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Abstract 
 

Nonnegative matrix factorization (NMF) has received considerable attention due to its 
effectiveness of reducing high dimensional data and importance of producing a parts-based 
image representation. Most of existing NMF variants attempt to address the assertion that the 
observed data distribute on a nonlinear low-dimensional manifold. However, recent research 
results showed that not only the observed data but also the features lie on the low-dimensional 
manifolds. In addition, a few hard priori label information is available and thus helps to 
uncover the intrinsic geometrical and discriminative structures of the data space. Motivated by 
the two aspects above mentioned, we propose a novel algorithm to enhance the effectiveness 
of image representation, called Dual graph-regularized Constrained Nonnegative Matrix 
Factorization (DCNMF). The underlying philosophy of the proposed method is that it not only 
considers the geometric structures of the data manifold and the feature manifold 
simultaneously, but also mines valuable information from a few known labeled examples. 
These schemes will improve the performance of image representation and thus enhance the 
effectiveness of image classification. Extensive experiments on common benchmarks 
demonstrated that DCNMF has its superiority in image classification compared with 
state-of-the-art methods. 
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1. Introduction 

With increasing technological sophistication, especially intelligent mobile phones, image 
data continues to grow dramatically. As a result, it becomes a huge challenge of retrieving, 
classifying and extracting valuable information from the massive image data quickly and 
efficiently. To resolve this problem, clustering technology [1, 2], as one of important tools in 
machine learning [3] and data mining [4], has been widely adopted between academia and 
industry. However, clustering procedures refer to the process of dividing the collection of 
physical or abstract objects into a number of classes, which are composed of similar objects. 
From the traditional view, the cluster generated by clustering method is a collection of data 
objects that are similar to the other objects in the same cluster and have nothing in common 
with the objects in other clusters, which is what we often say ‘Like attracts like’ in our daily 
life. In the other hand, a data set can be viewed as a set of discrete sampling on a continuous 
manifold, from the geometrical view, while the purpose of clustering is to find the intrinsic 
geometry of the manifold. 

Clustering technology has been widely studied for many years. Many scholars have 
proposed a number of clustering methods according to the different needs of the clustering 
results. The clustering algorithms can be roughly divided into five categories: partitioning 
methods, hierarchical methods, density-based methods, grid-based methods and model-based 
methods. K-means [5], spectral clustering [6] and non-negative matrix factorization (NMF) 
[7] are belonging to the commonly used clustering methods. Among them, NMF was proposed 
by Lee and Seung [8, 9] in 1999. The major purpose of the NMF algorithm is to find two 
low-rank nonnegative matrices, which can produce a better approximation to the original 
nonnegative matrix. Moreover, the introduction of nonnegative constraints makes NMF has a 
purely additive structure, which also leads to a parts-based representation of the 
decomposition results for human face images [10], text documents [11] and so on. As a result, 
NMF has been widely applied in data mining, computer vision, biomedical engineering and 
other fields. 

Most of existing NMF variants attempt to address that the observed data usually distributed 
on a nonlinear low-dimensional manifolds in high-dimensional environmental space [12, 13]. 
In view of this, a large number of manifold learning methods have been proposed to detect the 
potential manifold structure [14], such as ISOMAP [15], Laplacian Eigenmaps (LE) [16], 
Locally Linear Embedding (LLE) [17]. However, recent research results showed that not only 
the observed data but also the features lie on the low-dimensional manifolds. To enhance the 
performance of classical NMF, a few researchers proposed many NMF variants. Cai et al. [18] 
proposed a graph regularized non-negative matrix factorization (GNMF), which considers the 
intrinsic geometric structure and simultaneously uncovers a compact representation of the 
hidden semantic information. What’s more, it indicated that the structure information of the 
data can be greatly improved the learning performance. However, the GNMF algorithm only 
considers the spatial distribution of the data and does not take into account the structural 
information of the feature space. In essence, the GNMF algorithm belongs to the one-sided 
clustering method. Several co-clustering algorithms [19, 20] have proposed to solve the 
one-sided clustering problems [21, 22] and the superiority of co-clustering is proved by the 
experimental results. Gu et al. [23] presented a dual regularized co-clustering (DRCC) 
algorithm, which constructs two graphs of data manifold and feature manifold based on the 
semi-nonnegative matrix tri-factorization. Experimental results on benchmark datasets 
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showed that DRCC method outperforms many state-of-the-art clustering algorithms. This 
further demonstrates that the clustering effect of co-clustering is better than one-sided 
clustering. Shang et al. [24] introduced a graph dual regularization non-negative matrix 
factorization (DNMF) algorithm by combining the matrix factorization and the idea of dual 
regularization. At the same time, the graph dual regularization non-negative matrix 
tri-factorization (DNMTF) algorithm as an extension of DNMF is proposed. Experimental 
results on several datasets demonstrated the effectiveness of both DNMF and DNMTF. 

In order to further boost the performance of NMF, we propose a novel algorithm in this 
paper, called Dual graph-regularized Constrained Nonnegative Matrix Factorization 
(DCNMF), which not only considers the geometric structures of data manifold and feature 
manifold, but also introduces the label information of known labeled samples into NMF. The 
proposed method reflects the geometric structure information of data and feature by 
constructing two nearest neighbor graphs. The iterative updating scheme for the objective 
function of DCNMF and its convergence proofs are also given. 

2. Related Work 

2.1 NMF 

NMF algorithm is described as follows: given a data matrix [ ] nm
n RxxxX ×∈= ,,, 21  , each 

column of X is an m-dimensional data point, where nm
i Rx ×∈  is a sample vector, and the 

elements of each sample vector are nonnegative. The goal of NMF is to seek two nonnegative 
matrices kmRU ×∈ and knRV ×∈ whose product approximates X as closely as possible 
 

TUVX ≈                                                             (1) 
 
where ( )nmmnk +≤  and U denotes the basic matrix, V can be considered as the coefficient 
matrix. Especially, the elements of two matrices are all negative. 

In order to find an approximate decomposition process, an objective function must be 
defined to guarantee the effect of the approximation. To measure the quality of the 
approximation defined in (1), a common metric is the Euclidean distance, given by 
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where 

F
⋅  is referred as the Frobenius norm. 

Although the objective function of NMF is convex with respect to one variable matrix U or 
V, it is not convex in both matrices together. Therefore, the global minimum of the objective 
function is quite difficult to obtain. Multiplicative update method is a well-known NMF 
method, which can find a local minimum of the objective function in (2). The updating rules 
for the Euclidean distance objective function are as follows: 
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where [ ]ikuU = , [ ]jkvV = . 
At the very beginning of the iterative update process, the two nonnegative matrices U0 and 

V0 are initialized at random. The iterative update procedure is executed repeatedly according 
to the updating rules until the given terminal condition is met. Ultimately, the final U and V can 
be obtained. 

2.2 CNMF 
NMF is an unsupervised method for matrix decomposition, not taking into account the known 
label information of the samples, while the label of a few examples in many real-word 
applications is relatively easy to get. Aiming at this case, Liu et al. [25] proposed the 
constrained nonnegative matrix factorization (CNMF) algorithm. This algorithm not only 
considers the label information as additional constraints, but also constrains it to the NMF 
framework. By CNMF, it can be guaranteed that the data points sharing the same label are 
projected into the same class in the low-dimensional space. 

Assume that there are n nonnegative samples { }n
iix 1=  in the data set X, we know the label 

information of the first l samples which consists of c classes, while the rest n-l samples are not 
labeled. An indicator matrix C is first defined, where 1=ijc  if ix  is labeled with the jth class; 

0=ijc  otherwise. With the indicator matrix C, we define a label constraint matrix A as below: 
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where In-l is an identity matrix. 

The label constraint matrix A can be introduced into the objective function of NMF and 
( )TT AZUUVX =≈  can be gotten, where AZV = and ( ) klncRZ ×−+∈  is the auxiliary 

matrix. It is easier to learn that if ix  and jx  share with the same label, then the weighted 
coefficient vector of them is identical.  

The objective function of CNMF with the label constraints as (4). 
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The updating rules for the objective function (4) are as follows: 
 

( )
( )ikTT

ik
ikik AZAUZ

XAZuu ←   , 
( )

( )jk
TT

jk
TT

jkjk UAZUA
UXA

zz ←                      (5) 

 
Liu et al. provided the convergence proofs of objective function (4) under the updating rules 

as (5) in [25], so that the known label information is well introduced into NMF and improves 
the discriminative ability. 

2.2 DNMF 
NMF can not preserve the geometrical information of data space and feature space because it 
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does not take into account the geometric structure of data and features. Motivated by recent 
progress in dual regularization and matrix factorization, Shang et al. proposed a novel 
algorithm called graph dual regularization non-negative matrix factorization (DNMF), which 
simultaneously considers the geometric structure of the data manifold as well as feature 
manifold and respectively creates two graphs to reflect the structure of manifold distribution. 
Compared with one-side clustering algorithm, DNMF has better clustering performance. 

The objective function of DNMF is formulated as follows: 
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The updating formulas for the objective function of DNMF as (7): 
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The objective function of the DNMF algorithm is convergent in iterative updating formulas 

(7), the detailed proof of convergence has been given in [24] and is not listed here. 

3. DCNMF 
There are some shortcomings in the improved NMF algorithms mentioned above. Although 
DNMF algorithm preserves the geometric structure of data and feature spaces by introducing 
both data manifold and feature manifold in the NMF framework, it obviously does not 
consider the known label information in the data set. Thus, the application of DNMF algorithm 
is limited. The CNMF algorithm integrates the known label information into the NMF 
framework to improve the discriminative ability of NMF. However, CNMF is unable to 
maintain the geometric structures of the space where the data samples and sample features are 
located.  

To address these problems mentioned above, we propose a dual graph-regularized 
constrained nonnegative matrix factorization (DCNMF) algorithm extended from CNMF and 
DNMF to boost the performance of NMF. The proposed method inherits the advantages of 
two methods simultaneoulsy and has the folloing three aspects. Firstly, the prior constraint is 
applied in NMF, which can improve the discriminative ability of the coefficient matrix by 
making full use of the known label information. Secondly, the geometric structures of the data 
manifold as well as feature manifold are integrated into the NMF algorithm, and the structure 
of manifold distribution is reflected by creating two nearest neighbor graphs, which solves the 
clustering ineffective problem of the one-side clustering and effectively improves the feature 
representation of images and clustering performance. Finally, the above two parts are 
integrated into the same objective function and DCNMF algorithm proposed in this paper is 
further described by mathematical theory. Table 1 gives an intuitive comparison of NMF, 
CNMF, DNMF and DCNMF. 
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Table 1. The comparison of algorithms 
Advantages Label Information Data Graph Feature Graph 

NMF × × × 
CNMF √ × × 
DNMF × √ √ 

DCNMF √ √ √ 

3.1 Data Graph and Feature Graph 
We create two nearest neighbor graphs to describe the data manifold and feature manifold, so 
that the data graph, feature graph and NMF can be well integrated into the same objective 
function. We first construct a p-nearest neighbor data graph whose vertices correspond 
to { }nxxx ,,, 21  . In order to avoid the selection of heat-kernel parameters in Gaussian 
function, we choose 0-1 weighting method to construct the weight matrix of data graph, which 
is defined as follows: 
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where ( )ip xN  represents the set of p-nearest neighbor of data point ix . The graph Laplacian 

matrix of the data graph is defined as VV
v WDL −= , where VD is a diagonal matrix, 

namely ∑= V
ijj

V
ii WD . 

Let [ ] knT
n

TT RvvvV ×∈= ,,, 21   denotes the data representation in the low-dimensional 
space, so the label smoothness of the data points as follows: 
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For convenience, a p-nearest neighbor feature graph is also constructed by using the 0-1 

weighting method, whose vertices correspond to{ }T
m

TT xxx ,,, 21  , and the weight matrix of 
feature graph is defined as follows: 
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where ( )T

ip xN  represents the set of p-nearest neighbor of data point T
ix . The graph Laplacian 
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matrix of the feature graph is defined as UU
u WDL −= , where UD is a diagonal matrix, 

namely ∑= U
ijj

U
ii WD . 

Let [ ] kmT
m

TT RuuuU ×∈= ,,, 21   represents the basis matrix to be solved, so the label 
smoothness of the features as follows: 
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3.2 Objective Function of DCNMF 
We integrate the label smoothness of data and features into NMF objective function, and we 
get the DNMF algorithm. The objective function of DNMF algorithm can be defined as 
follows: 
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where ZZ

VZ WDLL −== ; A represents the label constraint matrix, while Z denotes an 
auxiliary matrix, and the coefficient matrix AZV = . 0≥λ and 0≥μ are the regularization 
parameters which balance the reconstruction error of DCNMF in the first term and graph 
regularizations in second and third terms. When letting 0=μ , DCNMF degenerates to the 
GRCNMF method proposed by Shu et al. [26]; And when letting 0== μλ , DCNMF 
degenerates to the CNMF algorithm proposed by Liu et al.. 

3.3 Optimization 
It can be seen that the objective function in Eq. (8) is convex in U only or Z only and it is not 
convex in both variables together, so we can not find a closed-form solution. To solve this 
problem, we will present an iterative scheme to optimize the objective function. In other words, 
we will optimize the objective with respect to one variable when fixing the other one. 
According to the property of trace in a matrix, ( ) ( )ATrATr T =  and ( ) ( )BATrABTr = , the 
objective function in Eq. (8) can be rewritten as: 
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Let δ  and φ  be the Lagrange multiplier for constraints iju  and ijz , respectively. Then the 

Lagrange function L  is defined as: 
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⑴．Updating U 
The partial derivation of  L with respect to U is  
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Using the KKT condition 0=ijijuδ , we can get  
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Since UU

u WDL −= and the elements of  UD  and UW  are nonnegative, then the above 
function can be rewritten as: 
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According to E.q (11), we can get the following updating formula of variable iju , 
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⑵．Updating Z 
The partial derivation of  L with respect to Z is  
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Using the KKT condition 0=ijij zφ , we obtain  
 

( ) 0=++− ijijZ
TTTTT zAZLAλUAZUAUXA                              (13) 
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Since ZZ

z WDL −= and the elements of ZD  and ZW  are nonnegative, then E.q (13) can 
be rewritten as: 
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According to E.q (14), we can get the following updating formula of variable ijz , 
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We summarize the optimization way of the proposed method in Algorithm 1. 
 

Algorithm 1 Dual graph-regularized Constrained Nonnegative Matrix Factorization  
   Input: Matrix X, the number of classes k, regularization parameters λ , μ , maximum 

number of iterations I; 
   Output: Matrices U and Z; 
    Initialize U and Z using K-means; 
    while not convergent and i﹤I do 

         Update  
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    end while 

3.4 Convergence Analysis 
Regarding these two updating rules as (12) and (15), we have the following theorem:  

Theorem 1. For 0≥U and 0≥Z , the objective function in Eq. (8) is convergent under the 
updating formulas in Eq. (12) and (15), namely non-increasing. 

In order to prove Theorem 1, we first define the auxiliary function. 
Definition 1. If ( )xxG ′,  is an auxiliary function of ( )xF , then the conditions 
( ) ( )xFxxG ≥′,  and ( ) ( )xFxxG =,  are satisfied. 
Lemma 1. If ( )txxG ,  is an auxiliary function of ( )xF , then ( )xF  is non-increasing under 

the following updating rule,  
 

( )t
x

t xxGx ,minarg1 =+                                                  (16) 
 

Proof. Obviously, the function ( )txxG ,  can achieve the minimum value when txx = . 
From the Definition 1, it is known that ( ) ( )11, ++ ≥ ttt xFxxG  can be represented by the 
following inequality: 
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From the above formula we can obtain that the equation ( ) ( )tt xFxF =+1  holds only if tx  
is a local minimum of ( )txxG , . If the derivative of ( )xF  exist and is continuous in a small 
neighborhood of tx , then there is ( ) 0=∇ txF .  

From Eq. (16), we can get the sequence that converging to the local minimum minx  of the 
objective function: 
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Therefore, the iterative rules of the objective function in (8) can be satisfied with the Eq. 

(16) by defining the auxiliary function ( )txxG , . 
We first need to prove that the updating rule (15) is consistent with the formula (16). 

Therefore, we use 
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″  denote the first-order partial derivative and the second-order 

partial derivative of the function 
ijZF to the variable ijz , respectively. 

Lemma 2. Define the auxiliary function of variable ijz  in the objective function FO  as 
follows: 
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Proof. Obviously, ( ) ( )zFzzG

ijZ=, . According to the Definition 1, we only need to prove 

( ) ( )ijZ
t
ij zFzzG

ij
≥, . The Taylor series expansion of ( )ijZ zF

ij
 can be defined as (18): 

 

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )2

2

2
1

t
ijz

TTTt
ij

t
ijZ

t
ijZ

t
ij

t
ijZ

t
ij

t
ijZ

t
ijZijZ

zzALAλUAUAzzzFzF

zzzFzzzFzFzF

ijij

ijijijij

−++−′+=

−″+−′+=
         (18) 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017                                          2617 

After comparing Eq. (17) and (18), it is not difficult to find that ( ) ( )ijZ
t
ij zFzzG

ij
≥,  is 

equivalent to inequality (19) 
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To prove the above inequality, we have the following two inequalities as (20) and (21): 
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It can be seen from Eq. (20) and (21) that inequality (19) holds and ( ) ( )ijZ

t
ij zFzzG
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≥,  is 

established. (Lemma 2 is certified.) 
Next we will prove that the updating rule (12) is exactly the formula (16) with a proper 

auxiliary function. Therefore, we use 
ijuF  to represent the part of the objective function that is 

associated with any element iju  in U, we obtain 
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″  represent the first-order partial derivative and the second-order 

partial derivative of the function 
ijuF to the variable iju , respectively. 

Lemma 3. Define the auxiliary function of variable iju  in the objective function FO  as 
follows: 
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Proof. It is easy to see ( ) ( )uFuuG

iju=,  from the Definition 1, we just need to prove 
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By comparing equations (22) and (23), we can see that the inequality is equivalent to 

inequality (24) 
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According to the theory of linear algebra, we can get the following inequality 
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It can be seen from Eq. (25) and (26) that inequality (24) holds and ( ) ( )iju

t
ij uFuuG

ij
≥,  is 

established. (Lemma 3 is certified.) 
Finally, we will prove the convergence of Theorem 1. 
Proof. Replacing ( )txxG ,  in Eq. (16) by auxiliary function equation (17), we can get 
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Similarly, we substitute the auxiliary function (22) for ( )txxG ,  in Eq. (16) to obtain the 

following update rule: 
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Since equations (17) and (22) are both auxiliary functions for FO , FO  is non-increasing 
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under the updating rules in Eq. (12) and (15). At the same time, the objective function (8) has 
a lower bound. In conclusion, the convergence of Theorem 1 is proved. 

4. Experiments and Results Analysis 

4.1 Data Sets 
We will evaluate the performance of the DCNMF algorithm on the following two data sets 
which are widely used as benchmark data sets in clustering. 

COIL20 This database is collected and produced by Columbia University, which contains 
20 kinds of different objects in the image (toy duck, cups, etc.), each object is rotated in the 
level of 360 degrees, every 5 degrees shooting a picture, so each object possesses 72 pictures 
and there are 1440 pictures for 20 different objects. 

PIE_pose27 This database is created by Carnegie Mellon University in the United States 
and PIE-pose27 consists of 2586 images with 68 volunteers, each of which is collected under 
the strict conditions of posture and illumination variations. There are 2856 pictures with 42 
different lighting conditions in this dataset.  

Table 2 gives the specifics of two databases in size, dimensionality and class. Besides, 
some example images from two datasets are displayed as Fig. 1. 

 
Table 2. Statistics of the Dataset 

Dataset Size Dimensionality Classes 
COIL20 1440 1024 20 

PIE-pose27 2856 1024 68 
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        (a) COIL20                                                        (b) PIE-pose27 
Fig. 1. Instances from two datasets 

 

4.2 Parameters Selection 
There are mainly two parameters in our proposed DCNMF algorithm: the regularization 
parameters λ  and μ . Since DCNMF is very robust to the value of λ  and μ , we set μλ =  in 
our experiments. 
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      (a) COIL20                                                          (b) PIE-pose27 
Fig. 2. Clustering accuracy with respect to the regularization parameters 

 
From the results shown in Fig. 2, we can observe that the influence of clustering accuracy 

AC on DCNMF is not great when λ  and μ  are changed from 10 to 1000. Empirically, we set 
100== μλ .  

In this experiment, we will select the first 20% of each class samples as the labeled samples, 
the remaining as the unlabeled samples, and randomly select k(1,2, …,10) class samples from 
it for clustering experiments. We set the number of clusters equal to the true number of classes 
k for all clustering algorithms. We will repeat the experiment twenty times for each k and the 
average result is recoded as the final result. The maximum iteration number for our 
experiments is 300. 

4.3 Clustering Results 
In this section, we will evaluate the performance of the proposed algorithm on COIL20 and 
PIE-pose27 datasets. We compare our method with NMF, CNMF, GNMF and DNMF, and we 
use two popular evaluation metrics, the clustering accuracy (AC) and the normalized mutual 
information (NMI), to measure the performance of all the clustering algorithms. Table 3 and 
Table 4 show the best average clustering accuracy of all methods on two datasets, while Table 
5 and Table 6 show the normalized mutual information. 
 

Table 3. The clustering accuracy results on the COIL20 dataset 
Clustering Accuracy（AC）/（%） 

k NMF CNMF GNMF DNMF DCNMF 

2 87.96 90.18 93.53 93.88 95.46 

3 82.91 87.99 89.33 91.67 92.95 

4 79.00 85.79 87.07 89.90 91.08 

5 74.40 80.20 81.86 85.36 88.14 

6 70.76 79.50 83.52 83.89 85.71 

7 67.89 76.86 79.25 80.15 83.19 

8 61.33 72.75 75.89 77.09 79.39 
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9 62.26 65.00 69.68 73.10 74.14 

10 61.22 67.01 70.09 71.45 76.19 

Avg. 71.95 78.37 81.12 82.94 85.14 

 
Table 4. The clustering accuracy results on the PIE-pose27 dataset 

Clustering Accuracy（AC）/（%） 

k NMF CNMF GNMF DNMF DCNMF 

2 75.31 78.00 80.38 88.54 92.84 

3 67.57 74.88 78.85 85.42 89.72 

4 65.88 75.59 76.68 80.95 85.43 

5 64.29 72.24 73.19 77.95 83.89 

6 63.25 70.85 72.44 75.49 78.58 

7 61.32 70.00 70.03 73.38 77.06 

8 59.51 69.76 70.92 72.45 75.21 

9 56.27 67.29 68.75 69.94 73.38 

10 58.65 60.68 64.46 66.72 70.14 

Avg. 63.56 71.03 72.86 76.76 80.69 

 
From Table 3 and Table 4, we can see that the average clustering accuracy of DCNMF 

algorithm is better than that of other methods on two datasets. On the COIL20 dataset, the AC 
of DCNMF is 13.19% higher than NMF, 6.77% higher than CNMF, 4.02% higher than GNMF 
and 2.2% higher than DNMF. On the PIE-pose27 dataset, the AC of DCNMF is 17.13% 
higher than NMF, 9.66% higher than CNMF, 7.83% higher than GNMF and 3.93% higher 
than DNMF. 

 
Table 5. The NMI results on the COIL20 dataset 

Normalized Mutual Information（NMI）/（%） 

k NMF CNMF GNMF DNMF DCNMF 

2 85.89 87.34 89.42 91.65 92.84 

3 77.14 80.77 83.09 89.06 89.61 

4 80.02 81.01 85.39 88.39 91.81 

5 73.71 79.89 80.92 81.51 86.41 

6 70.32 77.90 79.58 83.42 83.20 

7 63.02 76.34 78.06 79.23 81.68 

8 66.97 72.98 73.33 74.46 77.78 
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9 62.85 73.71 74.90 75.23 75.51 

10 64.58 72.42 72.94 73.62 74.86 

Avg. 71.61 78.04 79.74 81.84 83.74 

 
Table 6. The NMI results on the PIE-pose27 dataset 
Normalized Mutual Information（NMI）/（%） 

k NMF CNMF GNMF DNMF DCNMF 

2 70.13 75.12 80.85 85.89 90.45 

3 63.30 71.45 74.51 77.14 83.19 

4 66.17 65.37 71.64 80.02 88.90 

5 65.89 68.15 74.05 79.33 81.10 

6 60.54 68.85 69.38 73.71 76.32 

7 61.29 69.30 70.35 68.99 74.11 

8 58.00 70.61 69.21 64.58 67.34 

9 60.02 65.91 67.25 63.02 69.00 

10 58.46 66.72 65.48 62.85 65.17 

Avg. 62.64 69.05 71.41 72.84 77.29 
 

Similarly, it can be seen from Table 5 and Table 6  that the average normalized mutual 
information of DCNMF, DNMF, GNMF and CNMF are much higher than NMF on two 
datasets. On the COIL20 dataset, the NMI of DCNMF is 12.13% higher than NMF, 5.7% 
higher than CNMF, 4% higher than GNM and 1.9% higher than DNMF. On the PIE-pose27 
dataset, the NMI of DCNMF is 14.65% higher than NMF, 8.24% higher than CNMF, 5.88% 
higher than GNMF, and 4.45% higher than DNMF. 

In order to visually demonstrate the clustering effectiveness of DCNMF algorithm, Fig. 3 
shows the graphical clustering accuracy results with different k values for COIL20 and 
PIE_pose27 respectively, while Fig. 4 shows the graphical normalized mutual information. 

2 3 4 5 6 7 8 9 10
60

65

70

75

80

85

90

95

100

k

Cl
us

te
rin

g 
ac

cu
ra

cy
 (A

C)
/

（ %
）

COIL20

 

 
DCNMF
DNMF
GNMF
CNMF
NMF

2 3 4 5 6 7 8 9 10
55

60

65

70

75

80

85

90

95

k

Cl
us

te
rin

g 
ac

cu
ra

cy
 (A

C)
/

（ %
）

PIE-pose27

 

 
DCNMF
DNMF
GNMF
CNMF
NMF

 

    (a) COIL20                                                           (b) PIE-pose27 
Fig. 3. The clustering accuracy of two datasets 
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    (a) COIL20                                                           (b) PIE-pose27 
Fig. 4. The normalized mutual information of two datasets 

 
 

From Fig. 3 and Fig. 4 we can get: (1) the clustering accuracy and normalized mutual 
information of DCNMF, DNMF, GNMF and CNMF are much higher than that of NMF, 
although sometimes the results have some fluctuation; (2) NMF, CNMF and GNMF belong to 
the one-side clustering method, while DCNMF and DNMF belong to the co-clustering method, 
whose results of AC and NMI are relatively higher than other three methods, so we can 
conclude that the co-clustering method has better performance than one-side clustering 
method; (3) Compared with the other four algorithms, the DCNMF algorithm proposed in this 
paper achieves the best clustering results. 

 

4.4 Sparseness Study 
A sparseness measure based on the relationship between L1 norm and L2 norm [27] can be 
defined as (27): 
 

( ) ( )[ ]2

211
1 xxn

n
xsparseness −

−
=                                           (27) 

 
where n is the dimensionality of the vector X, sparseness(x)∈[0,1], 1

⋅  denotes L1 norm and 

2
⋅  denotes L2 norm. This metric evaluates to unity if and only if  X contains only a single 

non-zero component, and takes a value of zero if and only if all components are equal (up to 
signs), interpolating smoothly between the two extremes. 

Next, we compute the sparseness of basis vectors learned by CNMF, GNMF, DNMF and 
DCNMF according to (27) on two databases, respectively. The partial basis images on 
COIL20 and PIE-pose27 are shown in Fig.  5 and Fig.  6. 
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    (a)  CNMF (0.4959)                               (b) GNMF (0.5122) 
 

    (c)  DNMF (0.5572)                            (d) DCNMF (0.5757) 
Fig. 5. Basis images in COIL20 

 
 

    (a)  CNMF (0.5372)                               (b) GNMF (0.5593) 
 

    (c)  DNMF (0.6277)                            (d) DCNMF (0.6402) 
Fig. 6. Basis images in PIE-pose27 
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From the above figures, it can be observed that the basis vectors generated by DCNMF 
approach are sparser than that generated by the other methods. These results indicate that 
DCNMF can learn a better parts-based representation than other algorithms. 

5. Conclusion 
In this paper, we proposed a dual graph-regularized constrained nonnegative matrix 
factorization algorithm (DCNMF), and gave the corresponding iterative updating rules and 
convergence proof. We used two popular evaluation metrics, the clustering accuracy (AC) and 
the normalized mutual information (NMI), to evaluate the clustering performance of DCNMF 
algorithm on COIL20 and PIE-pose27 datasets. From the experimental results, we can see that 
the DCNMF algorithm is obviously better in comparison with the others. The sparseness 
characteristics of DCNMF have illustrated on benchmark data sets. We also can draw a 
conclusion that the proposed algorithm has the highest sparseness degrees and could learn a 
better parts-based representation than other methods. As a result, the basis images have 
stronger discriminating power. However, the regularization parameters in DCNMF need to 
optimize by continuous searching. Therefore, how to choose the regularization parameters is 
one of the key points in our future work. 
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