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Abstract 
 

Security and resource-saving are both demands of the fifth generation (5G) wireless networks. 
In this paper, we study the secrecy spectrum efficiency (SSE) and secrecy energy efficiency 
(SEE) of a K-tier massive multiple-input multiple-output (MIMO) enabled heterogeneous 
cellular network (HetNet), in which artificial noise (AN) are employed for secrecy 
enhancement. Assuming (i) independent Poisson point process model for the locations of base 
stations (BSs) of each tier as well as that of eavesdroppers, (ii) zero-forcing precoding at the 
macrocell BSs (MBSs), and (iii) maximum average received power-based cell selection, the 
tractable lower bound expressions for SSE and SEE of massive MIMO enabled HetNets are 
derived. Then, the influences on secrecy oriented spectrum and energy efficiency performance 
caused by the power allocation for AN, transmit antenna number, number of users served by 
each MBS, and eavesdropper density are analyzed respectively. Moreover, the analysis 
accuracy is verified by Monte Carlo simulations. 
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1. Introduction 

Owing to the ever-growing demand for high-quality high-rate wireless communications, the 
fifth generation (5G) cellular networks in the future are likely to be massive multiple-input 
multiple-output (MIMO) enabled heterogeneous cellular networks (HetNets) [1]. With a 
mixture of macrocells and larger number of smaller cells such as microcells, picocells, and 
femtocells, HetNets bring the network closer to end users, thereby providing higher 
throughput and coverage [2]. Massive MIMO, also named large-scale antenna arrays, is an 
emerging physical layer technology which can produce high-resolution spatial beam and 
significantly improve radio spectral efficiency in HetNets [3]. These benefits have put massive 
MIMO enabled HetNets in the spotlight of preliminary 5G discussions [4]. 

In the past few years, the theoretical understanding of massive MIMO enabled HetNets has 
progressed significantly [5]. Recently, stochastic geometry is emerging as a popular technique 
that supports comprehensive yet tractable analysis of massive MIMO enabled HetNets [6-7]. 
To improve throughput in massive MIMO enabled HetNets, inter-tier interference 
coordination strategies were proposed in [8]. User association and interference management in 
massive MIMO aided HetNets were further investigated in [9] and [10]. Spectrum and energy 
efficiency in massive MIMO enabled HetNets were analyzed in [7] and [11]. 

Since the open nature of wireless channels, ensuring security is an essential task for wireless 
communication systems regardless of the type of network structure utilized. Physical layer 
security (PLS) has drawn ever-increasing attention as it can realize secure communication 
without using any ciphering keys [12]. Research efforts on the PLS have been made by 
considering different aspects, such as artificial noise (AN) [13], beamforming [14], and 
cooperative jamming [15], etc. Very recently, the investigation of PLS in HetNets was 
pioneered by the authors of [16]. Based on stochastic geometry, secrecy outage probability 
and network-wide secrecy throughput for HetNets were examined in [17] and [18]. PLS for 
massive MIMO aided HetNets was first investigated in [19]. A very recent contribution on 
coordinated multipoint secrecy transmission in HetNets was made by the authors of [20]. 

While there is a strong desire to improve the coverage and security on the one hand, the 
industry is on the other hand constantly facing the increasing challenge of meeting the demand 
of green communications [21]. Throughput and secrecy capacity maximization leads to large 
spectrum and energy consumptions, which are not desirable in forthcoming communication 
networks. In order to promote economic and ecological sustainability, nowadays researchers 
have made efforts to study the energy and spectral efficiency tradeoff instead of traditional 
pursuit of higher capacity and coverage [22-23]. Nevertheless, secrecy oriented spectrum and 
energy efficiency performance has been rarely discussed in the above researches. The 
researches on the energy and spectral efficiency problem of massive MIMO enabled HetNets, 
such as [7] and [11], mainly focused on the scenario without the existence of eavesdroppers. 
While many security issues in HetNets have been studied in the literature [12-20], controlling 
the spectrum and energy consumption on securing mobile communications in massive MIMO 
enabled HetNets has not been actively addressed. To the best of our knowledge, no prior work 
has accounted for secrecy spectrum efficiency (SSE) and secrecy energy efficiency (SEE) 
when designing massive MIMO enabled HetNets, and a fundamental analysis framework to 
evaluate the secrecy oriented spectrum and energy efficiency performance in massive MIMO 
enabled HetNets is lacking. Motivated by the above reasons as well as the demands for 
security and resource-saving in the future wireless networks, we aim to propose a tractable 
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approach for secrecy spectrum efficiency (SSE) and secrecy energy efficiency (SEE) analysis 
in the downlink of a K-tier massive MIMO enabled HetNets. 

For clarity, our main contributions are summarized below: 
 The achievable ergodic rate for macrocell base station (MBS) users, small-cell base 

station (SBS) users, and eavesdroppers of K-tier massive MIMO enabled HetNets are 
derived respectively on the condition that each MBS transmits artificial noise (AN) in 
the null space of the main channel to guarantee the secrecy at the intended receiver. 

 Under the same conditions, a fundamental analysis framework to evaluate the secrecy 
oriented spectrum and energy efficiency performance in massive MIMO enabled 
HetNets is proposed. 

 The impacts of AN power allocation ratio, MBS’s transmit antenna number, number of 
users served by each MBS, and eavesdropper density on SSE as well as SEE are 
examined. 

The remainder of this paper is organized as follows: Section 2 outlines the system model 
and the fundamental expressions. Section 3 introduces the derivations and analyses of SSE and 
SEE. Section 4 presents the numerical results. Finally, Section 5 concludes this study. 

Notations: ⋅ , {}P ⋅ , and {}EA ⋅  denote absolute value, probability, and expectation with 
respect to A , respectively. { },N λΓ  stands for gamma distribution with parameters N  and λ . 

( )exp λ  represents exponential distribution with parameter λ . ( )Af ⋅  and ( )FA ⋅  denote 
probability density function and cumulative distribution function (CDF) of a random variable 
A , respectively. ( )zΓ  represents the gamma function with parameters z . ( ) [ ]B ,x p q  

represents the incomplete beta function [24, (8.391)] with parameters x , p , and q . 
[ ]2 1 , ; ;F zα β γ  is the Gauss hypergeometric function [24, (9.142)] with parameters α , β , γ , 

and z . AL  stands for Laplace transform with respect to A . Additionally, { } { }max ,0x x+ = . 

2. System Model 
In this study, we consider a K-tier HetNets consisting of macrocells and small-cells such as 
picocells and femtocells. As in other studies, we assume that the locations of the base stations 
(BSs) in the ith tier and eavesdroppers are characterized by two independent homogeneous 
Poisson point process (PPP) iΦ  and EΦ  with densities iλ  and Eλ , respectively. The first tier 
represents the class of MBSs, where each N-antenna MBS adopting massive MIMO 
simultaneously communicates with S users ( 1N S>> ≥ ). SBSs, legitimate users, and 
eavesdroppers are each equipped with a single antenna. In the ith tier, total transmit power of 
each BS is iP , the path loss exponent is iα , and the biasing factor is iB , [ ]2,i K∈ . Under the 
assumption of co-channel deployment and perfect channel state information, each MBS uses 
zero-forcing beamforming to transmit S data streams with equal power assignment. 
Meanwhile, each MBS transmits artificial noise (AN) in the null space of the main channel to 
guarantee the secrecy at the intended receiver. All channels in the system are assumed to 
undergo independent and identically distributed quasi-static Rayleigh fading. 

2.1 Legitimate Users 
Without loss of generality, we analyze a typical users located at the origin o  and consider a 
mobile association policy that associates each legitimate user with the BS providing the 
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maximum average received signal power. Hence, the receive signal to interference plus noise 
ratio (SINR) of a typical user at a random distance ,M oX  from its associated MBS Mo  can be 
expressed as 
 

( )
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where [ ]0,1η∈  denotes the power allocation ratio of the AN power to the total transmit power, 

( ), ~ 1,1M oh N SΓ − +  is the small-scale fading channel power gain between Mo  and the 
typical user, β  is the frequency dependent constant value, 2δ  is the additive noise power, and 

, , ,M M M M S M ANI I I I= + + . The intra-tier interference for a MBS user is given by 
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where ( ), ~ ,1M lh SΓ  and ,M lX  are the equivalent small-scale fading interfering channel 
power gain and distance between the typical user and MBS 1 \ Ml o∈Φ  (except the serving 
MBS Mo ), respectively. The cross-tier interference for a MBS user can be written as 
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where  ( ), ~ exp 1i jh  and ,i jX  are the small-scale fading interfering channel power gain and 
distance between the typical user and SBS j in the ith tier, respectively. The artificial noise 
interference received by a MBS user is given by 
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where ( ), ~ ,1AN lh SΓ  is the equivalent AN interfering channel power gain between the typical 
user and MBS l. 

The SINR of a typical user at a random distance ,k oX  from its associated SBS ko  in the kth 

tier ( [ ]2,k K∈ ) can be formulated as 
 

, ,
2SINR

k

k k o k o
k

k

P g X
I

α
β

δ

−

=
+

,                                               (5) 

 



632                                                              Zhong et al.: Secrecy Spectrum and Energy Efficiency in Massive MIMO HetNets 

where ( ), ~ exp 1k og  is the small-scale fading channel power gain between the typical user and 
its serving SBS ko , and , , ,k k M k S k ANI I I I= + + . The macrocells-tier interference for a SBS user 
is given by  
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where ( ), ~ ,1M lg SΓ  is the equivalent small-scale fading interfering channel power gain 
between the typical user and MBS l. The small-cells-tier interference for a SBS user can be 
written as 
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where ( ), ~ exp 1i jg  is the small-scale fading interfering channel power gain between the 
typical user and SBS j in the ith tier. The artificial noise interference received by a SBS user is 
given by 
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where ( ), ~ ,1AN lg SΓ  is the equivalent AN interfering channel power gain between the typical 
user and MBS l. 

2.2 Eavesdroppers 
In order to analytically characterize the secrecy performance in massive MIMO enabled 
HetNets, the capability of not only legitimate users but also eavesdroppers needs to be 
considered. In this work, we consider a worst-case wiretap scenario in which eavesdroppers 
are assumed to have the capability of multiuser decoding and jointly wiretap the typical user 
[18]. Thus, most of the interference created by concurrent transmission of information signals 
can be completely resolved, and the rest of it can be incorporated into the constant noise. In 
other words, to an arbitrary eavesdropper, the non-ignorable interference is generated by AN. 

When the typical user is connected with a MBS, the receive SINR at the most detrimental 
eavesdropper is given by 
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where ( ), ~ exp 1M eh  and ,M eX  are the equivalent small-scale fading channel power gain and 
distance between the eavesdropper and its targeted MBS, respectively. The aggregate 
interference for a MBS eavesdropper can be written as  
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where ( ), ~ 1e lh SΓ ,  and ,e lX  are the equivalent AN interfering channel power gain and 
distance between the eavesdropper and MBS l, respectively. 

When the typical user is connected with a SBS in the kth tier, the receive SINR at the most 
detrimental eavesdropper can be determined with 
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where ( ), ~ exp 1k eg  and ,k eX  are the equivalent small-scale fading channel power gain and 
distance between the eavesdropper and its targeted SBS in the kth tier, respectively. The 
aggregate interference for a SBS eavesdropper is given by  
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where ( ), 1e lg SΓ ,  and ,e lX  are the equivalent AN interfering channel power gain and 
distance between the eavesdropper and MBS l, respectively. 

3. Secrecy Spectrum Efficiency and Secrecy Energy Efficiency 
In this section, we investigate the network-wide spectrum efficiency and energy efficiency of 
the massive MIMO enabled HetNets based on the secrecy transmission capacity constraint, 
which is defined as the achievable rate of successful transmission of secret messages, i.e., 
achievable secrecy rate [25-26]. In an effort to assess the achievable secrecy rate, we first 
derive the achievable ergodic rate of the typical user and the most detrimental eavesdropper. 

3.1 Achievable ergodic rate 
Given that an accurate achievable ergodic rate of the typical macrocell user is difficult to 
obtain even for traditional HetNets, we first derive the lower bounds of achievable ergodic rate 
for the typical macrocell user in massive MIMO enabled HetNets.  

Lemma 1. The lower bound on the achievable ergodic rate for a randomly selected 
macrocell user can be expressed as 
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Here, MA  is the probability that a typical user is associated with a MBS. 

Proof. See Appendix A. 
Lemma 2. When the typical user is connected with a MBS, the achievable ergodic rate for 

the most detrimental eavesdropper can be given by 
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    Proof. See Appendix B. 
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Lemma 3. For a randomly selected user associated with a SBS in the kth tier, the achievable 
ergodic rate can be formulated as 
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Proof. The proof of Lemma 3 follows similar lines of the proof in Lemma 1 and Lemma 2. 
Lemma 4. When the typical user is connected with a SBS in the kth tier, the achievable 

ergodic rate for the most detrimental eavesdropper can be expressed as 
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Proof. Lemma 4 can be easily obtained following the approach in Lemma 2. 

3.2 Secrecy spectrum efficiency 
SSE, which is defined as the achievable secrecy rate over per unit of bandwidth, is proposed to 
measure the secrecy oriented spectrum efficiency performance in massive MIMO enabled 
HetNets. Based on the results derived in subsection 3.1, achievable secrecy rate is easy to be 
calculated and a tractable lower bound on SSE for massive MIMO enabled K-tier HetNets can 
be obtained. 

Theorem 1. For the system model defined in Section 2, the lower bound on the SSE can be 
determined with 
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where SSE =L L
M SMS R×  and { }*L L e
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= −  denote the lower bound on the SSE and 

achievable ergodic secrecy rate for macrocells, respectively. As well as SSE =k SkR  and 
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= e
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+
−  represent the SSE and achievable ergodic secrecy rate for the kth tier 

small-cells, respectively. 
Proof. The proof of Theorem 1 follows (13), (18), (21), and (28) as well as the law of total 

expectation.  
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3.3 Secrecy energy efficiency 
SEE is used to evaluate the secrecy performance achieved with unit energy consumption. For 
sustainable operation of massive MIMO enabled HetNets, gaining theoretical understanding 
of SEE is as important as that of SSE. In this subsection, we present the lower bound of SEE, 
which is defined as the secrecy rate over the power ratio. 

Theorem 2. The SEE for a massive MIMO enabled K-tier HetNet can be lower bounded as 
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for MBS and SBS in the kth tier are given by ( )( )
3

total 0 -11
1

11

t
M t t

t

PP P S N
ε =

= + + ∆ + Λ∑  and 

total 0 k
k k

k

PP P
ε

= + , respectively. 0
iP  and iε  represent the static hardware power consumption 

and the efficiency of the power amplifier for the ith tier, respectively. The parameters t∆  and 

tΛ  depends on the transceiver chains, precoding, coding and decoding, etc. [27-28]. 
Proof. The proof of Theorem 2 follows (13) and (19) in [7], as well as the similar lines of 

the proof in Theorem 1.  

4. Numerical Results  
In this section, the numerical results for the Monte Carlo simulations and the analyses are 
presented. The former verifies the analysis accuracy, and all the data listed in this section are 
averaged over 100,000 such simulations. The node locations are scattered with PPP, as 
described in Section 2. In this work, we consider a network with 2K = , 1 3.5α = , 2 4α = , 

3
1 10λ −= , 2 12λ λ= , 1 240P P= , 2 910δ −= , 1 2 0.38ε ε= = , 1 4.8∆ = , 2 0∆ = , 8

3 2.08 10S −∆ = × , 

1 1Λ = , 8
2 9.5 10−Λ = × , 8

3 6.25 10−Λ = × , 0
1 4WP = , 0

2 13.6WP = , and 2 1B η= −  [27-28]. 
Other simulation parameters are presented in Table 1. For simplicity, lower bound and Monte 
Carlo are denoted by (L) and (MC) in legend, respectively. 

In Fig. 1-4, we compare the SSE for massive MIMO enabled HetNets with AN power 
allocation ratio, MBS’s transmit antenna number, number of users served by each MBS 
simultaneously, and eavesdropper density, respectively. A fact clearly shown from Fig. 1-4 is 
that the SSE of MBS with massive MIMO is better than that of SBS in most instance. This is 
because the massive MIMO can serve more users in each resource block. 

Fig. 1 shows that the SSE first improves then degrades with increasing η . With η  at a 
value around 0.3, SEE reaches the peak. The reason is that: a) Increasing η  increases the 
interference received by eavesdroppers, thus greatly degrades the receive SINR at the 
eavesdroppers in (9) and (11) as well as increases SSE when η  is low. b) Increasing η  also 
degrades the useful signal received by the MBS user, thus degrades the L

MR  in (13) and 
degrades the SSEL

M  when η  is high. c) The SSE for SBS, denoted by 2SSE , does not 
substantially impact the SSE, since MA  is larger than kA  in this scenario. Moreover, 2SSE  
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improves with increasing η  as the useful signal received by the SBS user would not be 
degraded by the η  increasing. 
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Fig. 1. SSE for different AN power allocation ratio 
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Fig. 2. SSE for different MBS’s transmit antenna number 

 
Table 1. Simulation parameters 

Parameters N S η λE 
Fig.1 & 5 150 10 various 3λ1 
Fig.2 & 6 various 10 0.3 3λ1 
Fig.3 & 7 200 various 0.3 3λ1 
Fig.4 & 8 200 10 0.3 various 

Fig.9 various various various 3λ1 
 

For each curve in Fig. 2, it can be observed that both SSE and 2SSE  improves with 
increasing MBS’s transmit antenna number. Of course, increasing N can significantly improve 
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radio spectral efficiency for MBS. It can also decreases the average distance between the SBS 
user and its serving BS by reducing the kA  in (27), thus increases both the SkR  and 2SSE  in 
(31). 

By presenting the SSE versus the number of users served by each MBS in Fig. 3, we found 
that the SSE does not grow monotonically with S and reaches the peak value with S at a value 
around 20. It’s partly because the 2SSE  degrades with increasing S as shown in Fig. 3. For 
large S, the L

SMR  is more influential than S  to SSE =L L
M SMS R×  in (31) and the L

SMR  degrades 
with increasing S.  

Fig. 4 plots the SSE versus the eavesdropper density. As eavesdropper density increases, the 
SSE accelerates to drop since both 

*e
MR  in (18) and 

*e
kR  in (28) increases. 
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Fig. 3. SSE for different number of users served by each MBS simultaneously 
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Fig. 4. SSE for different eavesdropper density 
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Fig. 5. SEE for different AN power allocation ratio 
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Fig. 6. SEE for different MBS's transmit antenna number 

 
In Fig. 5-8, we compare the SEE for massive MIMO enabled HetNets with AN power 

allocation ratio, MBS’s transmit antenna number, number of users served by each MBS 
simultaneously, and eavesdropper density, respectively. Most of the curves for SEE and the 
corresponding curves for SSE follow the same trend. Therefore, to avoid repetition, we only 
focus on the differences. 

As shown in Fig. 5-8, the SEE for MBS, denoted by 1SEE , is lower than the SEE for the 
whole HetNet, which means the SEE of SBS is better than that of MBS. The reason is that the 
AN generated by MBS will deteriorate the 

*

SINR e
k  in (11) without any energy consumption 

on SBS. 
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Fig. 7. SEE for different number of users served by each MBS simultaneously 
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Fig. 8. SEE for different eavesdropper density 

 
 

Different from SSE, as shown in Fig. 6, SEE does not grow monotonically with MBS’s 
transmit antenna number and reaches the peak value at 200N = . Because increasing transmit 
antenna number not only improve the channel gain, but also increase the total

MP  in (32), which 
means higher energy consumption. 



642                                                              Zhong et al.: Secrecy Spectrum and Energy Efficiency in Massive MIMO HetNets 

0 5 10 15 20 25

0.02

0.03

0.04

0.05

0.06

SSE(bits/s/Hz)

SE
E(

bi
ts

/s
/H

z/
Jo

ul
e)

 

 
N
S
η

S=5

N=100

η=0.3

η=0.9

S=20

N=500

N=200

 
Fig. 9. SEE versus SSE for various values of different parameters 

 
To balance the tradeoff between SSE and SEE, the AN power allocation ratio η , the 

number of users served by each MBS S, and the MBS’s transmit antenna number N should be 
optimized. In order to illustrate the relation of SSE and SEE clearly, the SEE versus SSE for 
various values of different parameters are presented in Fig. 9. As can be observed from the 
curves in Fig. 9, SSE and SEE are aligned varying the value of η  and S. The optimal value of 
η  and S that maximize these two performance metrics (SSE and SEE) are 0.3 and 20, 
respectively. However, the optimal value of N that maximizes SSE is not the one that 
maximizes SEE. With N at a value around 200, the optimal SEE for the massive MIMO 
enabled HetNets is achieved. When N is more than 200, though further increase in MBS’s 
transmit antenna number can still improve SSE, it will deteriorate SEE and greatly increase the 
cost and difficulty in antenna deployment. Therefore, the optimal value of N is 200 for the 
tradeoff between SSE and SEE. These optimal values can be used to guide the massive MIMO 
enabled HetNets design to meet the demand of security and resource-saving. 

5. Conclusions 
In this paper, we consider a K-tier massive MIMO enabled HetNet, where malicious users can 
cooperate to eavesdrop and the MBS adopting massive MIMO can generate AN to deteriorate 
the channels of eavesdroppers. Firstly, the achievable ergodic rate for MBS users, SBS users, 
and eavesdroppers are derived, respectively. Then, a fundamental analysis framework to 
evaluate the SSE and SEE performance in the networks described above is proposed based on 
stochastic geometry. Furthermore, the impacts of AN power allocation ratio, MBS’s transmit 
antenna number, number of users served by each MBS, and eavesdropper density on SSE as 
well as SEE are examined. From the numerical results of our work, the optimal SSE-SEE 
tradeoff is achieved at 0.3η = , 20S =  and 200N = , which can be adopted for advancing the 
design of massive MIMO enabled HetNets. 
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For the future work, it is important to gain a deeper understanding into SSE-SEE tradeoff in 
coordinated multi-point (CoMP) HetNets. Additionally, it would be interesting to investigate 
the SSE and SEE with wireless backhaul or imperfect channel state information in HetNets. 

Appendix 

A. Proof of Lemma 1 

Proof. Both ( )
,M oXf x  and MA  can be obtained following the approach in [29]. The 

achievable ergodic rate for a randomly selected macrocell user is denoted by MR , 
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where step (a) follows from the law of large numbers and 
{ } { } { } { }, , ,E E E EM M M M AN M SI I I I= + + . { },E M MI  can be evaluated as 
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where step (b) follows from Campbell’s theorem [30] and ,M lX  is rewritten by y  for ease of 

exposition. Similarly, { },E M ANI  can be obtained as 
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 is the closest distance between the interfering BS in the ith 

tier and the selected macrocell user. 
Substituting (A2), (A3), (A4) and (A5) into (A1), we can arrive at the final result. 
 

B. Proof of Lemma 2 
    Proof. When the typical user is connected with a MBS, the CDF of the receive SINR at the 
most malicious eavesdropper is derived as 
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where step (c) follows from the probability generating functional (PGFL) of PPP [31], and  
 

( )
( ) ( ) ( )

1 1 1
2 2

, ,

1 1 1

E exp E exp exp
1 1 1

M e M eS I x SI x S x
P P P

α α αγ δ γ γ δ
η β η β η β

    +        − = − −          − − −        
.          (B3) 

 
( )( )( ){ }1

, 1E exp / 1M eSI x Pαγ η β− −  can be obtained as 

 

( )
1 1

1

1

1
1

,

1

1
1

,

,
, ,

\1

,
\

1 ,

E exp =E exp
1 1

E E exp
1

exp 2 1 E exp
1

M

e e l

M

e l

M e
e l e l

l o

y h e l e
l o

h e l e

SI x x h X
P

x h y

x h y

α α
α

α
α

α
α

γ γh
h β h

γh
h

γhpl
h

−

∈Φ

−

∈Φ

−

         − −        − −        
     = −   −     

  = − − −  − 

∑

∏

0
d ,e ey y

∞         
∫

    (B4) 

 
where ,e lX  is rewritten by ey  for ease of notation, and ( )( ){ }1 1

,E exp / 1e l ex h yα αγh h−− −  can 

be derived as 
 

,1 1
1 1

,

1 1

1
,

, , ,0
E exp exp d

1 1 ( 1)!

1 .
1

l e

e l

hS
e l

h e l e e l e l e

S

e

h ex xh y h y h
S

x y

α α
α α

α α

γh γh
h h

γh
h

−−
∞− −

−−

     − = −    − − −     

 
= + − 

∫
             (B5) 

 
Furthermore,  
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where 1= et y α− . 

With the above results, we can arrive at the final result. 
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