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Abstract 
 

Co-saliency detection is a task of detecting same or similar objects in multi-scene, and has 
been an important preprocessing step for multi-scene image processing. However existing 
methods lack efficiency to match similar areas from different images. In addition, they are 
confined to single image detection without a unified framework to calculate co-saliency. In 
this paper, we propose a novel model called Superpixel Matching- Cellular Automata (SMCA). 
We use Hausdorff distance adjacent superpixel sets instead of single superpixel since the 
feature matching accuracy of single superpixel is poor. We further introduce Cellular 
Automata to exploit the intrinsic relevance of similar regions through interactions with 
neighbors in multi-scene. Extensive evaluations show that the SMCA model achieves leading 
performance compared to state-of-the-art methods on both efficiency and accuracy. 
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1. Introduction 

Recently, with the development of multi-scene application, co-saliency detection[1],[2] 
aimed at locating the most important and similar objects in multi-scene has been more and 
more necessary and has been widely used in collaborative segmentation, multi-scene re-target 
recognition, image and video summaries, etc. The saliency detection methods of single image 
have developed rapidly and some of them are directly used in co-saliency detection. However, 
they are often ineffective when the object is integrated in multi-scene. 

At present, there are only a few co-saliency detection methods. For example, Li et al.[3] 
employed a multi-scene structure model based on single image detection for co-saliency; 
however, their method was only applicable to two images but not to multiple images. Fu et 
al.[4] constructed co-saliency image through color contrast fusion, spatial distribution and 
consistency of images after extracting consistency information from multiple images by 
clustering colors. This method used simple color clustering at pixel level and lacked the 
structural information of the target, which can cause wrong detection of targets and 
background areas with the same colors. Liu et al.[5] calculated overall similarity of segmented 
areas at image level from color histogram. In this method, mismatching is prone to happen 
since the calculation merely based on the similarity of the characteristics of the segments. Cao 
et al.[6] obtained first saliency map of single image using multiple algorithms, and then 
co-saliency map using low-rank decomposition to fuse multiple saliency maps. Accuracy is 
highly affected by the algorithms of single image saliency detection in this method. In 
reference 114, in order to extract the characteristics of both target and background, Zhang et 
al.[1] comprehensively trained on similar and different images by extracting the 
characteristics in depth. The performance was yet to be improved because they only employed 
average color of CIELab in the matching of regional similarities between images. Later on, 
they applied polyinstantiation study and autoregulation study to find coincident targets; 
nevertheless, both study methods are hard to extend due to problems like high complexity and 
necessity of precise calibration of targeted training set. In summary, two problems exist for the 
abovementioned methods: lack of efficient methods for matching similar areas of images, and 
lack of a general framework applicable for co-saliency calculation.  

In this paper, combining repeatability and saliency, we firstly propose a matching algorithm 
based on neighboring superpixel sets of Hausdorff distance to calculate the similarity between 
images and to depict the occurrence of area repetition. Secondly, inspired by Ref. [7], we 
propose a 2-Layer cellular automata model to calculate the saliency spread of infra-images and 
inter-images, in order to ensure complete saliency of targeted area. The result shows that the 
proposed superpixel matching algorithm is effective and that the multi-scene saliency spread 
algorithm demonstrates robustness, whose detection performance is superior to mainstream 
algorithm at present.  

2. Superpixel matching 

For convenience of calculations and intrinsic structural information, the image was firstly 
segmented into a set of superpixels by simple linear iterative clustering (SLIC) algorithm[8]. 
The core of detecting the common salient object is the superpixel matching in different images. 
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We define 1{ }n
i iI ==I  as an image set consisting of n  images. Each image iI  is segmented 

into a superpixel set , 1{ } iN
i i s sr ==R , where iN  is the number of superpixels. In this paper, 

superpixel matching means, for any superpixel ,i sr  in image iI , finding a set of superpixels 

with high similarity in another image jI . Note that not all superpixel can be matched and one 
superpixel can have several matching superpixels in other images. 

2.1 Single superpixel 

Our aim is to find the matching superpixel of ,i sr . Briefly, we can calculate the similarity of all 

superpixels in jI and set the similarity threshold δ  to choose eligible ones as matching 
superpixels. This matching method is single superpixel matching. The feature similarity 
between any two of superpixels can be calculated according to Eq. (1), 
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where ,i sc  is the average color value of ,i sr  in the CIELab color space. cs  is the intensity for 
weight control. It is determined to be 10 as in reference[9] because it is not sensitive in the 
range [5,15].  

As Fig. 1 shows, the red regions of left image is input superpixel and the similarity 
threshold is set as 0.9δ = . The red regions in the upper row of the right images are matching 
results by single superpixel. Obviously, there are many mismatching results, which include 
regions on the object and background regions with similar color. The major cause for this error 
is exactly the above matching method. All superpixels are calculated without the spatial 
structure of other superpixels.  

 
Single superpixel

Input

Neighbor superpixel sets via Hausdoff distance

 
Fig. 1. Superpixel matching results of a test image (left) by single superpixel (upper row) and adjacent 

superpixel sets via Hausdorff distance (lower row) 

2.2 Adjacent superpixel sets via Hausdorff distance 
The description of a superpixel contains not only the inherent feature of its own internal pixels, 
but also the spatial structure of its adjacent superpixels. In detail, if the feature of a superpixel 
is similar to adjacent superpixels, the structure feature of this superpixel is smooth. On the 
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other hand, if the feature is entirely different, this superpixel is isolate. In addition, if the 
feature cuts both ways, this superpixel may be on the edges of the object. 

Fig. 2 is an example of finding superpixel ,j tr  that matches ,i sr . Considering ,i sN , a 

neighbor of ,i sr , we can transform the solution to the calculation of Hausdorff distance 

between ,i sN and ,j tN . 

, , , , , ,( , ) max( ( , ), ( , ))i s j t i s j t j t i sH N N h N N h N N=   (2) 

where , ,( , )i s j tH N N  is Hausdorff distance between ,i sN  and ,j tN , and , ,( , )i s j th N N  is the 

orientation-distance from ,i sN  to ,j tN . In this paper, Modified Hausdorff Distance 
(MHD)[10] is used. 
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where ac  is the average color value of superpixel a  in CIELab color space, and ,i sN
 
is the 

number of
 ,i sN . Now we can define the similarity between ,i sN  and ,j tN  as: 
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Take pixels whose ,
,
s t
i jv  is bigger than δ  to constitute matching superpixel sets of ,i sr as did 

in single superpixel matching. As the lower row of Fig. 1 shows, compared with single 
superpixel matching, the adjacent superpixel sets matching can effectively eliminate some 
mismatching caused by isolate superpixel so that the matched superpixels are basically inside 
the object. 

,i sr,i sN ,j tN ,j tr

Calculate 
Hausdorff 
Distance

 
Fig. 2. Matching result by adjacent superpixel sets  

3. Co-Saliency Detection via 2-Layer Cellular Automata 

In Ref. [7], Cellular Automata method was proposed to calculate the saliency of a single image. 
The core concept of this method is that the saliency of one superpixel is affected by itself and 
the adjacent superpixels. All of the superpixels will converge after several times of spread. 
However, for co-saliency detection, as shown in Fig. 3, the saliency of one superpixel (red 
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spots) is not only affected by the adjacent superpixels (blue and yellow spots) but also affected 
by the matched superpixels in other images (green spots). 
 

Inter-images

Intra-image

 
Fig. 3. Co-saliency detection model 

 
According to this theory, we propose 2-layer Cellular Automata via intra image and inter 

images spread: 
1
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where m
iS  is the saliency of all superpixels in iI  after m  times of status updates, 0

iS  is the 

initial saliency, intra
iF  is the influence matrix of superpixels in iI , ,

inter
i jF  is the influence 

matrix from jI  to iI  and 1λ  and 2λ  are impact factors. The state machine is stable after m  
times of status updates and the final m

iS  is the saliency of iI . Note that, the initial saliency 
0
iS  can be obtained from single image saliency detection[11]-[25]. Here, MR method[16] was 

adopted to get 0
iS . On the one hand, the saliency was obtained by image spread under 

superpixel level; on the other hand, image structural information used can be applied again to 
the calculation of intra-image influence.  

3.1 Intra-image influence matrix  
The similarity of intra-image superpixels is calculated by color similarity in CIELab color 
space. We define the initial intra-image influence matrix, ˆ [ ]

i i

intra s,t
i i N Nf ×=F , to describe the 

influence among superpixels, 
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where ,i s
 
is the 2-layer adjacent region. As can be seen from Fig. 3, different from ,i sN , 
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,i s
 
includes not only directly adjacent superpixels, shown as the blue spots, but also the 

indirectly adjacent superpixels, shown as the yellow spots, and the boundary superpixels, 
shown as the blue rectangular frame. Then the diagonal matrix is 

1 2{ , ,..., }
i

intra
i Ndiag d d d=D , where s,t

i it
d f=∑ . Normalizing the initial intra-image 

influence matrix ˆ intra
iF  leads to: 

1 ˆintra intra intra
i i i

−
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3.2 Inter-images influence matrix 
To focus on the influence of other images in the same image set, we firstly use the method 
introduced in section 3.2 to obtain ,

,
s t
i jv , then define inter-images influence matrix 
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to describe the influence by any two of superpixels in different images, 
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where δ  is saliency matching threshold. The parameter is set to be 0.9 according to our 
experience. 

Similarly, diagonal matrix 1 2{ , ,..., }
i

intra
i Ndiag d d d=D  is obtained, where ,

s,t
i i jt

d f=∑ . 

Normalize the initial matrix ˆ intra
iF  considering the influence of the other 1n −  images, and the 

final inter-images influence matrix is indicated as: 
11 ˆ

1
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3.3 The termination condition for iteration 

After confirming intra
iF  , ,

inter
i jF  and the initial saliency map, 0

1{ }n
i i=S , saliency of superpixels 

can be spread via iteration updates as Eq. 5. According to the experiment in Ref. [7], after 20 
times of cellular automata iteration, the saliency of the superpixels stabilizes, that is, the 
system reaches stable status. However, it was found in our experiment that the system can 
sometimes terminate in advance. The difference of each image’s saliency between two sequent 
updates can be used to determine the termination condition. 

1

2[1, ]
max( )m m

i ii n

+

∈
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When ε∆ < (where ε  is the set minimum threshold), it is considered that the saliency 
does not change significantly anymore. Therefore, the termination condition for iteration is 
given as: when the saliency of each image does not change significantly anymore or when 
number of iterations reaches maximum M=20 (determined as in Ref. [7]).  

3.4 Algorithm procedure and analysis 
It can be seen from Eq. (5), Eq. (7) and Eq. (9) that a superpixel is primarily influenced by the 
saliency of adjacent infra-superpixels. If the superpixel has matching superpixels in most other 
parts of the image, its saliency is more influenced by other images; but if it has only a few or no 
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matching superpixels, its saliency becomes smaller and smaller in the iteration of Eq. (5). Thus, 
through iteration of 2-layer cellular automata, common superpixels in all the images have a 
higher saliency, while superpixels only existing in a few images have a lower saliency. 
Furthermore, common background superpixels can be effectively restrained due to the 
restriction of initial saliency (approaching 0). Co-saliency detection can be completed through 
this spread model.  

Table 1 shows the overall procedure of our SMCA model, where lines 1-6 are to construct 
superpixel matching and image structure impact factor matrix and lines 7-12 are to spread 
saliency infra- and inter-images.  

 
Table 1. The procedure of SMCA algorithm 

Alg. SMCA 

Input: image set 1{ }n
t iI ==I  

Output: co-saliency map 1{ }n
i i=S  

1. Segment each image iI  into superpixel sets , 1{ } iN
i i s sr ==R  by SLIC algorithm. 

2. Calculate the infra impact factor matrix intra
iF  of each image. 

3. Calculate initial saliency map 0
1{ }n

i i=S  using MR algorithm. 

4. Construct adjacent superpixel sets ,i sN  for each superpixel ,i sr . 

5. Calculate matching similarity ,
,
s t
i jv  of any two superpixels according to Eq. (2) and Eq. (4). 

6. Construct inter-images impact factor matrix ,
inter

i jF . 

7．while
 

ε∆ >  and m M<  do 
8．  for i=1 : n do 
9．   update saliency map of each image  
   

 

1
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10． end 

11． calculate change of saliency 
1

2[1, ]
max( )m m

i ii n

+

∈
∆ = −S S ; 

12. end 

4. Experimental Evaluation 

4.1 Parameters and Evaluation Metrics  
Testing dataset: So far, there are only two common co-saliency datasets, ImgPair[3] and 
iCoseg[26], with the whole true value label at pixel level. iCoseg is the most commonly 
applied dataset in co-saliency measurement and co-segmentation algorithm. It contains 38 
images sets of more than 5 images, with 634 images in total. ImgPair is also in widespread use. 
Every image set of ImgPair has two images and there are 210 images altogether. So all the 
algorithm measurements were based on these two datasets.  
Algorithm comparison: Here comparisons were made among typical co-saliency detection 
algorithms from recent years: CB-C[4] (multi-scene algorithm based on color cluster), HS[5] 
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and SA[6] and typical single image saliency detection algorithms: CS-S[4] (single image 
algorithm based on color cluster), MR[16], RBD[22], HDCT[21] and RR[25]. 
Evaluation Measures: As is described in Ref. [27], three commonly applied performance 
metrics are adopted for our quantitative evaluation as follows: 

Precision-recall (PR). To evaluate the final saliency map S , we can convert it to a binary 
mask M  with a threshold sliding form 0 to 255 and compute Precision and Recall by 
comparing M with ground-truth G : 

M G
Precision

M
∩

=       (11) 

M G
Recall

G
∩

=     (12) 

F-measure. In general, neither precision nor recall can comprehensively evaluate a saliency 
map. In other words, we both need the high precision and recall. To this end, the F-measure is 
put forward as the overall performance metrics: 

2

2

(1 )
measure

Precision RecallF
Precision Recall

β
β
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=
⋅ +

   (13) 

where 2 0.3β =  as a non-negative weight which was proved in Ref. [28] to insure the 
precision. 

Receiver operating characteristics (ROC) curve. Besides PR and F-measure, we can also 
report the false positive rate (FPR) and true positive rate (TPR) when binarizing the saliency 
map with a set of fixed thresholds: 

M G
TPR

G
∩

=        (14) 

M G
FPR

M G M G

∩
=

∩ + ∩
      (15) 

Where M and G  respectively denote the opposite of the binary mask M  and ground-truth G . 
The ROC curve is the plot of TPR versus FPR by testing all possible thresholds. 

Arear under ROC curve (AUC). While ROC represents the performance of a model as a 
two-dimensional curve, by calculating as the area under the ROC curve, the AUC distills this 
information into a single scalar. 

Mean Absolute Error (MAE). The above evaluation measures do not consider the true 
negative saliency assignments, for example the pixels correctly marked as non-salient. For a 
comprehensive comparison, it is necessary to evaluate MAE which calculates the average 
absolute error between the saliency map S  and the ground truth G  of the image (W H×  
resolution) in pixel  

1 1

1 | ( , ) ( , ) |
W H

i j
MAE S i j G i j

W H = =

= −
× ∑∑    (16) 

MAE score directly indicates how similar a saliency map S  is to the ground truth G . 
Parameter setting: SLIC superpixel segmentation number 200iN = . Compactness weight 

value was set as 20. 1λ  and 2λ  in Eq. (5) were experiencedly chosen to be 0.5 and 0.3, 
respectively. Maximum iteration number 20M = . Threshold value for iteration termination 

310ε −= . Threshold value for matching similarity 0.9δ = . 
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4.2 Method Comparisons 
Firstly, several state-of-the-art methods are compared with our SMCA model. Fig. 4(a) and 
Fig. 4(b) respectively show the comparisons of PR cure, ROC cure, MAE, F-measure and 
AUC between the SMCA and other models on ImgPair and iCoseg. It can be seen from the 
figure that our SMCA model shows significant improvement in both recall rate and accuracy. 
The relatively high F-measure value indicates that the overall performance of the proposed 
SMCA model is superior to other algorithms and the relatively low MAE value indicates that 
our result is closer to true value. 

Fig. 5(a) and Fig. 5(b) respectively show some examples of detection effectiveness based 
on ImgPair and iCoseg dataset. It is demonstrated that most co-saliency detection algorithm, 
such as HS, SA, and the proposed SMCA model have a better performance. Particularly, some 
common target areas can be highlighted. It is evident from row 2 that result of CB-C algorithm 
is the same color pixel value from different images as it only used color cluster at pixel level. It 
is especially sensitive to color difference cause by different illumination intensity and 
detection is not complete without considering structure properties of pixels. As for HS 
algorithm, mismatching shows up a lot because simple color matching at regional level is 
applied without regard to adjacent structure characteristics, resulting in mismatching of targets 
and background. SA algorithm generally performs better, but since the fusion of algorithm 
detection is the core, its performance highly depends on the effectiveness of algorithm 
detections. Take the second set of images in Fig. 5(b) as an example. Athletes in white are 
common saliency targets. Athletes in red are saliency targets in a few images but not 
co-saliency targets of the whole image set. Since a few images contain red pixel values, none 
of the three algorithms can effectively eliminate athletes in red which are not the co-saliency 
target. The proposed SMCA model utilizes adjacent superpixel matching algorithm, bettering 
detection effectiveness despite illumination difference, structure variation, background 
complexity, etc.  

CB-C    CB-S     HS      MR      SA    RBD    HDCT    RR     Ours
 

(a) Comparison results on the ImgPair dataset in terms of PR cure, ROC cure, MAE, F-measure and 
AUC 

CB-C    CB-S     HS      MR      SA    RBD    HDCT    RR     Ours  
(b) Comparison results on the iCoseg dataset in terms of PR cure, ROC cure, MAE, F-measure and 

AUC 
Fig. 4. Quantitative comparisons of the proposed method and other state-of-the-art methods 
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(a) Examples in the ImgPair dataset  

 
(b) Examples in the iCoseg dataset  

Fig. 5. Visual comparisons of different methods (from top to bottom: original image, CB-C, CB-S, HS, 
MR, SA, RBD, HDCT, RR, our proposed SMCA and true value) 
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4.3 Run time analysis 
Table 2 shows the comparison of average run time between the proposed SMCA model and 
other co-saliency detection methods. The measurement environment was Intel Xeon E5-2620 
2.00GHZ, RAM 16GB. All the algorithms directly operated the source code published by the 
author under Matlab 2012b platform. It is worth noting that the SA algorithm is a fusion 
algorithm. So its overall run time depends on all the other algorithms. The table only gives the 
time for fusion part but not the overall run time, thus relatively low. It can be seen from the 
table that the proposed SMCA algorithm has a similar complexity with CB-C algorithm, with 
run time much lower than HS algorithm. Further more, other models such as CB-C and  RBD 
focus on single image saliency detection. 
 

Table 2. Comparison of average run time between different co-saliency algorithms 
Method Run time(s) 

CB-C 5.5 
CB-S 2.1 
HS 24.9 
MR 1.7 
SA 1.9 

RBD 0.25 
HDCT 4.9 

RR 1.8 
Ours 6.3 

5. Conclusion 

Based on Hausdorff distance, a novel algorithm using adjacent superpixel sets for superpixel 
matching is proposed. The result shows that matching effectiveness is superior to the 
traditional single superpixel method. Further on, impact factor matrix are constructed for 
infra- and inter-images, and 2-layer cellular automata spread model is constructed for 
multi-scene co-saliency detection. Experiment result indicates that our proposed SMCA 
model has significant advantages in both robustness and time complexity. In addition, 
different from other co-saliency detection model, the proposed 2-layer cellular automata is a 
uniform model combining similarity of infra-images and inter-images, with excellent 
extendibility. 

As future work, we will consider to add more characteristics such as color histogram and 
textual features for more accurate superpixel matching. Moreover, only a few datasets can be 
used to test the co-saliency detection model. Therefore, we may focus on making a new 
dataset. 

Acknowledgements 

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant 
No.: 61501509). 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017                                          2587 

References 

[1] D. Zhang, J. Han, C. Li and J. Wang, “Co-saliency detection via looking deep and wide,” in Proc. 
of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2994-3002, June 7-12, 
2015. Article (CrossRef Link). 

[2] D. Zhang, D. Meng, C. Li, L. Jiang, Q. Zhao and J. Han, “A Self-Paced Multiple-Instance Learning 
Framework for Co-Saliency Detection,” in Proc. of IEEE International Conf. on Computer Vision 
(ICCV), pp. 594-602, Dec. 13-16, 2015. Article (CrossRef Link). 

[3] H. Li and K. N. Ngan, “A Co-Saliency Model of Image Pairs,” IEEE Transactions on Image 
Processing, vol 20, no.12, pp.3365-3375, 2011. Article (CrossRef Link). 

[4] H. Fu, X. Cao and Z. Tu, “Cluster-Based Co-Saliency Detection,” IEEE Transactions on Image 
Processing, vol 22, no.10, pp.3766-3778, 2013. Article (CrossRef Link). 

[5] Z. Liu, W. Zou, L. Li and L. Shen, “Co-Saliency Detection Based on Hierarchical Segmentation,” 
Signal Processing Letters, vol 21, no.1, pp.88-92, 2014. Article (CrossRef Link). 

[6] X. Cao, Z. Tao, B. Zhang and W Feng, “Self-adaptively Weighted Co-saliency Detection via Rank 
Constraint,” IEEE Transactions on Image Processing, vol 23, no.9, pp.4175-4186, 2014. 
Article (CrossRef Link). 

[7] Y. Qin, H. Lu, Y. Xu and H. Wang, “Saliency detection via Cellular Automata,” in Proc. of IEEE 
Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 110-119, June 7-12, 2015. 
Article (CrossRef Link). 

[8] R. Achanta, A. Shaji, K. Smith, A. Lucchi , P. Fua and S. Süsstrunk, “SLIC superpixels compared 
to state-of-the-art superpixel methods,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol 34, no.11, pp.2274-2282, 2012. Article (CrossRef Link). 

[9] J. Kim, D. Han, Y. Tai and J. Kim, “Salient Region Detection via High-Dimensional Color 
Transform and Local Spatial Support,” IEEE Transactions on Image Processing, vol 25, no.1, 
pp.9-23, 2016. Article (CrossRef Link). 

[10] M. Dubuisson and A. K. Jain, “A modified Hausdorff distance for object matching,” in Proc. of the 
12th IAPR International Conf. on Pattern Recognition, pp. 566-568, October 9-13, 1994. 
Article (CrossRef Link). 

[11]  M. Cheng, G. Zhang, N. J. Mitra, X. Huang and S. Hu, “Global contrast based salient region 
detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 37, no.3, pp. 
569 -582, 2016. Article (CrossRef Link). 

[12] K. Chang, T. Liu, H. Chen and S. Lai, “Fusing generic objectness and visual saliency for salient 
object detection,” in Proc. of IEEE International Conf. on Computer Vision (ICCV), pp. 914-921, 
November 6-13, 2011. Article (CrossRef Link). 

[13] F. Perazzi, P. Krähenbühl, Y. Pritch and A. Hornung, “Saliency filters: Contrast based filtering for 
salient region detection,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition 
(CVPR), pp. 733-740, June 16-21, 2012. Article (CrossRef Link). 

[14] Y. Wei, F. Wen, W. Zhu and J. Sun, “Geodesic saliency using background priors,” Computer 
Vision–ECCV, pp. 29-42, October 7-13, 2012.Article (CrossRef Link) 

[15] Q. Yan, L. Xu, J. Shi and J. Jia, “Hierarchical saliency detection,” in Proc. of IEEE Conf. on 
Computer Vision and Pattern Recognition (CVPR), pp. 1155-1162,  June 23-28, 2013. 
Article (CrossRef Link). 

[16] C. Yang, L. Zhang, H. Lu, X. Ruan and M. Yang, “Saliency detection via graph-based manifold 
ranking,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 
3166-3173, June 23-28, 2013. Article (CrossRef Link). 

[17] R. Margolin, A. Tal and L. Zelnik-Manor, “What makes a patch distinct?,” in Proc. of IEEE Conf. 
on Computer Vision and Pattern Recognition (CVPR), pp. 1139-1146, June 23-28, 2013. 
Article (CrossRef Link). 

[18] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng and S. Li, “Salient object detection: A discriminative 
regional feature integration approach,” in Proc. of IEEE Conf. on Computer Vision and Pattern 
Recognition (CVPR), pp. 2083-2090, June 23-28, 2013. Article (CrossRef Link). 

http://dx.doi.org/doi:10.1109/CVPR.2015.7298918
http://dx.doi.org/doi:10.1109/ICCV.2015.75
http://dx.doi.org/doi:10.1109/TIP.2011.2156803
http://dx.doi.org/doi:10.1109/TIP.2013.2260166
http://dx.doi.org/doi:10.1109/LSP.2013.2292873
http://dx.doi.org/doi:10.1109/TIP.2014.2332399
http://dx.doi.org/doi:10.1109/CVPR.2015.7298606
http://dx.doi.org/doi:10.1109/TPAMI.2012.120
http://dx.doi.org/doi:10.1109/TIP.2015.2495122
http://dx.doi.org/doi:10.1109/ICPR.1994.576361
http://ieeexplore.ieee.org.ezaccess.library.uitm.edu.my/xpl/RecentIssue.jsp?punumber=34
http://dx.doi.org/doi:10.1109/TPAMI.2014.2345401
http://dx.doi.org/doi:10.1109/ICCV.2011.6126333
http://dx.doi.org/doi:10.1109/CVPR.2012.6247743
http://dx.doi.org/doi:10.1007/978-3-642-33712-3_3
http://dx.doi.org/doi:10.1109/CVPR.2013.153
http://dx.doi.org/doi:10.1109/CVPR.2013.407
http://dx.doi.org/doi:10.1109/CVPR.2013.151
http://dx.doi.org/doi:10.1109/CVPR.2013.271


2588                                                     Zhang et al.: Co-saliency Detection Based on Superpixel Matching and Cellular Automata  

[19] X. Li, H. Lu, L. Zhang, X. Ruan and M. Yang, “Saliency detection via dense and sparse 
reconstruction,” in Proc. of IEEE International Conf. on Computer Vision (ICCV), pp. 
2976-2983,  December 1-8, 2013. Article (CrossRef Link). 

[20] M. Cheng, J. Warrell, W. Lin, S. Zheng, V. Vineet and N. Crook, “Efficient salient region detection 
with soft image abstraction,” in Proc. of IEEE International Conf. on Computer Vision (ICCV), pp. 
1529-1536, IEEE (2013). Article (CrossRef Link). 

[21] J. Kim, D. Han, Y. Tai and J. Kim, “Salient region detection via high-dimensional color 
transform,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 
883-890, June 24-27, 2014. Article (CrossRef Link). 

[22] W. Zhu, S. Liang, Y. Wei and J. Sun, “Saliency optimization from robust background detection,” 
in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2814-2821, June 
24-27, 2014. Article (CrossRef Link). 

[23] R. Liu, J. Cao, Z. Lin and S. Shan, “Adaptive partial differential equation learning for visual 
saliency detection,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 
pp. 3866-3873, June 24-27, 2014. Article (CrossRef Link). 

[24] S. Lu, V. Mahadevan and N. Vasconcelos, “Learning optimal seeds for diffusion-based salient 
object detection,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 
pp. 2790-2797, June 24-27, 2014. Article (CrossRef Link). 

[25] C. Li, Y. Yuan, W. Cai, Y. Xia, D. Feng, “Robust saliency detection via regularized random walks 
ranking,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 
2710-2717, June 7-12, 2015. Article (CrossRef Link). 

[26] D. Batra, A. Kowdle, D. Parikh, J. Luo and T. Chen, “Interactively Co-segmentating Topically 
Related Images with Intelligent Scribble Guidance,” International Journal of Computer Vision, 
vol 93, no.3, pp.273-292, 2011. Article (CrossRef Link). 

[27] A. Borji, M. Cheng, H Jiang, and J. Li, “Salient Object Detection: A Survey,” Eprint Arxiv, vol 16, 
no. 7, pp.3118-3213, 2014.Article (CrossRef Link). 

[28] R. Achanta, S. Hemami, F. Estrada and S. Susstrunk, “Frequency-tuned salient region detection,” 
in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 
1597-1604, 20-25 June 2009. Article (CrossRef Link). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://dx.doi.org/doi:10.1109/ICCV.2013.370
http://dx.doi.org/doi:10.1109/ICCV.2013.193
http://dx.doi.org/doi:10.1109/CVPR.2014.118
http://dx.doi.org/doi:10.1109/CVPR.2014.360
http://dx.doi.org/doi:10.1109/CVPR.2014.494
http://dx.doi.org/doi:10.1109/CVPR.2014.357
http://dx.doi.org/doi:10.1109/CVPR.2015.7298887
http://dx.doi.org/doi:10.1007/s11263-010-0415-x
https://arxiv.org/abs/1411.5878
http://dx.doi.org/doi:10.1109/CVPR.2009.5206596


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017                                          2589 

 
 

 
 

Zhaofeng Zhang is currently pursuing a master degree at PLA University of Science 
and Technology. His current research interests include image processing and video 
information processing. 

 
 

Zemin Wu is a professor at PLA University of Science and Technology. He received 
the Ph.D. from PLA University of Science and Technology in 2002. His research interests 
include data integration and image processing. 

 
 

Qingzhu Jiang received the M.E. degree from PLA University of Science and 
Technology in 2016. His current research interests include image processing and video 
quality evaluation. 

 
 

Lin Du is currently pursuing a master degree at PLA University of Science and 
Technology. His current research interests include video transmission guarantee and 
video quality evaluation. 

 

Lei Hu is a lecturer at PLA University of Science and Technology. He received the 
Ph.D. from PLA University of Science and Technology in 2013. His research interests 
include compressive sensing and video information processing. 

 


	1. Introduction
	2. Superpixel matching
	2.1 Single superpixel
	2.2 Adjacent superpixel sets via Hausdorff distance

	3. Co-Saliency Detection via 2-Layer Cellular Automata
	3.1 Intra-image influence matrix
	3.2 Inter-images influence matrix
	3.3 The termination condition for iteration
	3.4 Algorithm procedure and analysis

	4. Experimental Evaluation
	4.1 Parameters and Evaluation Metrics
	4.2 Method Comparisons
	4.3 Run time analysis

	5. Conclusion
	Acknowledgements
	References

