the related algorithm presented in [4]. 

2) OFPT maintains path information in the controller, which can provide all path 
information for a flow directly rather than compute everything from scratch. For any s d→ , 
the path information is expressed as { }1 2: , :,sd aP B path b path b← , where Ba represents the 
available bandwidth of the heaviest load path in Psd, while b is the available bandwidth of a 
given path. By using path information, we only compute the multipath only once for a given 
ToR switches pair.  

The primal dual algorithm for our problem works as follows: The algorithm first computes a 
value δ  that is the function of the desired accuracy level ε  and the number of switch n, then 
get all uncompleted flows sdF  sorted according to MRTF in ascend order and computes all 
available paths Psd for a given s d→ . In each primal phase 

f
w∑ units of flows are routed 

along a path p until 0b∆ < , where p ab b B∆ = −  and aB is the available bandwidth of the 
heaviest path in Psd. This process of augmenting flow and updating the dual length is repeated 
until the problem is dual feasible. More details of the algorithm are given in algorithm 2. 

 
Algorithm 2: Maximize_Throughput (Fc, Rc) 
Input:  Fc, Rc 
Output: λ, Fc, Rc //updated flow and routing information 
1: ( ) ( )( )1/1 / 1 n θδ ε ε= + +  where ( )1θ ε ε= +  
2: LD δ← , ( )l e e Eδ← ∈　 , ( ),sdR s dφ← ∀　  
3: for s d→  s V∀ ∈ , d V∈ do 
4:      while 1LD <  do  
5:          { }:sd fF f w←  /* sort flows according to MRTF in ascend order*/ 
6:          [ ] [ ]{ }1 2, : , , : ,sd aP B path b b path b b← ∆ ∆ ,   ,sd p sdW b p P← ∀ ∈∑  
7:           for path p in Psd do 
8:               ab b B∆ ← −  
9:                while 0b∆ ≥  do 
10:                      Augment flows fw∑ along the path p until 0b∆ <  
11:                     sd sd fB B w← + ∑  
12:                      for each link e in p do. ( )( ) ( )(1 / )fl e l e w c ee← + ∑  
13:                      for each link e in p do. ( ) ( ) fb e b e w← − ∑  
14:                     ( ) ( )LD b e l e← ∑ , a fB b w← − ∑                      
15:                end while 
16:            end for 
17:      end while 
18: end for 
19: return Ru, u sdF F←  
22   output: ( )max /sd sdB Wλ = , uF  
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This algorithm follows the same vein in [16], and the time complexity of the algorithm 
is ( )2 logO mn mε − , where m is the number of links, and the final flow is a 

( )1 3ε− -approximation to the optimal flow. In each iteration, algorithm 2 computes 
near-optimal routing and the corresponding bandwidth provision for each flow to maximize 
the throughput of the whole network. Unlike the algorithm in [16], the computation is 
organized on ToR pair rather than server pair, and we use precise path information for these 
grouped flows instead of a random path set. More important, we distribute many flows on 
multipath at the same time complexity based on the path information, which is totally different 
from finding admissible pair algorithm in [16]. 

5.2 Scheduling and incremental update 

Although algorithm 2 has calculated the optimal path and corresponding bandwidth provision 
for all uncompleted flow, it is hard to implement the new routing immediately because the 
controller cannot install flow tables for all flows at the same time. Installing flow table for 
MRTF flows firstly is a basic principle for decreasing FCT, which provides a guide for us to 
enforce routing update. However, this principle cannot help us to accelerate the process of 
(re)routing. Therefore, we introduce incremental update and flow aggregation mechanisms to 
decrease the (re)routing time, and these two mechanisms can decrease the number of flow 
tables which can strengthen the scalability of this scheme. More specifically, when we install 
flow tables for the flows in Ru, we firstly remove the flow from Ru for which their routings 
unchanged, i.e., we only update the incremental routing, and we call this mechanism as 
incremental update. Moreover, we aggregate some flows which have part of or entire overlap 
path into a new flow. We put incremental routing information into { } oR∆ and { } nR∆ , where 
{ } 0R∆ is the set of flows which are already in network, while { } nR∆  represents the new flows. 
For routing information in { } 0R∆ , we need to execute flow rerouting with SFMM, while we 
just need to install flow table in { } nR∆ . More details are shown in algorithm 3. 
 

Algorithm 3: Scheduling and incremental update 
Input:  Rc，Ru 
Output:   Ru 
1: { } u cR R R∆ ← − /*{ }R∆ : incremental update routing information*/ 
2: classify { }R∆  into { } 0R∆ and { } nR∆  /* { } 0R∆ is the set of flows which are 

already in network, while { } nR∆  represents the new flows*/ 
3: sort all the flows in { } 0R∆  according to their remaining FCT in descend order 
4: for  f  in { } 0R∆  do 
5:       Rerouting_flow(f) /* implemented with seamless flow migration mechanism*/ 
6: end for 
7: sort all the flows in { } nR∆  according to their remaining FCT in ascend order 
8: for  f  in { } nR∆  do 
9:       Install path for f 
10: end for 
11: return c uR R←  
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In algorithm 3, we prefer to reroute the flow with large remaining FCT in  { } 0R∆  or with 
small remaining FCT in { } nR∆  first to decrease AFCT. 

5.3 Seamless Flow Migration 
To guarantee that the flow transmission will not be disrupted and suffer any packet loss during 
flow rerouting, we introduce the seamless flow migration mechanism, which can realize 
transparent rerouting for end servers. In OpenFlow networks, the essence of flow rerouting is 
that the controller installs a new path for the flow. In OpenFlow specification v1.5.1 [17], the 
flow will choose the flow entry with higher priority when it simultaneously matches two flow 
table entries. Therefore, when we carry out flow migrating, we can build a new path by 
installing the flow entry with lower priority, and then delete the old flow entry to realize 
seamless flow migration. More details are shown in algorithm 4. 

 
Algorithm 4: Seamless Flow Migration 
1: for  f  in { } 0R∆  do 
2:    compute(new_path); new_path is lower than that of old_path*/ 
3:    find cutover_switch(new_path, old_path); 
4:    find bottleneck link e 
5:    while e do 
6:    find(sw∈cutover_switch);/*sw is migration switch before bottleneck link*/                                            
7:         delete flow table of old_path in sw; 
8:    end while 
9: end for 

 
We illustrate the flow migration algorithm with an example. Fig. 3 shows a VL2 datacenter 

network topology, and there is a flow transmitting from s to d. Now the flow is going to 
migrate to a new path <s,3,4,1,9,10,d> from the path <s,3,2,1,7,10,d>, and the cutover switch 
set will be {3,1,10}. When we install the flow entries in the cutover switch set for the new path, 
we must ensure that the priority of the new flow entries is lower than that of the old flow 
entries, which is to prevent the new flow table from disrupting the data transmission, because 
it is unable to install all flow entries simultaneously. The controller should wait till all flow 
table entries are installed, and then execute the flow migration algorithm.  

 
1 6

2 4 97

3 5 8 1
0

s d

Spine 
switch

Agg 
switch

TOR 
switch

Server
 

Fig. 3. VL2 datacenter network 
 
During flow migration, the flow entries in the bottleneck link should be deleted firstly to get 

away from the congestion quickly. Regard to the other flow table entries, we adopt passive 
method, i.e., the flow table will be deleted automatically because of timeout. For example, if 
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the link between switch 1 and switch 7 is the bottleneck, we will preferentially remove the old 
flow entries from 1 to 7. In this migration mechanism, there always has at least one available 
path during the migration, and none of packets will be lost, so the flow migration is transparent 
for the end servers. 

6. Performance Evaluation 
We evaluate the performance of OFPT in Mininet [18] emulator. Mininet is a high-fidelity 
network emulation framework built on Linux container based virtualization, which creates a 
virtual network, switches and application code on a single machine. Its scale is smaller than 
production data center networks due to the single-machine CPU limitation (tens of Mbps link 
bandwidth compared to 1Gbps). Mininet has been shown to faithfully reproduce 
implementation results from [11], [8] with high fidelity [18], and has been used as a flexible 
testbed for networking experiments [3]. We realize OFPT on POX-carp [19] controller system. 
Moreover, both FatTree and VL2 are selected as the datacenter topology in our simulation, and 
we compare the performance of OFPT with TCP, ECMP and MPTCP under the same 
workloads which abide by the typical datacenter traffic patterns. In order to improve the 
accuracy of the experiment, each set of experiment runs for 10 runs lasting 200s, and we 
choose the average value as the experimental results. 

6.1 Methodology 
A. Topology 

We set up the parameters of our test topologies according to [18], and the experimental 
scenarios are set as follows. 
 k=8 FatTree. There are 128 servers and 80 switches, and each ToR switch connects with 4 

servers, and the maximum parallel transmission path for each end-to-end connection in 
different pods is 8. We set the switch port buffer is 100 packets, and the link bandwidth 
between server and switch is 1Mbps and the link bandwidth between switches is 2Mbps. 

 k=4 FatTree. There are 16 servers and 20 switches, and each ToR switch connects with 2 
servers, and the maximum parallel transmission path for each end-to-end connection in 
different pods is 4. We set the switch port buffer is 100 packets, and the link bandwidth is 
1Mbps. 

 d0=2，d1=4，d2=4 VL2, where d0，d1 and d2 present the number of 10Gbps Ethernet 
ports in each ToR switch, aggregation switch and spine switch, respectively. There are 80 
servers and 10 switches, and each ToR switch connects with 20 servers, and the 
maximum parallel transmission path for each end-to-end connection in different pods is 4. 
We set the switch port buffer is 100 packets, and the link bandwidth between server and 
switch is 1Mbps and the link bandwidth between switches is 10Mbps. 

B. Benchmark workloads 

 Both [20] and [21] found that the traffic at the datacenter edge can be characterized by 
ON-OFF patterns, and the ON and OFF periods, and packet interval time draw from 3 
different log normal processes, thus the traffic follows a heavy tailed distribution and bursty. 
We consider one flow size distribution from a cluster running web search [22], and the 
workloads exhibit heavy-tailed characteristics with a mix of small and long flows. In the web 
search workload, over 95% of the bytes are from 30% of flows larger than 1MB. In our 
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experiments, we use iperf traffic generation tool to generate ON-OFF flows on each server 
which abides by the traffic pattern above.  

C. Communication model 

In datacenters, the communication pattern between servers includes one-to-one, 
one-to-multi and all-to-all communication models [1], [3], [8], [19]. 
 One-to-one communication. One server only communicates with another server at the 

same time, and we use Stride(N/2) scheme as in [11]. In this scheme, a server with 
index x sends to the server with index (x+N/2) mod N, where N is the total number of 
servers. 

 One-to-multi communication. One server communicates with multiple servers at the 
same time, and these servers are selected randomly. 

 All-to-all communication. One server simultaneously communicates with all other 
servers, and the representative is Map-Reduce. 

D. Schemes Compared 

1) TCP：Standard TCP-New Reno is used as the baseline of our evaluation. The initial 
window is set to 12KB, and switches use DropTail queues with a buffer size of 100 
packets. These are standard settings used in many studies [1]. 

2) ECMP：We use standard ECMP algorithm [1]. Other parameters are same as TCP. 
3) MPTCP: We use standard MPTCP algorithm [8], and the number of subflow is 

determined by the number of available path. Other parameters are same as TCP.  
4) OFPT：Our design is described in section 5，and we use TCP-New Reno in servers. 

Other parameters are same as TCP. We set the pooling time to be 5s. 
Metrics: We use throughput and fairness to evaluate the performance of OFPT. The 

throughput is calculated by flowB
Bisection Bandwidth　

, where flowB is the throughput of the flow, 

and Bisection Bandwidth is the available bandwidth provided by network. Fairness is not an 
abstract concept for many distributed applications; for example, when a search application is 
distributed across many machines, the overall completion time is determined by the slowest 
machine. Hence worst-case performance matters significantly. 

6.2 Experimental Results 
6.2.1 Impact of Different Routing Mechanisms 

We firstly test the performance of OFPT in one-to-one workload, and compare it with TCP, 
ECMP and MPTCP. Fig. 4 presents the average throughput and CDF of single flow bisection 
bandwidth utilization in both k=8 FatTree and VL2 under different routing mechanisms. 

Throughput Fig. 4(a) and 4(b) show the throughput of TCP, ECMP, MPTCP (the number 
of subflow is from 2 to 8, and we use 2 to represent the MPTCP with 2 subflows) and OFPT in 
k=8 FatTree and VL2. We can learn that OFPT achieves the highest throughput in both FatTree 
and VL2. The performance of MPTCP depends on the number of subflow, and more subflows 
lead to higher throughput, which has been verified in [4] and [19]. Specifically, the throughput 
achieves 92.3% with 8 subflows, while 62.7% with 2 subflows in FatTree. In contrast, the 
throughput of OFPT is 98.1%, which is more than that of MPTCP with 8 subflows by 5.8%. 
Because only one path is available, the performance of TCP is rather poor, and just 43.5% of 
the bisection bandwidth can be utilized. ECMP also performs worse than OFPT due to its 
random hashing collisions, and its throughput is less than 67.5%. Due to only 4 paths existing 
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between each server pair in VL2, the number of subflow we select in MPTCP is less than 4. 
We get the similar conclusion that OFPT can efficiently improve the network throughput. 
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Fig. 4. Throughput and bandwidth utilization distribution in k=8 FatTree and  
VL2 under different routing mechanisms 

 
Fairness Fig. 4(c) and 4(d) show the bandwidth utilization of each flow with TCP, ECMP, 

MPTCP and OFPT in FatTree and VL2 respectively. Every flow’s throughput is shown in 
ascend order. It is clear that both the bandwidth utilization and the fairness are improved in 
OFPT. In TCP, only few flows perform well, and the bisection bandwidth obtained by many 
flows is less than 0.5. ECMP performs better than TCP, but it still cannot make full use of all 
available bandwidth, and more than 23% flows’ throughput are less than 0.5. In MPTCP with 8 
subflows, more than 95.3% MPTCP flows utilize at least 0.8 of the bisection bandwidth, and 
none of them is less than 0.7. Compared with the other methods, OFPT achieves the best 
performance, and the throughput of each flow is higher than 0.9 in both FatTree and VL2.  

In conclusion, OFPT can efficiently improve the throughput and fairness in both FatTree 
and VL2 under one-to-one communication model. We also find that each routing algorithm 
achieves better throughput in VL2 than in FatTree. It is VL2 that use a 10Mbps link among 
switches which coped with more bursty traffic, and this conclusion has also been shown in [4]. 

6.2.2 Impact of Different workloads 

In order to verify the performance of OFPT in different communication patterns, we test the 
performance of OFPT under different workload in this section. Due to the CPU limitation, we 
test OFPT in k=4 FatTree, and we choose four communication workloads, i.e., one-to-one, 
one-to-two, one-to-four and all-to-all in our experiment. The experimental results are shown in 
Fig. 5. 

Throughput Fig. 5(a) presents the throughput of OFPT under four different workloads, and 
we can learn that OFPT efficiently improve the network throughput in all workload models. 
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More specifically, OFPT achieves more than 0.97 throughput in every workload, and it even 
achieves 0.989 in all-to-all workload. 

In contrast to one-to-one workload, one-to-n workload achieves better throughput, where n 
represents the number of servers that each source server communicates with. In one-to-n 
workload, there are n flows competing for the link bandwidth between the server and its ToR 
switch, so each flow can only get 1/n of the link bandwidth. Therefore, the transmitting 
bandwidth of each flow is smaller in one-to-n than in one-to-one workload. As OFPT adopt 
flow-level flow scheduling mechanism, smaller flows can achieve better performance on load 
balancing, and the throughput is improved as well. This conclusion is in accordance with the 
experimental results. 
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Fig. 5. Throughput and bandwidth utilization distribution of OFPT in k=4 FatTree under four 
different workloads 

 
Fairness Fig. 5(b) presents the bandwidth utilization distribution of OFPT under four 

different workloads. In general, OFPT achieves good fairness in each workload, and the least 
throughput of single flow is still more than 0.838, while more than 98% flows reach 0.9 in our 
experimental results. However, in one-to-n workload, the fairness becomes worse with the 
increase of n. For example, the least bandwidth utilization is 0.965 in one-to-one workload, 
while the least bandwidth utilization is 0.838 in all-to-all workload. From the experimental 
results, we think that the number of flows in all-to-all workload is several times of that in 
one-to-one workload, and the number of flow assigns to each link is also increasing, which 
results in more congestion and thus some flows’ throughput decreases. Although the fairness 
becomes slightly worse in all-to-all workload, the average throughput is still improved. 
Therefore, OFPT is still excellent in one-to-n workload. 

6.2.3 Impact of Network Scale 

In order to evaluate the scalability of OFPT algorithm, we test the performance in both k=4 and 
k=8 FatTree under one-to-one workload and one-to-four workload. Fig. 6 shows the 
experimental results under different parameters.  

Fig. 6(a) shows the throughput in different topologies and workloads. We can learn that 
OFPT achieves good throughput in both k=4 and k=8 FatTree, where their throughput is both 
more than 0.97. Furthermore, OFPT achieves better throughput in one-to-four workload than 
in one-to-one workload. Fig. 6(b) and 6(c) shows the CDF of single flow’s bandwidth 
utilization, and we can learn that the network scale has little impact on the fairness of flows in 
the same workload model. Therefore, we can conclude that OFPT has a good scalability. 
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 Fig. 6. Throughput and bandwidth utilization distribution in k=4 and k=8 FatTree under one-to-one 
workload and one-to-four workload 

6.2.4 Flow Completion Time 

While improving the throughput of datacenter network, OFPT also decreases flow completion 
times by using the MRTF scheduling and distribute bandwidth for short flow first. We test the 
FCT performance of OFPT in FatTree with k=8, and we set the link delay between server and 
ToR switches to be 5ms, and the link delay between switches to be 1ms as in [18]. Fig. 7 
shows the completion time of flows whose sizes are less than 100KB, 1MB, 10MB and 
100MB under one-to-one workload, respectively. In our simulation scenario, the theoretical of 
bisection bandwidth is 1Mbps, so the optimal transmission time is equal to the value of 
average flow size dividing 1Mbps bandwidth.  

No matter the flows are long or short, the AFCT in OFPT does not exceed the optimal value 
by 10%. Specifically, for short flows, the AFCT in OFPT is only more than the optimal by 4%, 
while TCP and ECMP increase by 84% and 60%, respectively. In addition, although MPTCP 
promotes the throughput to 95.3%, it extremely affects the AFCT of short flows. For example, 
the MPTCP with 8 subflows increases the AFCT of short flows (flow size is less than 100KB) 
by 24.6% and 129% compared to TCP and the optimal respectively, and this outcome is not 
unacceptable in datacenter. In summary, only OFPT can improve the throughput and decrease 
AFCT at the same time. 

 

Optimal TCP ECMPMPTCP(8) OFPT
0

0.4

0.8

1.2

1.6

2

2.4

2.8
100k  workload

Routing Algorithm 

FC
T(

s)

 
Optimal TCP ECMP MPTCP(8) OFPT

0

4

8

12

16

20

24

28

Routing Algorithm 

FC
T(

s)

1M  workload

 
Optimal TCP ECMP MPTCP(8) OFPT

0

50

100

150

200

250

300

Routing Algorithm 

FC
T(

s)

10M workload

 
Optimal TCP ECMP MPTCP(8) OFPT

0

400

800

1200

1600

2000

Routing Algorithm 

FC
T(

s)

100M workload

 
(a) FCT of 100KB (b) FCT of 1MB (c) FCT of 10MB (d) FCT of 100MB 

Fig. 7. Flow completion time of TCP, ECMP, MPTCP and OFPT under one-to-one workload 

6.2.5 Complexity of OFPT 

To further verify the practicability of OFPT, we implement it in a testbed shown in Fig. 8 and 
compare its performance with existing OpenFlow based scheme Hedera [11], which provides 
a deep discuss on the control overhead.  Note that the Global First Fit (GFF) is only measured 
because Simulated Annealing is significantly more complex but does not provide much 
performance gain. In the testbed, there are nine Lenovo PCs with 2-core Intel Core i5-3470 
3.2GHz CPUs, 4GB of RAM and one 1TB 7200RPM HDD, which run Ubuntu 12.04.5 LTS 
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operating system. One PC works as controller, and other eight PCs play the role of end servers. 
The OpenFlow switch is Pica8, and the bandwidth of each link is 1Gbps.We test the 
performance of OFPT and Hedera with different load under web search workload, and use 
average FCT, 95th percentile FCT and CPU utilization percent three metrics to present their 
performance. Specifically, we use CPU utilization percent of controller to evaluate the 
complexity of OFPT and Hedera, because their main functions are realized in the controller, 
and we can conclude that OFPT is practicable if the CPU utilization percent of OFPT is less 
than Hedera’s. The experimental results are shown in Fig. 9. 
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Fig. 8. Testbed topology 

 
FCT.  From Fig. 9(a) and 9(b), we can learn that OFPT performs better than Hedera in both 

average FCT and 95th percentile FCT. Specifically, OFPT provides 17% and 89.5% speedup 
than Hedera in AFCT and 95th percentile FCT respectively, which means that OFPT can 
realize better load balancing, i.e., each flow gets more transmitting bandwidth and thus suffers 
small FCT. With load increasing, OFPT gets obvious performance improvement due to more 
efficient bandwidth allocation algorithm than Hedera’s GFF, because GFF cannot guarantee 
each flow getting the optimal transmitting path. Especially, OFPT obtains large performance 
improvement in 95th percentile FCT, which is due to bandwidth allocation and SFMM 
algorithm that can provide a better transmitting path for flows. 

 

0.1 0.3 0.5 0.7 0.90

0.1

0.2

0.3

0.4

0.5

Load

Av
er

ag
e 

FC
T(

s)

Web search workload

 

 

Hedera
OFPT

0.1 0.3 0.5 0.7 0.90

500

1000

1500

Load

95
-th

 F
C

T(
s)

Web search workload

 

 

Hedera
OFPT

0.1 0.3 0.5 0.7 0.90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Load

C
PU

(%
)

Web search workload

 

 

Hedera
OFPT

 
      
        (a) Average FCT                       (b) 95th percentile FCT             (c) CPU utilization percent 

Fig. 9.  The performance of OFPT and Hedera in web search workload 
 
CPU. From Fig. 9(c) we can see OFPT produces smaller overhead on the SDN controller 

than Hedera overall, which means OFPT has better scalability and availability than Hedera. 
The good performance of Hedera has been verified by [11], which manifests that OFPT can be 
implemented in DCNs. When load=0.1, OFPT produces more overhead because OFPT 
maintains path information and computes more excellent path for flows. However, OFPT does 
not add more overhead on the controller because the CPU utilization of controller is less than 
10%, thus OFPT is practicable. OFPT preinstalls flow tables for short flows, and it will 
decrease plenty of overheads on the controller for installing flow tables for short flows. In Fig. 
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9(c), we can see the CPU utilization of controller is less than 43% in OFPT when load is heavy. 
In all, OFPT achieves better performance as well as better scalability and availability. 

6.2.5 Seamless flow migration mechanism 

A. Experimental design 

We employ iperf as our simulation tool and use a diamond topology shown in Fig. 10. 
Furthermore, we set the link bandwidth to be 1 Mbps and the size of switch buffer to be 100 
packets. In order to simplify the experiment, we adopt static routing mechanism.  

We choose UDP flows as workloads to avoid the impact of TCP congestion control. 
Simultaneously, we can easily derive the information about the packet loss and out-of-order 
issues. 

In practical, the bandwidth occupied by UDP flow is 1Mbps and this flow lasts 10s. The 
flow delivers along the path <h1, S1, S3, S2, h2> in the first 5s, and then switches to the path 
<h1, S1, S4, S2, h2> in the later 5s. If the flow migration process has no packet loss around the 
5th second, we can deem that SFMM realizes seamless flow migration. 

The configuration process of static routing is as follows. When the switch connects to the 
controller, the controller installs two groups of flow entries in switch S1. The first group of 
flow entries is from S1 to S3, while the second group is from S1 to S4. We set the priority of 
the second group to be lower than the first group, so that the flow can transmit along the first 
path, and we simultaneously set the timeout of the first group to be 5s and the timeout of the 
second group to be 10s, so the flow will transmit along the second path due to timeout and the 
deletion of the flow entries. 

B. Experimental results 

The experimental results are shown in Fig. 11. When we send a 1Mbps UDP flow in h1, the 
throughput gets in h2 fluctuates between 964Kbps and 988Kbps, but there is no packet lost in 
the time interval of 4.5s-5.5s. If the sending rate of the UDP flow decreases to 0.8Mbps in h1, 
the throughput of h2 always is 800kbps and there is no packet lost in the experiment yet. 
Therefore, we think SFMM can realize the seamless flow migration. 

We repeat this experiment for 10 times by loading UDP flows with different sending rate, 
and we find that SFMM can guarantee the flow migration without packet loss. However, there 
are 2 runs that the flow suffers slight out-of-order (2 packets) issue. From the experimental 
results, we find that the out-of-order issue is mainly caused by the buffered packets in the old 
path. When the flow migrates to the new path, the packets in the new path may reach h2 ahead 
of the packets buffered in the old path, and TCP can ideally deal with the slight disordered 
packets. 

 

  
Fig. 10. Experimental Topology Fig. 11. Throughput 
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7. Conclusion 
This paper mainly focuses on solving the issues of low throughput and poor load balancing 
existing in datacenters. We propose OFPT, which adopts the centralized control mechanism of 
OpenFlow and makes use of the parallel paths in dense interconnection datacenter networks, 
to allocate the traffic to all available paths. We also present a seamless flow migration 
mechanism, which can guarantee the flow does not suffer any packet loss during flow 
migration. 

Both the theoretical analysis and experimental results show that OFPT can efficiently 
improve the throughput and load balancing in DCNs. The experimental results also show that 
OFPT increases the throughput up to 97.5% in both FatTree and VL2, which exceeds the TCP 
and ECMP by 74.7% and 36% respectively. Besides, OFPT achieves better load balancing and 
reduces AFCT. We also show that OFPT is scalable，both the network scale and network load 
models have little impact on its performance. Therefore, OFPT effectively addresses the 
datacenter TE issues. In the future work, we will devote to decrease the short flow completion 
time with OpenFlow technology in datacenter.  
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