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Abstract 
 

A novel method based on Surf points is proposed to detect and lock-track single ground target 
in aerial videos. Videos captured by moving cameras contain complex motions, which bring 
difficulty in moving object detection. Our approach contains three parts: moving target 
template detection, search area estimation and target tracking. Global motion estimation and 
compensation are first made by grids-sampling Surf points selecting and matching. And then, 
the single ground target is detected by joint spatial-temporal information processing. The 
temporal process is made by calculating difference between compensated reference and 
current image and the spatial process is implementing morphological operations and adaptive 
binarization. The second part improves KALMAN filter with surf points scale information to 
predict target position and search area adaptively. Lastly, the local Surf points of target 
template are matched in this search region to realize target tracking. The long-term tracking is 
updated following target scaling, occlusion and large deformation. Experimental results show 
that the algorithm can correctly detect small moving target in dynamic scenes with complex 
motions. It is robust to vehicle dithering and target scale changing, rotation, especially partial 
occlusion or temporal complete occlusion. Comparing with traditional algorithms, our method 
enables real time operation, processing 520×390 frames at around 15fps. 
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1. Introduction 

Nowadays aerial videos processing becomes more important with the Unmanned Aerial 
Vehicle (UAV) developing, for example intelligent aerial traffic surveillance [1] and aerial 
video registration [2]. In actual environment, the complex factors including large scenes, 
random vehicle or target motion and target occlusion bring great challenges to stable 
long-term target tracking [3][4]. 

The aerial camera aims to follow the target actively from multi-angles and multi-directions. 
In target tracking applications, the existing algorithms build target models of edges, features, 
modeling, or their combination and then track them with optical flow[5], mean shift[6], 
Kalman filter or particle filter. In [6], the color texture and contour are tracked with mean shift 
method, but it is difficult to follow single color and small object. The KLT features [7] can 
track objects well in controlled environments, but they usually fail due to occlusion, large 
scaling, and illumination variation. The Canny edges [8] are detected with dynamic Bayesian 
network, which shows good vehicle detection if vehicle colors are unchanged. Miss detection 
and false detection are caused by low color contrast and similar rectangular structures as 
vehicles. The feature points including Harris [9], Susan [10] or Sift [11] are now widely used. 
However, the matching of Harris points or Susan points will fail due to large rotation or scale, 
and the computation cost of Sift points is too large to enable real time operation. The surf 
points demonstrate robust tracking, which is a fast growing research top. 

To improve surf points matching accuracy, Miao [12] enhances repeatability by a 
classifier-based on-line boosting. The matching process is complex and it does not consider 
object occlusion. Ta [13] gives efficient surf detection inside the 3D image pyramid without 
computing traditional descriptor. It has limitations that the object should be initialized tracking 
and the tracker fails in the outdoor environment with few points.   

During the long-term tracking, target scale can vary greatly as it moves toward or away 
from the camera. Vijay [14] combines a focus of attention mechanism. It guides tracking by 
visual attention with complex computation. The scale of the mean-shift kernel [15] is 
combined by using projective geometry of the object. The mean-shift [16] algorithm is 
modified by the Hellinger distance to estimate scale. Ning also proposed weighting histogram 
[17]. They are based on the entire features such as target contour line and color histogram, 
which are not robust to image occlusion. However, the temporary target occlusion and large 
deformation easily bring tracking failure. The local sift features [18] are chosen to represent 
the whole target and are particle filtered, which brings great computation cost. The new 
method of graph matching [19] is proposed to separate target with Markov random filed and 
combine the weighted graph. While many trackers [20-22] have considered occlusion and 
deformation, they are dedicated to recognize the current target by matching the very beginning 
target model. Actually, the inter-frame target deformation is not obvious, and we can discard 
the original template and update the newly-detected target. 

Moving target 
detection

Global Surf points+ 
spatio-temporal detection

Target tracking with 
Kalman filter

Search area prediction with 
adaptive scale+

 local surf points matching

Occlusion management-
update research area

Deformation management-
update target model

 
Fig. 1. Block diagram of our aerial video tracking system 
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Related to these studies, the key challenges of surf points tracking are to reduce time cost of 
object detection and improve robustness to object scaling and occlusion even when the object 
is very small with low image quality. Our approach uses global and local surf points in objects 
detection and tracking respectively, which is shown in Fig. 1. It aims to realize robust tracking 
along with unsteady background motion, object occlusion and scale changing. It includes two 
parts: (1) Moving target detection based on global Surf points. The proposed grid sampling 
surf point can prevent clustering points. The proposed distance criterion can initially delete 
mismatching points and classic RANSAC (Random Sample Consensus) further obtains global 
points to compute global motion of background. After background correction, the moving 
target template is detected by proposed joint spatial-temporal processing including 
morphological operations and adaptive binarization. (2) Moving target tracking based on local 
Surf points. The proposed search area prediction is realized by estimating central position of 
target and adjusting scale ratio. The local Surf points detected in the search area are matched 
with that in the target template. For the points mostly locate in the target, it can implement fast 
matching. In order to keep robust long-term tracking in the presence of scale changing and 
object occlusion, the two-layered update mechanism is proposed. When the occluded target 
reappears, the search area is updated as the whole image to find reappearing target. When 
target has significant changes with no matching points for some frames, the new target is 
updated by background correction to detect target.  

The paper is organized as follows. Section 2 will discuss background compensation based 
on global Surf points for detecting single ground target. Section 3 will present moving target 
stable tracking based on local Surf points matching in search area. Experimental results are 
analyzed in section 4 and conclusion is given in section 5. 

2. Moving Target Detection based on Global SURF Points 
Our challenge in aerial video is how to reliably detect small moving target from complex 
scenes with large camera scan or jitter. Considering camera jitter, we use background 
compensation to warp platform motion and then detect target area roughly using temporal 
image difference. The target template is then obtained by spatial fine detection. The flow chart 
is shown in Fig. 2. In two successive images, global Surf points are selected in reference frame 
and then matched in current frame to compute motion. The reference frame is then 
compensated to make difference with current frame. The morphological operations are used to 
eliminate noise and the adaptive binarization is adopted from gray histograms. Detecting the 
extreme pixels of target’s margins, the target template is built as the rectangle. 

 
Fig. 2. Flow chart of single target detecting method 
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2.1 Global Surf Points Selection by Grid Sampling 
The commonly used Sift feature point is robust to translation, rotation, scaling [23], but its 
high computational complexity decreases execution speed. Surf [24] takes advantage of Sift 
detector and reduces computational cost by cutting down point descriptor dimensions. 
Traditionally, surf points are directly detected in the whole image by checking largest Hessian 
values, as shown in Fig. 3 (a). The number of selected points is too large, which can be 
reduced by modifying the Surf point contrast parameters. However, the points with high 
similarity still locate closely as shown in Fig. 3 (b), resulting in points’ redundancy. 

In order to realize fast and accurate background compensation, we need to reduce points’ 
number and extract points evenly in the background area. Therefore, the grid sampling method 
is proposed to delete those points that have low contrast or are cluster localized. The steps are 
detailed as follows. 

Step1: All the Surf points are initially detected in the whole image.  
Step2: The image is divided into M1×M2 non-overlapping blocks as grids. 
Step3: According to the nearest distance criterion, each Surf point is assigned to its grid. 
Step4: In each grid, we get one global Surf point having the largest Hessian value.  
The grid sampling method can improve points’ significance and reduce amount. As shown 

in Fig. 3, Fig. 3 (c) shows 553 points of initial direct selection and Fig. 3 (d) shows 82 global 
points of grid sampling selection. The global points are distinctive and distribute uniformly in 
the background area. They are sparse but their even distribution in the whole image guarantees 
global motion for accurate background compensation. 

  
(a) Direct selected points  (b) Points by modification       (c) Image grids           (d) Evenly selected points 

Fig. 3. Comparison of point selection 

2.2 Global Surf Points Matching 
Since the aerial video is long-range captured from air, the scene can be regarded as a plane and 
therefore the affine motion model [10] can describe global motion. Given the matching point 
P in reference frame and P′  in current frame, their motion satisfies equation (1). 
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In order to match points from coarse to fine, the distance criterion is proposed to make 

initial matching. And the Ransac [24] method is then used to eliminate false matches. In order 
to further improve matching speed, the trace of Hessian matrix is used. According to Fig. 4, 
the bright point has positive Hessian trace and the low light point has negative trace. One pair 
of positive and negative traces stands for mismatched points, which can be deleted 
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immediately. The following three steps are presented to realize points matching in complex 
motions, as shown in Fig. 5. 

                
Fig. 4. Points with opposite brightness       Fig. 5. Points matching results  

 
Step1: At each Surf point in reference frame, the kd-tree storage structure is built. 
Step2: In the kd-tree of point ( )i ijP p= , find the minimum Euclidean distance 1mP and the 

next nearest distance 2mP with point ( )i ijP p′ ′= in the current frame. The pair of 1mP and iP′  is the 
approximately correct matching if their distances satisfy the following criterion:  
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Step3: To further eliminate mismatching, the Ransac algorithm based on global constraint 

is adopted to improve matching accuracy and compute the affine matrix A. 

2.3 Background Correction 
The affine matrix A represents the global motion caused by aerial platform. The background 
compensation is to remove camera scan or jitter. So, the matrix A  is taken into affine 
transformation model (1) to compute new coordinates of each pixel at reference image. In real 
applications, we use the bilinear interpolation to determine the gray at non-integer pixels. 
After background correction, the foreground moving target is significantly enhanced. 
Although this correction is not a sophisticated process, we have found it vital for detecting 
small ground target. In Fig. 6, the target size is only few pixels and enhanced by compensated 
difference comparing with the direct difference. 
 

          
                              (a)Small target            (b)Direct difference     (c)Compensated difference 
 

Fig. 6. Illustration of image difference after background compensation 
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2.4 Joint spatial-temporal target detection 
The joint spatial-temporal processing method is used to detect single ground target. After 
background compensation, the temporal difference is first calculated between compensated 
reference and current image, which can give initial result. Fig. 7 (b) is the temporal difference 
image obtained between compensated Fig. 7 (a) and current frame. It can be clearly seen that 
background compensation can remove the disturbance of camera scanning and keep the 
integrity of moving object. However, due to illumination variance, texture repetition or noise, 
the pixel difference still has noise and would result in false detection. In order to get accurate 
and integral target, the spatial process implements morphological operations and adaptive 
binarization. Fragments are removed using standard morphological dilation and erosion to 
capture the rough target. Despite this noise removal, small misdetections due to sensor 
artifacts, residual image misalignment still exist. Then the gray histogram is built to select 
threshold adaptively to acquire binary image Fig. 7 (c). By detecting the extreme point of the 
outline, the rectangle in Fig. 7 (d) is obtained as the moving target template. 
 

   
(a) Image compensation       (b) Temporal difference 

                                      
(c) Spatial detection         (d) Moving target template 

 

Fig. 7. Process of detecting moving target template 
 

3. Moving Target Tracking based on Local SURF Points 
Using features of color, texture, contour or shape for target modeling, the object is always 
tracked with Mean Shift and particle filter. For the model depicts the entire moving object, we 
can track it frame by frame accurately. However when the object occlusion, large rotation and 
scaling occur, it is difficult to achieve model matching and tracking. 
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Fig. 8. Flow chart of target tracking 

 
 

Considering stable points in target, local Surf points are tracked. It first gives the estimated 
mass center of target and the search area in next frame using KF (KALMAN filter). Then the 
Surf points are extracted in this search area and matched with points in target template. 
According to the corresponding points, the position of target center is corrected and the true 
target size is updated with scale information. The above process is illustrated in Fig.8. It helps 
increase speed by predicting new position of target center and matching local Surf points in 
local search area. Furthermore, if target is blocked partly, we can still track target by no less 
than 3 matched Surf points. When complete occlusion ends, we update search area as the 
whole image to track Surf points. When target has significant changes, the points matching 
fails in continuous frames, the background is corrected to update the new detected target. 

 

3.1 Target Center Estimation by KF 
In the long-term active tracking, the target motion is continuous and uniform. Therefore, it is 
reasonable that KALMAN filter can be applied to predict its path. Setting the mass center of 
target template as initial value, the KALMAN filter predicts the central position in next frame. 
The state function is described by equation (3) and (4). 
 

                        (3) 

 

                                  (4) 

 
where is the position and velocity of target center in frame . and is 
state transition matrix and observation matrix, respectively.  is the measuring position of 
target center, and is time interval of two consecutive frames.  and is process noise and 
measurement noise respectively. 
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3.2 Target search area prediction 
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Fig. 9. Target search area prediction 

 
KF gives the estimated center position ˆ ˆ( , )k kx y of target in frame k . We define 1 1( , )k k

x yS S− − as the 
scale in x  and y axis of target in frame 1k − . Supposing 1L and 2L is scale ratio, the search area 
in frame k  is computed as 1 1

1 2( , )k k
x yL S L S− − , as shown in Fig. 9. We only match the local Surf 

points in this target search area rather than in the traditional whole image. Therefore, the speed 
improves due to fewer points in search area. Meanwhile, we also improved KALMAN filter 
with surf points scale information to predict search area adaptively. Two surf points nearest to 
the center point in the target model are matched in the current window around the predicted 
center point. The matched surf points are brought into equation (1), and then the affine motion 
matrix is computed to get the scale ratio 1 2 11 22 12 21L L h h h h= = − .  The width of the window 
proves changeable with the same height ratio.  Therefore, the scale ratio is adjusted to ensure 
that the new search area includes moving target. 

3.3 Target Tracking and KALMAN Update 
The target is tracked by matching Surf points in the initial target template with those in search 
area frame by frame. The Surf points set is stable to describe target template and robust to 
transformation. The matched points can offer scaling information to predict new search area. 
Even if the target is partially occluded, it can still be tracked with no less than three matching 
points. Based on matching points, the real position of target and its center is updated for 
Kalman filter to locate next search area.  

If tracking fails due to temporary occlusion, the two-layered update mechanism is activated. 
The first layer update is to extend search area to the whole image to find matched points. The 
second layer update is to match background points for compensated difference to detect a new 
target. The above long-term tracking process is illustrated as follows. 

Step1: The Surf points in target template 0 0, )( x yS S  are extracted as local features argt etP . 

Step2: According to the estimated center position ˆ ˆ( , )k kx y by Kalman filter, the adaptive 
search area in frame k is determined.  
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Step3: The Surf points in search area are extracted and matched with Ransac scheme to 
obtain N corresponding pairs. N is compared with threshold thresN  to solve occlusion problem. 

(3a) If thresN N≥ , tracking is considered successful and the scale factor λ  between matched 
target in frame k and template target is determined by equation (5). The real target size 
is 0 0( , )  ( , )k k

x y x yS S S Sλ λ=  and its mass center position is computed by ( , )=( , )k k k kx y x y for updating the 
measuring center position at frame k  of Kalman filter. Return to step 2 and keep target 
tracking in next frame. 
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(3b)If thresN N< , points matching in frame k fails and the amendment is as follows: The 

estimated target central position ˆ ˆ( , )k kx y is kept as measuring central position of Kalman filter 
and the target in frame 1k −  is saved as the target 1 1( , )  ( , )k k k k

x y x yS S S S− −=  in frame k . Return to 
step2 and keep target tracking in frame 1k + . 

(3c)If thresN N< for some consecutive frames, target tracking fails due to temporal complete 
occlusion. The search area extends to the entire image in case of target reappears at a different 
position. We select Surf points in the whole image and match them with argt etP  to find 
N matched points. If thresN N≥ , return to step (3a); if thresN N< , the current frame might be 
corrupted by significant object changes, go to step (3d). 

(3d) We randomly choose some Surf points around the last tracked target in frame k-1 as 
background points. They are matched in current frame to compute global motion and 
compensate background. The previously mentioned target detection in section 2.4 is employed 
to label a new target as model. Goto step1 to continue tracking . 

4. Experimental Results and Analysis 
The algorithm is tested on various aerial videos (520×390 pixels), containing translation, 
rotation, scaling and occlusion. Every target is identified with a rectangle. We evaluate the 
tracking performance in a qualitative way and perform a quantitative comparison with some 
classic methods.  

4.1 Tracking Result of Small Object 
When the target is small, accurate global motion compensation is vital to warp background for 
object detection. In Fig. 10, the tests are made to find that the minimum target size is 6×8 
pixels. Comparing with the minimum size as 10×10pixels in COCOA [25] system, we can 
detect smaller target. The images in Fig.10 are cut from original images and enlarged locally to 
show small target. The small moving car is tracked correctly in sequence car1 with camera 
translation, rotation and zoom. 
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(a) Frame 10                     (b) Frame 50                   (c) Frame 90 

   
(d) Frame250                   (e) Frame 270                  (f) Frame 290 

 

Fig. 10. Small target tracking result in video car1 
 

4.2 Results of Target Lock Tracking in Multi Objects 
Fig. 11 shows target lock tracking results of frame 5, 35, 65, 95, 125 and 155 in video car2 
from a camera mounted on an airplane. The relative motion between airplane carrier and 
tracked car is not stable. The background compensation removes inter-frame background jitter 
to obtain accurate target template. Moreover, the search area predicted by KALMAN filter 
ensures reliable target scope regardless of multiple targets interference. 
 
 

   
(a) Frame 5              (b) Frame 35                    (c) Frame 65 

   
(d) Frame 95           (e) Frame 125                  (f) Frame 155  

 

Fig. 11. Target tracking result in video car2 
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4.3 Tracking result of object occlusion and deformation 

 
(a) Tracking results of Frames 70, 90,110 in video car3  

 
 (b) Tracking results of Frames 782, 813, 834 in video redcar 
Fig. 12. Target tracking results in video car3 and video redcar 

 

  
(a) Traditional Kalman tracking      (b) Updated Kalman tracking        

Fig. 13. Comparison results of Bhattacharya coefficient 
 

In Fig. 12 (a), there exists large angle rotation and target occlusion in video car3. The property 
of rotation invariant Surf points ensures correct matching in the event of rotational scene. 
From the results, we can also see that moving object can be successfully tracked by extending 
search area to the whole image after the occluded target appears again. The Bhattacharyya [26] 
coefficient between tracked target and the target model is compared in Fig. 13. The curve 
drops when target is occluded gradually and the lowest point in the curve stands for complete 
occlusion. Comparing with continuous low curve in Fig. 13 (a) of the traditional KALMAN 
filter, the curve rises up from the bottom in Fig. 13 (b). It verifies that the update mechanism 
can find target again when complete occlusion ends. 

In Fig. 12 (b), there exists deformation in video redcar.  When the redcar turns around, 
almost all the points can not be matched.  The target is newly detected to update target 
template. The Surf points are selected as features to be tracked in the sequence. This update 
mechanism is easy and effective, which prevents complex matching with deformed target. 

4.4 Tracking Result of Object Scaling  
Fig. 14 exhibits results of target tracking in video car4 with object scaling. According to the 
position and scale of the matched Surf points, the state of KALMAN filter is updated to give a 
size-scaling search area. The correct matching of Surf points is achieved by its scaling 
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invariance, which provides basis for target size changing. It can be seen that the real matched 
target is tracked with adaptive scale when the camera zooms in or out.  
 

   
(a) Frame 30             (b) Frame 80                 (c) Frame 130          

   
(d) Frame 180            (e) Frame 230                  (f) Frame 280               

Fig. 14. Target tracking result in video car4 
 

We choose two sequences with target scaling to testify the adaptation. Fig. 15 shows the 
comparisons between tracked target scale and the real scale increasing and decreasing. We 
label the target frame by frame to give the real size and the tracked target size is approximate 
with the real size, which is realized by predicting search area adaptively according to motion 
ratio. The traditional KALMAN filter uses the fixed scale, which is not applicable to target 
scaling videos. 
 

 
(a)Scale increasing                            (b) Scale decreasing             

Fig. 15. Result of tracking target scaling 
 

4.5 Analysis of Average Time and Quantitative Performance 
Table 1 shows the analysis of computation time of the proposed algorithm. The target 
detection methods based on Sift points, traditional direct Surf points and grid sampling Surf 
points are compared. The time cost of Surf points detection and matching reduces 77% 
comparing with Sift points, and the grid sampling method shows 60% improvement in speed 
by contrast with direct method. In target tracking process, the proposed local points in 
predicted search area by KALMAN filter can realize target tracking at 15fps. This is because 
KALMAN filter gives an approximate area for target match and local Surf points are stable to 
be tracked with lower computation complexity. 
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Table 1. Comparison of average time 
Processes Methods Detection(ms) Description (ms) Match(ms) Sum (ms) 

Target 
detection 

Sift[11] 248 312 536 1096 
Direct surf[12] 133 197 281 621 

Grid Surf 142 65 40 247 

Target 
tracking 

Contour[6] 114 157 103 374 
KLT[7] 77 94 82 253 

Whole search 132 199 78 409 
Local search 32 22 16 70 

 
Table 2 shows the quantitative evaluation of the proposed algorithm. Probability of 

Detection (PD) measure provides vital insights on the performance of the detection module. 
Tests are made in all the above videos car1 to car4. PD is computed as the rate between the 
numbers of correct detection with real target number. If the detected target is not complete or 
too large, the detection is wrong. False Tracking Rate (FTR) is presented for each of these 
sequences to measure the performance of the tracking module. If false target occurs or target is 
missing due to partial occlusion and reappearance, the track result is false. As can been seen 
from table 2, the proposed method achieves better PD especially in car1 because global motion 
compensation corrects background and the joint spatial-temporal processing can detect small 
target. The search area prediction and KALMAN update reduce rate of false or missing target, 
which shows the lowest FTR value in car3 with occlusion. 
 

Table 2. Comparison of tracking reliability 
Methods PD FTR 

 Car1 Car2 Car3 Car4 Car1 Car2 Car3 Car4 
Sift[11] 0.83 0.88 0.86 0.92 0.23 0.10 0.18 0.09 
Surf[12] 0.81 0.87 0.87 0.92 0.23 0.09 0.19 0.08 

Contour[6] 0.75 0.76 0.72 0.73 0.26 0.12 0.25 0.18 
KLT[7] 0.74 0.78 0.81 0.83 0.24 0.08 0.22 0.17 

Proposed 0.92 0.89 0.91 0.90 0.11 0.09 0.06 0.10 

5. Conclusion 
This paper presents a new aerial-to-ground target detection and tracking algorithm based on 
Surf point. It selects evenly distributed global Surf points to improve global estimation, 
compensation and target template detection. The local Surf points in the target template are 
then tracked in KALMAN estimated search area to achieve accurate target tracking. 
Experimental results show that the algorithm is robust to aerial video jitter, large rotation and 
scale changing, irregular movement and occlusion of target. In the future, we will study the 
multi-target [27] tracking, and image mosaic to demonstrate the trajectory of the whole scene 
image. 
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