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Abstract 
 

Multi-view super-resolution (MVSR) aims to estimate a high-resolution (HR) image from a 
set of low-resolution (LR) images that are captured from different viewpoints (typically by 
different cameras). MVSR is usually applied in camera array imaging. Given that MVSR is an 
ill-posed problem and is typically computationally costly, we super-resolve multi-view LR 
images of the original scene via image fusion (IF) and blind deblurring (BD). First, we 
reformulate the MVSR problem into two easier problems: an IF problem and a BD problem. 
We further solve the IF problem on the premise of calculating the depth map of the desired 
image ahead, and then solve the BD problem, in which the optimization problems with respect 
to the desired image and with respect to the unknown blur are efficiently addressed by the 
alternating direction method of multipliers (ADMM). Our approach bridges the gap between 
MVSR and BD, taking advantages of existing BD methods to address MVSR. Thus, this 
approach is appropriate for camera array imaging because the blur kernel is typically unknown 
in practice. Corresponding experimental results using real and synthetic images demonstrate 
the effectiveness of the proposed method. 
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1. Introduction 

The goal of MVSR is to estimate a HR image from a set of LR images captured from 
different viewpoints (typically by different cameras). Bennett Wilburn et al. [1] used multiple 
inexpensive cameras to approximate a video camera with a large synthetic aperture to obtain 
HR videos. Kartik Venkataraman et al. [2] constructed an ultra-thin high-performance 
monolithic camera array to acquire multi-view images, and then applied a two-stage MVSR 
construction to obtain the final HR image that corresponded to a selected reference camera. 
Guillem Carles et al. [3] realized super-resolution (SR) imaging using an array of 25 
independent commercial off-the-shelf cameras. 

Another problem of interest that is strongly related to MVSR is multi-frame 
super-resolution (MFSR) [4, 5], which aims to construct an HR image from several observed 
LR images. For example, MFSR has been extensively studied in video sequences [5, 6, 7, 8] in 
which the involved LR images have been captured using the same camera at different times. 
MVSR and MFSR share several common characteristics. First, both are ill-posed problems 
that can be addressed through regularization [5, 9, 10, 11]. Among the aforementioned articles, 
Qizi Huangpeng et al. [11] super-resolved multiple degraded LR frames of the original scene 
via multi-frame blind deblurring (MFDB) to address unknown blurring. Second, both 
approach have two steps: LR image registration (LRIR) and HR image reconstruction (HRIR). 
LRIR determines pixel correspondences among different input LR images, whereas HRIR 
reconstructs the desired HR image from input LR images based on the outcome of LRIR. The 
quality of the reconstructed HR image depends considerably on the accuracy of LRIR. The 
motions among LR images in MVSR are generally more complicated than those in MFSR. 
Thus, LRIR in MVSR is more difficult than that in MFSR, and consequently, MVSR is more 
difficult than MFSR. 

Recently, many papers have been dedicated to cutting the edge of MVSR. T. Tung et al. [12] 
super-resolved input multi-view images to generate a complete 3D model for a single object. 
A super-resolution-free-viewpoint image synthesis (SR-FVS) method that used adaptive 
regularization for MVSR to address depth inaccuracies was proposed by Takahashi; this 
method simultaneously realized free-viewpoint image SR and free-viewpoint depth estimation 
[13]. Nakashima et al. [14] combined a learning-based SR method, namely, sparse coding SR 
(ScSR) [15], with an existing SR-FVS method [13] to improve the quality of the desired HR 
image of the target viewpoint.  

SR reconstruction was divided into two stages in [2, 13, 14]: image fusion (IF), which was 
called image blend in [13, 14], and maximum-a-posteriori (MAP). In the MAP stage, however, 
[13] ignored the effect of blur, whereas [2, 14] assumed that blur was known. Consequently, 
all the energy functions constructed in the MAP stage had no regularization term for blur. In 
fact, the blur kernel was typically unknown in practical situations. In this study, we have 
adopted the two-stage SR framework in [2, 13, 14], and considered the effect of unknown blur 
(i.e., a regularization term for blur has been added into the energy function in the MAP stage). 
We have actually reformulated the MVSR problem into an IF problem and a blind deblurring 
(BD) problem. In the IF stage, we have introduced a reference LR image to improve the 
accuracy of depth estimation and the quality of the resulting IF image. In the BD stage, we 
have addressed the BD problem via alternating minimization in which each sub-problem is 
efficiently solved using the alternating direction method of multipliers (ADMM) [16, 17]. The 
proposed approach can estimate accurate depth maps and desired HR images from multi-view 
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input LR images; it is suitable for camera array imaging. 
The remainder of the paper is organized as follows. In Section 2, we introduce a 

mathematical model that corresponds to the proposed MVSR method and illustrates its 
reformulation into the IF problem and the BD problem. The depth estimation method is 
described in Section 3. Section 4 presents the IF step, and Section 5 presents the BD step. 
Finally, Section 6 reports the experimental results. 

2. Mathematical model 
In multi-view settings, input images are usually captured from several cameras. We choose 
one as the reference camera, which is indexed as r , whereas the other cameras are indexed as 
1,2,..., m . The HR image that we need to restore is a 2D projection of a 3D scene onto an HR 
grid of the selected reference camera. Let u  be the desired, lexicographically ordered HR 
image that corresponds to the selected reference camera. The objective is to estimate u  from 
the LR observations , 1, 2,...,py p m=  and ry  (which denotes the LR image captured by the 
reference camera). In accordance with [18, 19], we can define the forward imaging model that 
generates py  as 
 

                                       , 1, 2,...,p p py DW Hu e p m= + = ;                                            (1) 
 
where the warping matrix pW  represents the displacement of the image captured from the thp  
camera with respect to the reference camera. The matrix H  denotes the total blur, which is 
unknown and assumed to be spatially invariant. The matrix D  reflects the decimation step, 
whereas pe  denotes the imaging noise. Hereafter, we assume that H  and D  are identical for 
images captured by any cameras. For the LR image ry , rW I= , then 
 
                                                               r ry DHu e= + .                                                               (2) 
 

The desired HR image u  can be also written as an HR image reconstruction process as 
follows: 
 

  1 2( , ,..., , )m ru F u u u u e= + ,                                                        (3) 
 
where 1 1 1 ( 1, 2,..., )p p pu H W D y p m− − −= = , 1 1

r ru H D y− −= , 1 2( , ,..., , )m re F n n n n= , F  denotes a 
fusion process (which is introduced in Section 4), the operators 1H − , 1

pW − , and 1D−  are the 
inverse of the blurring matrix, warping matrix, and decimating matrix in the forward imaging 
process, respectively. 1 1 1 ( 1, 2,..., )p p pn H W D e p m− − −= − =  and 1 1

r rn H D e− −= . 
Given that the blurring matrix H is unknown, we blindly estimate the blur of the recovered 

SR image rather than assume that the blur is known. For simplicity, we separate the SR 
reconstruction process into two steps: IF and BD. The first step focuses on estimating the 
“blurry” HR image z  as follows: 
 

1 2( , ,..., , )m rz F z z z z s= + ,                                                       (4) 
 
where 1 1 ( 1, 2,..., )p p p pz Hu W D y p m− −= = = , 1

r r rz Hu D y−= = , and 1 2( , ,..., , )m rs F n n n n= . Then, 
we obtain 
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1 2( , ,..., , )m rz FH u u u u s= +  

1 2( , ,..., , )m rKF u u u u s= +  
1 2( ( , ,..., , ) )m rK F u u u u e e s= + − +  

Ku Ke s= − +  
Ku n= + ,                                                                          (5) 

 
where K  is the ultimate blur operator that should be estimated, and n s Ke= − . 

The second step is to estimate the final HR image via blind deblurring of u  from z , which 
minimizes 
 

2

2
( ) ( )

2
( , ) Ku z u kE u h λ ρ Ω− + +=  ,                                         (6) 

 
where λ  is a positive parameter, K  is the convolution matrix constructed by the blur filter k , 
and ρ  is a generalized total variation (GTV) regularizer given by 
 

[ ] 22 2( ) ( )y

p
pp

x y xp i ip
i

D uu D u D u D uρ = + = +   ∑ ,                                (7) 

 
where xD  and yD  denote the derivative partial operators. Given that the distribution of 
gradients of natural images is more heavy-tailed than the Laplace distribution [20], we set 0 ≤ 
p ≤ 1. Ω is the indicator function of set Ω , which is the probability simplex  
 

{ }1
: 0, 1k k kΩ = = .                                                       (8) 

 
In general, the SR method first finds pixel correspondence between non-reference images 
, 1, 2,...,py p m=  and the reference image ry . The process can be replaced with depth estimation 

if all the parameters of the cameras are known. Then, depth estimation is the premise of the IF 
step. 

The flow diagram of the entire method is shown in Fig. 1. The steps of depth estimation, IF, 
and BD are detailed as follows.  
 

Input images 
with known 

camera 
parameters

Depth map Fusion HR 
image

Final HR 
image

Depth 
estimation

IF  step

BD  step

 
Fig. 1. Flowchart of  the proposed method 

3. Depth estimation 

3.1 Derivation of mapping function 
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We headline the mapping function first before performing depth estimation. In this study, the 
mapping function is equivalent to homography in multi-view geometry [21]. The mapping 
function ( ),P q dα β→  is a function that maps a point q  on camera α  onto camera β  with a 
known depth value d . The mapping function is derived as follows. 

Given the 3 4×  projection matrices for the two cameras, ( )Pα  for camera α  and ( )Pβ  for 

camera β , and a plane located at depth d : T 0Xπ =   with ( )0,0,1, Tdπ = −  and ( )x, y, ,1 TX z= , 
we first project an image point of camera α  onto the plane located at depth d , and then project 
it onto camera β . The homography induced by the plane is 
 

( ) ( )
1

α

T T1 1
0 0

u u
P Pv v

β α

ββ α

π π

−
   
        =             
   

,                                                           (9) 

 
where ( ),u vα α  is an image point of camera α , and ( ),u vβ β  is the corresponding point of 

camera β . When ( ), ,1 Tq u vα α= , the homography is equivalent to the mapping function 

( ),P q dα β→ , and the depth of point q  is the precondition of the mapping function ( ),P q dα β→ . 

The steps to obtain the shift operator ( )1,2, ,pW p m=   are detailed as follows. For each pixel 
q  in the reference camera, ( ),r pP q d→ , the mapping function from the reference camera to camera 
p  should be determined. Then, the depth map uG of the desired HR image u  is required, which 

can be estimated by interpolating the depth map of the reference LR image ry . 

3.2 Depth estimation 
The image registration process determines pixel correspondences for non-reference images 
with respect to the reference image. This process is equivalent to depth estimation if the 
parameters of the camera array are known. The reference image is typically selected as the 
base for which the depth value of each pixel is estimated. 

Several discrete depths d  are searched and distributed following a specific rule up to the 
minimum and maximum object depths. We quantize depth space into N  levels as  
 

max min max

1 1 1 2 1 1 ( 1,2,..., )
n

n n N
d d N d d

 −
= + − = 

 
,                                   (10) 

 
where maxd  and mind  are the minimum and maximum object depths. 

The disparity estimation in [22] is translated into a multiple label energy minimization 
(MLEM) problem. Similarly, depth estimation in our study can also be represented as an 
MLEM problem. Let Q  denote the set of pixels in the reference image ry ; L  be the set of 
depth levels { }1,2,..., N , with the corresponding depth values of { }1 2, ,..., Nd d d ; and ( )D q  
denotes the depth level of q . The problem of estimating the depth of each pixel in ry  is 
defined as follows. 
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Given the reference image and other non-reference images, the objective is to find the 
labeling :f Q L→  that assigns an appropriate depth level to each pixel in ry  such that the 
energy for labeling is minimized. The energy function for labeling is defined as 
 

( ) data smoothnessE f E E= + ,                                                     (11) 
 
where the data term is the sum of the data cost of each pixel in the reference image ry . The data 
term measures multi-view intensity consistency. 
 

                              ( )
r

data q C
E A q

∈
=∑ ,                                                         (12) 

 
where ( )A q  is defined as 
 

( , ( )), ( , ( ))
( )

,
C q d q if C q d q

A q
otherwise

t
t

<
= 


,                                        (13) 

 
where ( , ( ))C q d q  is the match cost for a pixel q  in the reference image with the assigned 
depth value of ( )d q , and t  is a threshold for occluded pixels. In this application, we map the 
pixels from the reference image to all the other images by evaluating the match cost. We 
define ( , ( ))C q d q  as 
 

( )( )
{ }

( )( )( ) ( )
21, ,

other

p r p r
p C

C q d q y P q d q y q
M →

∈

= −∑ ,                           (14) 

 
where ( , )r pP q d→  is a function that maps a point q  on the reference camera onto camera p  
with a known depth value d , and r  represents the reference camera. A list otherC  contains all 
the cameras except for the reference camera, and M  indicates the number of cameras in the 
list.  

The smoothness term measures the cost of assigning depth values to a pair of neighboring 
pixels. This term assumes that neighboring pixels should typically have similar depths, i.e., 
 

( ),
r q

smoothness
q C p N

E V q p
∈ ∈

 
=   

 
∑ ∑ ,                                                 (15) 

 
where ( ),q p  is a pair of neighboring pixels, and qN  is the neighbor of pixel q , such that 

1
1p q− = . Then, we define ( ),V q p  as 

 

( )
( ) ( )
( ) ( )
( ) ( )

1

2

0,  0

, 1

 

,  

1,

if D p D q

V q p f D p D q

if D p D q

iλ

λ

 − =
= − =
 − >

.                                                     (16) 
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As defined, ( )D p  and ( )D q  are the depth levels of pixels p  and q , respectively, and 

( ) ( ) { }, 1,2,...,D Nqp D ∈ . 1λ  and 2λ  are non-negative weights, where 1 2λ λ≤ . In this study, 
we set 2 14λ λ= . 

To minimize energy in (11), we use an alpha–beta swap graph cuts algorithm [22, 23] to 
find the labeling for optimal depth. Then, for each pixel q  in the reference camera, the best 
depth is detected. 

4. Image Fusion  
The IF step aims to reconstruct the “blurry” image z  with HR size from the LR observations 

, 1, 2,...,py p m=  and ry . Given 
 

1 2( , ,..., , )m rz F z z z z s= + , 
 
the first priority is to estimate ( )1 1 1, 2, ,p p pz W D y p m− − ==   and 1

r rz D y−= . When estimating 
operator 1

pW − , the HR image that corresponds to the thp  camera must be known. Then, we 
must first estimate m  depth maps that correspond to images captured by m  different cameras. 
We can use an equivalent operation (Algorithm 1) to realize 1 1 ( 1, 2,..., )p p pz W D y p m− −= = . We 
only need estimate the depth map uG  of the HR image u . 
 
Algorithm 1 
1. We apply the method described in Section 3 to estimate the depth map G  of the reference LR 

image ry . 
2. We calculate depth map uG  of the desired HR image u by interpolating G . 
3. We use uG , the projection matrix of the thp  camera, and the projection matrix of the reference 

camera with the theory in Section 3.1 to achieve the shift operator ( 1, 2,..., )pW p m= . 
4. By using ( 1,2,..., )pW p m= , we project each integer pixel point ( , )rh rhx y  in u  onto the HR grid 

of the thp  camera, and the corresponding position is indicated by ( , )( 1, 2,..., )ph phx y p m= . 

5. We translate every pixel ( , )ph phx y  in the HR grid of the thp  camera onto the LR grid of the thp  
camera; the corresponding position is indicated by ( , )pl plx y . In this study, we use 2factor =  and 

( , )
( , ) 1( 1,2,..., )ph ph

pl pl

x y
x y p m

factor
= + = .  

6. We use the LR observation py  to interpolate each pixel ( , )pl plx y  and return these pixel values to 
their corresponding pixel positions in the reference HR image. 

 
For ry , we apply the bilinear interpolation method to realize 1

r rz D y−= .  
After estimating ( 1,2,..., )pz p m=  and rz , we can apply fusion operation F  to calculate the 

“blurry” HR image z . For simplicity, F  is set as an average operation that can statistically 
decrease noise, such that z  can be approximated as  
 

1 2( , ,..., , )m rz F z z z z= .                                                         (17) 
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In an average operation, we assign ru  as the reference and set a threshold t , and then 
estimate the z  equal estimating pixel values of each pixel point q  in z . For each pixel point 
q  in z , we apply Algorithm 2 to estimate its pixel value, which results in the “blurry” HR 
image z . 
 
Algorithm 2  
1.  Set 0t > , 1k = , ( )r qvalue z=  
2.  for  1p =  to m    

3.  if  ( ) ( )p rq q tz z− <  

4. ( )p qvalue value z= + , 1k k= +  
5.  end 
6.  end 
7.  _value final value k=  
8.  Return  _value final  

5. Blind Deblurring 
In this section, we blind estimate the desired HR image from the “blurry” HR image z  
obtained in the previous section.  

5.1 Proposed algorithm framework 
We obtain the following framework by alternatively minimizing (6) with respect to u  and k  
while increasing parameter λ . 
 
Algorithm Proposed algorithmic framework 
1.  Input: “blurry” HR image z , λ , and 1α > . 
2.  Step I: Blind estimation of blur filter k  from u  by alternatively looping over coarse-to-fine levels: 
3.  ▶Update the image estimate 
 

    
2

2
ˆˆ ( )

2u
u Ku z uλ ρ← − +argmin ,                                                  (18) 

 
where K̂  is the convolution matrix constructed using k̂  obtained from the following blur filter 
estimation. 
4.  ▶Update the blur filter estimate 
 

2

2
ˆ ˆ ( )

2k
k Uk z kλ

Ω← − +argmin  ,                                                 (19) 

 
where Û  is the convolution matrix constructed using û  obtained from the preceding image estimation. 
5.  ▶Increase parameter λ  
 

                                      λ αλ→                                                                    (20) 
6.  Step II: Non-blind estimation of HR image *u  from z by solving (18) using final ĥ  (obtained in 
Step I). 
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7.  Output: HR image *u  and blur estimate ĥ . 
 
Sub-problems (18) and (19) can be solved using many existing methods. In the next section, 

we show how these two sub-problems can be efficiently solved via ADMM. 

5.2 ADMM optimization 
Before proceeding, we first introduce ADMM [16, 17], which has been a popular tool for 
solving imaging inverse problems ([24] and the references therein). ADMM is suitable for 
addressing the general unconstrained minimization problem that comprises J sub-functions as 
follows: 
 

( )( )

1

J
j

jx j
g B x

=
∑min ,                                                             (21) 

 
where ( )jB  are the arbitrary matrices, and jg  are the functions. The ADMM for solving (21) 
presents the following form [24]. 
 
Algorithm ADMM for solving (21) 
1. Set 0k = , 0β > , 0ε > , ( ) ( ) ( ) ( ) ( ) ( )2 1 21

0 0 0 0 0 0, ,..., , , ,...,J Jv v v d d d  
Repeat 

2. ( ) ( ) ( )( )( )

1

TJ
j jj

k k k
j

r B v d
=

= +∑  

3. ( )
1

( ) ( )
1

1

TJ
j j

k k
j

x B B r
−

+
=

 
=  
  
∑  

For 1,2, ,j J= …  

4. ( ) ( ) 2( )
1 1 2

( ( ) ( ))
2

j jj
k k k i

x
v x B x d g xt

+ += − − +argmin  

5. ( ) ( ) ( )( )
1 1 1( )j j jj

k k k kd d B x v+ + += − −  
End for 

6. 1k k← +  
until 1 12 2k k kx x x ε+ +− ≤  

 
Suppose ( )( )

1
jj

k kxv B d+ −=  following Almeida and Figueiredo [25]. Line 4 corresponds to 
the so-called Moreau proximity operator (MPO) as follows: 
 

j

2
g j( )= argmin( || || g ( ))

2x
v vprox xxt

t
+− .                                       (22) 

 
Then, we address sub-problems (18) and (19) using ADMM. 

5.3 u  update using ADMM 
Sub-problem (18) can be written in the form of (21), with 
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2
1 2 32( ) , ( ) ( )

2
p
pg z g gλ⋅ = ⋅− ⋅ = ⋅ = ⋅ ,                                              (23) 

(1) (2) (3)ˆ , ,x yB K B D B D= = = .                                                  (24) 
 

Then, by solving (18) using ADMM, we yield the following algorithm. 
 
Algorithm ADMM for solving (18) 
1. Set 0k = , 1 0t > , 1 0ε > , ( ) ( ) ( ) ( ) ( ) ( )2 3 11

0 0 0 0 0 0
2 3, , , , ,v v v d d d  

Repeat 
2. (1) (1) (1)

k k kz v d= +  

3. (2) (2) (2)
k k kz v d= +  

4. (3) (3) (3)
k k kz v d= +  

5. (1) (2) (3)ˆ T T T
x yk k k kr K z D z D z= + +  

6. 
1

1
ˆ ˆT T T

x x y yk ku K K D D D D r
−

+
 
 = + +  

7. 
2

(1) (1)1
11 1 2

ˆ( ( ) ( ))
2k k k

x
v x Ku d g xt

+ += − − +argmin  

8. (1) (1) (1)
1 1 1

ˆ( )k k k kd d Ku v+ + += − −  

9. 
2(2) (2)1

21 1 2
( ( ) ( ))

2 xk k k
x

v x D u d g xt
+ += − − +argmin  

10. (2) (2) (2)
1 1 1( )xk k k kd d D u v+ + += − −  

11. 
2(3) (3)1

31 1 2
( ( ) ( ))

2 yk k k
x

v x D u d g xt
+ += − − +argmin  

12. (3) (3) (3)
1 1 1( )yk k k kd d D u v+ + += − −  

13. 1k k← +  
until 1 1 12 2k k ku u u ε+ +− ≤  

In the preceding algorithm, line 6 is involved via the inversion of matrix 
ˆ ˆT T T

x x y yK K D D D D+ + , which is block-circulant. Thus, this matrix can be diagonalized via 2D 
discrete Fourier transform (DFT) with ( )  nlog n  cost, and the inversion of the resulting 
diagonal matrix can be computed using ( ) n  cost. Line 7 is the proximity operator of 1 1gt , 
which can be obtained in a closed-form as follows: 
 

( )(1)
1(1)

1
1

1
ˆ

k
k kKz u d

v
λ t

λ t
+

+

+
=

+

−
.                                                      (25) 

 
Lines 9 and 11 are the proximity operators of the ( )0 1p p≤ ≤  norm, and they have 

closed-form solutions for 1 2 4 30, , ,1, , , 2
2 3 3 2

p  
 
 

∈  [26]. For other general p  values, no 

closed-form solution exists. However, such a solution can be precomputed numerically and 
used in the form of a lookup table as that in [20]. 
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5.4 k  update using ADMM 
Similarly, sub-problem (19) can be written in the form of (21), with  
 

2
1 22
( ) , ( ) ( )

2
g z gλ

Ω⋅ = ⋅− ⋅ = ⋅ ,                                                     (26) 

(1) (2)ˆ ,B U B I= = .                                                               (27) 
 

Then, by solving (19) using ADMM, we obtain the following algorithm. 
 
Algorithm ADMM for solving (19) 
1. Set 0k = , 2 0t > , 2 0ε > , ( ) ( ) ( ) ( )2 1 21

0 0 0 0, , ,v v d d  
Repeat 

2. (1) (1) (1)
k k kz v d= +  

3. (2) (2) (2)
k k kz v d= +  

4. (1) (2)ˆ T
k k kr U z z= +  

5. 
1

1
ˆ ˆT

k kk U U I r
−

+
 = +   

6. 
2(1) (1)1

1 1 12
ˆ( ( ) ( ))

2k k k
x

v x Uk d g xt
+ += − − +argmin  

7. (1) (1) (1)
1 1 1

ˆ( )k k k kd d Uu v+ + += − −  

8. 
2(2) (2)1

1 1 22
( ( ) ( ))

2k k k
x

v x k d g xt
+ += − − +argmin  

9. (2) (2) (2)
1 1 1( )k k k kd d k v+ + += − −  

10. 1k k← +  
until 1 1 22 2k k kk k k ε+ +− ≤  

In line 5, matrix ˆ ˆTU U I+  can also be diagonalized via DFT with ( )  nlog n  cost. Line 6 
can be evaluated in closed-form as (25). Line 8 is the projection onto the probability simplex 
Ω  in (8), which has been already addressed in [27]. 

6. Experiments 
In this section, we report the detailed experimental results of the proposed method, and 
compare the results of the proposed method with those of the SR-FVS [13] and the ScSR + 
SR-FVS [14] methods. All the experiments were performed using MATLAB on a 64 bit 
Windows 8 personal computer with an Intel Core i7 3.6 GHz processor and 16 GB RAM. The 
setup of the proposed method is as follows: maxd  = 1900 mm, mind  = 300 mm, N  = 100, 1λ  = 60, 

2λ  = 240, t  = 120 , threshold t  = 10, λ  = 1, α  = 1.5, 1t  = 2t  =  0.2 , 0.5p = , and 
4

1 2 5 10ε ε −= = × . 
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6.1 On non-blurred images of the doll data set 
Five images from the doll data set (shown at the top of Fig. 2) that were obtained from the 
Multi-view Image Database1 of the University of Tsukuba, Japan, were used as input in the 
experiments. The database is captured by a 9× 9 camera array. The top four input images are 
located at the corners of a square, i.e., (3,3), (5,3), (3,5), and (5,5), following the database 
notation. The size of the square was 40× 40 mm. The fifth image in Fig. 2 is the reference LR 
image, which is located at the center of the square; this location is described as (4,4) using the 
database notation. The original images have 640× 480 pixels in color, and we only use their 
green channels. We reduce the images to 320× 240 pixels by downsampling for input. Output 
image size in this experiment is 640× 480. The bottom image in Fig. 2 is the original image in 
(4,4), which is used as the ground truth. Given the ground truth, we can use mean squared error 
(MSE), peak signal-to-noise ratio (PSNR), and the structural similarity (SSIM) index [28] to 
evaluate the SR results. The SSIM index is used to measure the similarity between two images. 
The resultant SSIM index is a decimal value between −1 and 1. A larger value indicates better 
result, and 1 is only achieved in the case of two identical images. 
 

        
(3,3)                                                (5,3) 

        
 (3,5)                                                (5,5) 

 
(4,4) 

1. The Multi-view Image Database can be found on the website http://www.image.esys.tsukuba.ac.jp/imagedb/. 
The doll data set we used is called “Santa.” 

                                                           

http://www.image.esys.tsukuba.ac.jp/imagedb/
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Ground truth 

Fig. 2. Non-blurred input images and ground truth of the doll data set 
 

Fig. 3(a) shows the depth map of the desired HR image, which is obtained by interpolating 
the depth map of the reference LR image. Fig. 3(b) shows the fusion HR image via the IF step. 
Fig. 3(c) shows the final HR image via the IF step and the BD step. The final HR image has 
more fine details than the fusion HR image. The results of the other SR methods are shown in 
Fig. 4. 
 

      
(a) depth map                                               (b) fusion HR image 

      
(c) final HR image                                   (d) details in final HR image 
 

Fig. 3. Results based on the proposed method using non-blurred input images 
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(a) SR-FVS                                           (b) details in SR-FVS 

      
(c) ScSR + SR-FVS                                (d) details in ScSR + SR-FVS 
 

Fig. 4. Results based on the other SR methods using non-blurred input images  
 
 

The performance comparison among the proposed method, the SR-FVS method, and the 
ScSR + SR-FVS method on non-blurred images of the doll data set is presented in Table 1. 

 
Table 1. Performance comparison on non-blurred images 

 MSE PSNR SSIM 
Proposed method 14.12 36.63 0.9778 

SR-FVS 16.21 36.03 0.9088 
ScSR+SR-FVS 15.62 36.19 0.9120 

 
 

As shown in Fig. 3, Fig. 4, and Table 1, the proposed method exhibits outstanding 
performance in terms of MSE, PSNR, SSIM, and details compared with the other algorithms. 

6.2 On blurred images of the doll data set 
We construct three sequences of blurred images from five images of the doll data set. A 5×5 
uniform point spread function (PSF), a Gaussian PSF, and a motion PSF have been used for 
blurring and downsampling with the factor 1/2. Finally, addictive Gaussian noise with 
signal-to-noise ratio of 40 dB has been added to the LR images. The latter two PSFs are shown 
in Fig. 5. One of the sequences is shown in Fig. 6, in which the original image in (4,4) is 
selected as the ground truth. 
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The SR results on the images blurred by the three PSFs are shown in Figs. 7, 8, and 9, 
respectively. The performance comparison of the three methods on three different blurred 
images from the doll data set are demonstrated in Tables 2, 3, and 4, respectively. 

 
 

                                     
Gaussian PSF                                    Motion PSF 

Fig. 5. Two PSFs used in the study 
 
 

       
(3,3)                                                 (5,3) 

       
 (3,5)                                                 (5,5) 

 
(4,4) 

 
Fig. 6. Input images blurred via a uniform PSF 
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(a) proposed method                       (b) details in the proposed method 

     
(c) SR-FVS                                            (d) details in SR-FVS   

     
(e) ScSR + SR-FVS                             (f) details in ScSR + SR-FVS 
Fig. 7. Results using input images blurred via a uniform PSF 

 
 

Table 2. Performance comparison on images blurred via a uniform PSF 
 MSE PSNR SSIM 

Proposed method 21.29 34.85 0.9417 
SR-FVS 64.63 30.03 0.8440 

ScSR+SR-FVS 63.82 30.08 0.8417 
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(a) proposed method                           (b) details in the proposed method 

     
(c) SR-FVS                                             (d) details in SR-FVS   

     
(e) ScSR + SR-FVS                               (f) details in ScSR + SR-FVS 

Fig. 8. Results using input images blurred via a Gaussian PSF 
 

Table 3.  Performance comparison on images blurred via a Gaussian PSF 
 MSE PSNR SSIM 

Proposed method 26.66 33.87 0.9485 
SR-FVS 63.18 30.12 0.8514 

ScSR+SR-FVS 57.71 30.52 0.8578 
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(a) proposed method                           (b) details in the proposed method 

     
(c) SR-FVS                                            (d) details in SR-FVS   

     
(e) ScSR + SR-FVS                             (f) details in ScSR + SR-FVS 

Fig. 9. Results using input images blurred via a motion PSF 
 

Table 4.  Performance comparison on images blurred via a motion PSF 
 MSE PSNR SSIM 

Proposed method 21.90 34.72 0.9641 
SR-FVS 54.34 30.78 0.8632 

ScSR+SR-FVS 48.47 31.27 0.8694 
 

As shown in Figs. 7, 8, and 9, as well as Tables 2, 3, and 4, the proposed method 
outperforms the other two methods in handling blurred images. In particular, the MSE of the 
proposed method is significantly smaller than those of the other methods. 

6.3 On another image data set 
We also apply our method to a different data set, which is also included in the Multi-view 
Image Database of the University of Tsukuba, Japan. The database notations of the input 
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images are (3,3), (5,3), (3,5), (5,5), and (4,4). The input and output image sizes are 320× 240 
and 640× 480, respectively. The ground truth is the original image in (4,4), and its size is 
640× 480. 

       
(3,3)                                                 (5,3) 

          
(5,3)                                                 (5,5) 

 
(4,4) 

 
Ground truth 

Fig. 10. Input images and ground truth of the board data set 
 

Fig. 11(a) shows the depth map of the desired HR image, and Fig. 11(b) shows the fusion 
HR image via the IF step. Fig. 3(c) presents the final HR image via the IF step and the BD step. 
The SR results of other algorithms are shown in Fig. 12. 
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(a) depth map                                               (b) fusion HR image 

        
(c) final HR image                                 (d) details in final HR image 

Fig. 11. Results based on the proposed method using input images of the board data set 
 

          
(a) SR-FVS                                               (b) details in SR-FVS 

          
(c) ScSR + SR-FVS                                   (d) details in ScSR + SR-FVS 

Fig. 12. Results based on other SR methods using input images of the board data set 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016                                   5149 

The comparisons of MSE, PSNR, and SSIM are shown in Table 5. Compared with the 
algorithms in [13, 14], the proposed algorithm achieves the smallest MSE, the highest PSNR, 
and the most significant SSIM, thereby indicating the competitiveness of the proposed 
method. 

 
Table 5. Performance comparison on images of the board data set 

 MSE PSNR SSIM 
Proposed method 32.76 32.98 0.9489 

SR-FVS 38.27 32.30 0.8585 
ScSR+SR-FVS 33.92 32.83 0.8612 

7. Conclusions 
This study has proposed a depth-based MVSR approach, in which MVSR is addressed by 
solving an IF problem based on the depth map of the desired image and a BD problem using 
ADMM. Experiments on real and synthetic images demonstrate the effectiveness and 
competitiveness of the proposed method. The proposed method considers the effect of 
unknown blur (which typically occurs in camera array imaging) and bridges the gap between 
MVSR and BD, and thus, it is more suitable for camera array imaging than state-of-the-art 
MVSR methods. Our method also has several limitations. For example, since in the BD stage, 
we have to minimize the energy function (6) alternatively with respect to u  and k , the 
optimization speed of our method is slower than most of state-of-the-art MVSR methods. In 
addition, we cannot guarantee that the final estimated HR image is overall optimal because our 
framework is divided into two stages. Future work should involve three aspects: 
1. Accelerate the proposed method while preserving SR quality; 
2. Propose an MVSR framework that jointly realizes IF and solves BD, such that the final 

estimated HR image is of higher quality; 
3. Construct our own camera array system to verify above new ideas and do some further 

research on MVSR.  
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