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Abstract 
 

In recent years, there has been an increasing number of studies focused on identifying a set of 
spreaders to maximize the influence of spreading in complex networks. Although the k-core 
decomposition can effectively identify the single most influential spreader, selecting a group 
of nodes that has the largest k-core value as the seeds cannot increase the performance of the 
influence maximization because the propagation sphere of this group of nodes is overlapped. 
To overcome this limitation, we propose a neighborhood coreness cover and discount heuristic 
algorithm named “NCCDH” to identify a set of influential and decentralized seeds. Using this 
method, a node in the high-order shell with the largest neighborhood coreness and an 
uncovered status will be selected as the seed in each turn. In addition, the neighbors within the 
same shell layer of this seed will be covered, and the neighborhood coreness of the neighbors 
outside the shell layer will be discounted in the subsequent round. The experimental results 
show that with increases in the spreading probability, the NCCDH outperforms other 
algorithms in terms of the affected scale and spreading speed under the 
Susceptible-Infected-Recovered (SIR) and Susceptible-Infected (SI) models. Furthermore, this 
approach has a superior running time. 
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1. Introduction 

Identifying the most influential spreaders has received significant attention in the field of 
network science in recent years [1-2] and is of considerable significance for controlling the 
outbreak of epidemics [3], enhancing the effects of e-commercial advertisements [4], 
preventing the disastrous collapse of traffic networks or the Internet [5], optimizing 
information dissemination [6], identifying excellent players in sporting competitions [7], and 
predicting papers and authors with potentiality in co-authorship and citation networks [8]. 
Many classical centrality methods based on the topological structure of networks have been 
widely applied for identifying influential spreaders, such as the degree centrality, betweenness 
centrality [9], closeness centrality [10], Katz centrality [11], etc. Recently, Kitsak et al. [12] 
proposed a k-core (also called the k-shell) centrality using the k-core decomposition in 
networks to estimate the spreading influence of a node. A node located in the core of the 
network likely has more influence than a node located in the periphery. In addition, the k-core 
centrality has certain limitations; for example, the method will divide many nodes with 
different spreading abilities into the same shell layer and consider only the residual degree of 
the node while ignoring the out-leaving links from the group to the nodes outside this layer. 
Several hypotheses have been proposed to resolve these problems. In 2013, Zeng et al. [13] 
proposed a mixed degree decomposition centrality that considers both the residual degree and 
the exhausted degree. Liu et al. [14] distinguished the influences of the nodes in the same shell 
by measuring the shortest distances from the target node to all the nodes located in the 
highest-order shell. The nodes whose locations are closer to the network core play a more 
significant role in the spreading process. In 2014, Pei et al. [15] discovered that the influential 
nodes are always located in the core of the network through various social platforms, such as 
Twitter, Facebook, and Livejournal. In the same year, Bae et al. [16] proposed a neighborhood 
coreness (abbreviated as nc) centrality, where the nc value of each node is defined as the sum 
of the k-shell indices of its neighbors. Such a method is able to reasonably evaluate the nodes 
in the periphery of the network and accurately identify the influential nodes because balance is 
achieved between the degree and the coreness of a node. In 2015, Liu et al. [17-18] introduced 
a measure based on the link diversity of shells to effectively distinguish the true core from the 
core-like groups, which helps enhance the ranking of the influential nodes. Similarly, Fu et al. 
[19] combined the global diversity of the shells and local features to identify the most 
influential nodes in a more fine-grained capacity. Indeed, the influential nodes play an 
important role in the application of the networks. In WSN, the influential node is usually 
called the Cluster Head (CH), and it is responsible for transferring data to the sink nodes. In 
2017, PGV Naranjo and M Shojafar et al. [20] proposed a modified Stable Election Protocol 
(SEP) named Prolong-SEP (P-SEP) to select the influential node and prolong the stable period 
of sensor networks by maintaining a balanced energy consumption. The P-SEP divides the 
nodes into advanced and normal nodes according to nodes’ heterogeneities. The influential 
node in this mechanism is not fixed.   

Several works have considered network control and optimization. Pooranian et al. [21] 
proposed a hybrid-scheduling algorithm to solve the NP-hard problem in the task scheduling 
for grid computing. In addition, Pooranian et al. [22] also proposed two heuristic algorithms to 
minimize the operating power and pollution emission to convert the problem to a 
single-objective function. The influence maximization is a classical problem in network 
control and optimization. Although many works can investigate single vital nodes, selecting a 

http://xueshu.baidu.com/s?wd=author%3A%28Paola%20G.%20Vinueza%20Naranjo%29%20Sapienza%20University%20of%20Rome&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Mohammad%20Shojafar%29%20Sapienza%20University%20of%20Rome&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=paperuri%3A%28d1ece6aa4f0e4324cc34ca66673beb1d%29&filter=sc_long_sign&sc_ks_para=q%3DA%20framework%20for%20simulation-based%20network%20control%20via%20hindsight%20optimization&sc_us=7084279714523197313&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
http://xueshu.baidu.com/s?wd=paperuri%3A%28d1ece6aa4f0e4324cc34ca66673beb1d%29&filter=sc_long_sign&sc_ks_para=q%3DA%20framework%20for%20simulation-based%20network%20control%20via%20hindsight%20optimization&sc_us=7084279714523197313&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
http://xueshu.baidu.com/s?wd=paperuri%3A%28d1ece6aa4f0e4324cc34ca66673beb1d%29&filter=sc_long_sign&sc_ks_para=q%3DA%20framework%20for%20simulation-based%20network%20control%20via%20hindsight%20optimization&sc_us=7084279714523197313&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
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group of top-ranking influential spreaders does not produce the most satisfactory spreading 
results because the propagation spheres of these seeds may overlap. Kempe et al. [23] proved 
that the optimization problem of finding seed nodes to maximize their influence [24] is a 
NP-complete problem and proposed a greedy algorithm to reach near optimal solutions. 
However, this greedy algorithm has a high time complexity and is unsuitable for large-scale 
networks. Leskovec et al. [25] proposed an improved greedy algorithm CELF, which selects 
seed nodes to reduce the running times of the influence maximization. However, the efficiency 
of the algorithm is still relatively low. Therefore, most works in recent years have turned to 
heuristic algorithms. Chen et al. [26] proposed a degree discount heuristic (DDH) algorithm, 
which assumes that if a neighbor of a node is selected as the seed, the degree of this node 
should be discounted in the calculation. In 2014, Sankar et al. [27] first used the diffusion 
degree heuristic (DiDH) algorithm in large-scale social networks to develop an influence 
maximization scheme based on the IC model. This method not only considers the 2-step 
neighborhood information but also analyzes the impact of the propagation probability. Kim et 
al. [28] developed an influence maximization scheme by choosing influential neighbors. This 
method used the local neighborhood information to evaluate the propagation ability at a more 
realistic level. In 2016, Liu et al. [29] found that the 2-step neighborhood information could 
significantly improve the performance of the influence evaluation. This conclusion is of great 
significance for heuristic influence maximization algorithms. Recently, Zhang et al. [30] noted 
that certain spreaders were so close together that they overlapped the spreading sphere; 
therefore, they proposed a simply yet effectively iterative method called VoteRank to identify 
a set of decentralized spreaders with the best spreading ability. In terms of influence 
maximization by k-core decomposition, Kitsak et al. [12] proposed the maximum core cover 
(MCC) method for selecting the decentralized seeds by covering the neighbors of a seed 
located in the high-order shell. In 2015, Cao et al. [31] proposed an improved core cover 
algorithm (CCA) that combines the shell information and the node degree that selects the node 
located in the high-order shell with the largest degree as the seed and then covers all neighbors 
of this seed. Unfortunately, the MCC and CCA are still inadequate as shown in Fig. 1. The 
MCC will randomly select one of the nodes from A to D in the highest shell layer as the seed, 
which is a highly coarse-grained approach. The CCA will randomly select either A or B with 
the largest degree in the highest shell as the first seed. A and B have more link diversity in the 
shells than C and D. Node A is likely chosen as the first seed by CCA and its neighbors from B 
to E are all covered, and then node L is selected as the second seed. However, because one path 
is available between nodes A and E, the nodes from F to J will never be activated once node A 
fails to infect node E with larger degrees. Based on this discussion, the fewer common 
neighbors between node A inside the highest shell and the neighbor E outside this shell 
indicates that simply covering all neighbors of the seed located in the high-order shell will not 
generate the most influential spreading results. 

 

 
Fig. 1. Sample network for seed selection under the cover effect. 
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In this paper, we propose a simply yet effective nc cover and discount heuristic algorithm 
(NCCDH) to identify a set of decentralized spreaders with the best spreading ability. The 
NCCDH selects the seeds according to the nc centrality proposed in [16]. After choosing a 
node from the high-order shell as the seed in each turn, the neighbors within the same shell 
layer of this seed will be covered. At the same time, the nc of the neighbors outside this shell 
will be discounted in the subsequent round. The NCCDH can also provide a reasonable 
assessment for the nodes with a large degree located in the periphery of the network. The 
experimental results on real datasets show that the NCCDH outperforms traditional methods in 
terms of the affected scale and spreading speed. More importantly, the time complexity of this 
approach is superior to that of traditional methods. 

2. Preliminaries 
For a network G(V,E), V and E are the set of nodes and set of edges, respectively, and the 
number of nodes is indicated by n=|V|, the number of edges is indicated by m=|E|, and the 
graph G is represented by the adjacency matrix A={aij}. If an edge occurs between node i and 
node j, then aij=1; otherwise, the value is 0. The set of neighbors for node i is represented as 
N(i).  
 
2.1 k-core centrality 

The k-core centrality is determined by the k-core decomposition, which will remove all the 
nodes with a degree =1 in the first step. Such activity will reduce the degrees of the remaining 
nodes so that all the nodes with degrees ≤1 are successively deleted until the degree of all the 
remaining nodes is >1. All the removed nodes are divided into the 1-shell, and the k-core 
centrality of these nodes is equal to 1. Secondly, all the remaining nodes with degrees =2 will 
be removed according to the above steps, and the nodes whose residual degrees ≤2 are also 
continually deleted until the degrees of all the remaining nodes >2. All the removed nodes in 
this step are divided into the 2-shell and the k-core centrality of these nodes is equal to 2. This 
decomposition process will continue until all the nodes are assigned into the corresponding 
shell layer. The k-core centrality of node i is denoted by CKC(i), which equals its corresponding 
shell indices, denoted by kc(i), and is shown as following formula: 

                                     )()( ikciCKC =                                                              (1) 
  
2.2 Neighborhood coreness centrality 

Many works has been done to discriminate the spreading ability of nodes in the same k-shell. 
Zeng et al. [13] proposed the mixed degree decomposition method, which alters the k-core 
decomposition process by considering both the residual degree kr and the exhausted degree ke, 
as follows: 

)(*)()( ikikiC erkm λ+=                                                    (2) 
where  Ckm(i) is defined as the mixed degree of node i, λ is a tunable parameter between 0 

and 1. However, the parameter λ should be determined by the structure of a given network, and 
it is difficult to find the optimal parameter λ to achieve better result. Moreover, this method 
gives equal importance to the removed nodes regardless of whether they reside in the core or in 
the periphery of the network. 

Inspired by these previous studies,the nc centrality value considers not only the degree of 
the node but also the shell layer of its neighbors into account. Therefore, a spreader with more 
connections to the neighbors located in the core of the network will be more influential. The nc 
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centrality of node i is denoted by Cnc(i) and is shown as follows: 
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2.3 Propagation models 

The SIR model is widely used for information dissemination and disease diffusion and in 
various fields. In this paper, the model is applied to estimate the spreading influence of 
different methods. The SIR model consists of three states: Susceptible, Infected, and 
Recovered. The Susceptible set nodes are susceptible to information or diseases. The Infected 
set nodes are the nodes that are already infected or activated by diseases and information. The 
Recovered set nodes represent the nodes that have been immunized or recovered and will 
never be infected again. At each time step t, the Infected nodes attempt to infect their neighbors 
whose status are Susceptible with an infection probability of β. Then, each Infected node 
attempts to be recovered with an immune probability of γ. If an infected node is successfully 
recovered, the status of this node will be converted from Infected to Recovered and the node 
will never be infected again. The propagation of the SIR model will terminate when there are 
no infected nodes in the network. Similar to the SIR, the SI model contains only two states: 
Susceptible and Infected. The propagation in the SI model will terminate when there are no 
more susceptible nodes to be infected in the network. The spreading influence of the seed u at 
time t in the SIR and SI models is defined as Fu(t): 
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where Iu(t) and Ru(t) are the number of infected and recovered nodes at time t, respectively, 
and they originated from the initial seed u. 
 
2.4 Problem definition for influence maximization 

Fu(t) represents the spreading influence of the seed u at time t according to the propagation 
model. The input is the topology of the network G and the number of seeds k. The optimal 
objective is to maximize the spreading influence in the networks, which is defined as 
searching a set S consisting of k seeds to maximize |)(| tFuSu∈ . Finally, the output is a set of 
seed nodes. 
 Objective: Max{FS(t)= |)(| tFuSu∈ } 
 Input: the network G(V,E); the number of seeds k 
 Constraints: i∈[1,k]; Si=Si-1∪{u}; u∈V\Si-1; |S|=k 
 Output: seeds set S 

The greedy algorithm is proposed for this problem, and it starts from a seed set S0=Ø and 
selects node u=argmax(| uSi

F
1−

|-|
1−iSF |) as a seed node in step i. The greedy algorithm 

traverses all uninfected nodes when selecting a seed in each step, thereby resulting in a high 
time complexity. Therefore, many studies have resorted to using heuristic algorithms. 

 

 



2984             Yang et al.: Neighborhood coreness algorithm for identifying a set of influential spreaders in complex networks 

3. Heuristic algorithm for influence maximization by neighborhood 
coreness  

3.1 NCCDH algorithm 
   Because the traditional k-core centrality method divides several nodes with different 
spreading abilities into the same shell layer, this paper promotes the ranking of influential 
spreaders based on the nc centrality. The nc centrality uses the k-core centrality of its 
neighbors to estimate the spreading influence of a node, which can improve the ranking of 
spreaders at a more fine-grained level. Based on this advantage, we propose a nc cover and 
discount heuristic algorithm (NCCDH) to maximize the spreading influence. The main 
concept of this algorithm is to select the seeds according to the nc indices of the nodes 
(observed in Section 2.2), which chooses the node with the largest nc and uncovered status as 
the target in the current round. If node u is selected as the seed, then the status of u will be 
marked as covered (COVERu=true), and its neighbors within the same shell layer will also be 
covered. Similar ideas are also used in the CCA and MCC because the nodes in the high-order 
shell are closely clustered to each other, which results in overlapping spheres of influence 
spreading. However, the NCCDH uses the nc centrality to select seeds, which indicates that 
this method has a better accuracy than the CCA and MCC. More importantly, compared with 
the CCA and MCC that cover all the neighbors, the NCCDH does not cover the neighbors 
outside the shell but rather discounts the nc value of such nodes, which prevents the neighbors 
outside the shell that have larger degrees but fewer common neighbors with the seeds inside 
the shell from being directly covered. The detailed process is shown in Algorithm 1, where 
Cnc(u) denotes the nc centrality of node u, COVERu denotes the covered status of node u, and 
CKC(u) denotes the k-core centrality of node u. As shown in Fig. 1, an assumption of the 
process is that node A will be selected as the first seed, which results in 
Cnc(E)=8-3=5>Cnc(L)=4. Therefore, the NCCDH will select E as the second seed to spread to 
the larger scale. 
Algorithm 1. NCCDH algorithm 
Input: G(V,E), k 
Output: Seed sets S 
1  S=Ø 
2  for each vertex u∈V do 
3     calculate Ckc(u) according to formula (1)   
4     calculate Cnc(u) according to formula (2) 
5     COVER u=false 
6  end for 
7  while |S|<k do 
8      v=argmax u{Cnc(u)| u∈V\S, COVERu=false} 
9      S=S∪v 
10    COVERv=true 
11    for each vertex w∈N(v)&&COVER w=false do 
12      if(CKC(w)==CKC(v)) 
13         COVER w=true 
14      else 
15         Cnc(w)=Cnc(w)-Cnc(v) 
16    end for 
17  end while 
18  return S 
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The details of the NCCDH are described in the following steps. 

Step 1 (lines 1-6): Initialize the seed sets S to null. For each node u∈V, the nc index is 
calculated according to formulas (1) and (2), and its status is initially set to uncovered. 

Step 2 (lines 8-10): Select the node v with an uncovered status that has the largest nc index. 
This node will be selected as a seed and will not participate in subsequent rounds. 

Step 3 (lines 11-16): Update each node w with the uncovered status that belongs to the 
neighbors of v. If w is located in the same shell layer as v, it will be directly covered. When w 
is outside the shell, the nc value of w will be discounted. 

Step 4: Repeat steps 2 and 3 until k seeds are selected.  
 
3.2 Sample analysis 

To better illustrate the NCCDH algorithm, Fig. 2 presents a detailed process to select the top 
3 seeds in a sample network. In the first round of choosing the first seed, the initial status of 
each node is false, indicating that the node is not covered. The NCCDH will choose node A 
that has the largest nc (Cnc(A)=12) as the first seed and will cover the neighbors (B, C, and D) 
within the same shell layer of node A. In addition, the nc value of neighbor E and M outside the 
shell will be discounted from 7 to 4 and from 8 to 5, respectively. In the next round, because 
the node with the largest nc and uncovered status is H, node H will be chosen as the second 
seed. The remaining selections are performed in the same manner, and node M will be selected 
as the third seed. Then, the seed set is S={A, H, M}. 

Distinct from the NCCDH, the MCC algorithm will directly cover all neighbors of the seed 
after randomly obtaining one seed from the high-order shell layer. For example, the MCC will 
randomly select any node from the 3-shell (A~D) as the first seed and then cover all the 
neighbors of the seed and choose the second seed from the 2-shell. The Degree algorithm 
selects node M with the largest degree as the first seed, and the subsequent seeds are randomly 
selected from A, B, and H. Selecting nodes A and B as the 2nd and 3rd seed, respectively, gives 
highly coarse-grained results and overlapping spheres of influence. According to the above 
discussion, multiple candidates can be selected as the seed in each turn. Therefore, the MCC 
and Degree algorithms are unable to distinguish the differences between nodes at a 
fine-grained level.  

The CCA algorithm selects the node located in the high-order shell with the largest degree 
as the initial seed. As shown in Fig. 2, the CCA will select nodes A or B with the largest degree 
in the 3-shell as the first seed. An assumption of the process is that node A will be selected as 
the first seed, nodes B, C, D, and E will be covered and the algorithm will choose node G, 
which is located in the 2-shell and has the largest degree, as the second seed. If the infection 
probability is β in the SIR model, where the immune probability is γ=1, and A is the first seed, 
then the spreading influence of selecting G as the second seed is calculated as FG(t)=1+3β+4β2 

(t≥2). However, the spreading influence of H obtained by the NCCDH as the second seed is 
calculated as FH(t)=1+5β+2β2 (t≥2). Similarly, the propagation effect of the third seed (node 
S) obtained by the CCA is also less than that of the NCCDH (node M), where the spreading 
influence of S is FS(t)=1+2β+3β2 (t≥2) and the spreading influence of M is FM(t)=1+5β(t≥2). 
The spreading ability of the seeds obtained by the CCA is less than that of the NCCDH. In 
other words, the NCCDH can distinguish the role of the nodes to locate the seeds more 
accurately while reasonably evaluating the nodes with large degrees in the periphery of the 
network.  
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Fig. 2. Toy network for selecting the top 3 seeds with the NCCDH. 

4. Evaluation and analysis  

4.1 Network datasets 
In the experiment, we use three real network datasets to evaluate the performance of the 

NCCDH. Hamsterster friendships [32] defines the friendships and family links between users 
of the website “www.hamsterster.com”. The Ca-GrQc [33] is a collaboration network from 
the e-print arXiv and covers scientific collaborations between authors of papers submitted to 
the General Relativity and Quantum Cosmology category. The data cover papers published in 
the period from January 1993 to April 2003. Newman’s COND-MAT [34] is the co-authorship 
network based on preprints posted to the Condensed Matter section of the e-print arXiv 
archived between 1995 and 1999. The topological features of these three networks are shown 
in Table 1, where n is the number of nodes, m is the number of edges, <d> is the average 
degree, dmax is the maximum degree. Ƭ is the transitivity which measures the probability that 
the adjacent vertices of a vertex are connected, it is calculated as follows: 

kijk
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i ii
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111

                                    (5) 

where aij are elements of the adjacency matrix, di is the degree of node i. A is the 
assortativity that measures the degree to which similar vertices tend to connect to each other, 
and kcmax is the maximum value of the k-core centrality. 

 
 
 
 

http://www.hamsterster.com./
http://snap.stanford.edu/data/ca-GrQc.html
http://arxiv.org/archive/cond-mat
http://arxiv.org/
http://arxiv.org/
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Table 1. Topological features of the three networks. 

Network n m <d> dmax Ƭ    A kcmax 
Hamsterster friendships 2426 16630 13.7098 273 0.2313 0.0474 24 

Ca-GrQc  5242 14484 5.5261 81 0.6298 0.6593 43 
COND-MAT 16264 47594 5.8527 107 0.3596 0.1846 17 

 

4.2 Experimental setup 
The two basic propagation models are applied in the experiment as explained in Section 2.3. 

In the SIR model, we mainly report the results on a small infection probability of 
β∈[0.01,0.02,0.03,0.04,0.05,0.06]. Larger β values, such as β=0.1, are not considered 
because of the insensitivity of the model to the different methods proposed in [23]. The 
immune probability of the SIR model is set to 1 (γ=1), which means that the Infected nodes will 
be recovered immediately after infecting their neighbors with a status of Susceptible. Under 
this circumstance, the SIR model is equivalent to the independent cascade model where any 
active node i has only one chance to infect its inactive neighbor j. Whether the infection is 
successful or not, node i will not infect j in subsequent steps. This model is widely used for 
cascading problems, such as traffic jams, financial systems and retweeting behaviors. The 
experiment runs 10,000 times to obtain the average result. The running platform is an Intel 
Core i3-2348M with 4 G RAM, and the programming environment is R 3.1-win.   

The performance of the algorithm is analyzed from the following aspects. (a) For each 
algorithm, the spreading influence with different seed set sizes ranging from 1 to 50 is 
compared. (b) The impact of the infection probability β on the information propagation is 
analyzed while selecting k=50 seeds. (c) The spreading influences of different algorithms in 
the SIR and SI models are evaluated, where the SIR model is used to verify the affected scale 
and the SI model is used to verify the propagation velocity. (d) The running time for the seed 
selection is determined. Because of the high time complexity, the greedy algorithm is not 
considered in the experiment. The algorithms used here are shown in Table 2. 

 
Table 2. Experimental algorithms.  

Algorithm Description 

Degree Selecting nodes with the top-k largest degrees as seeds. 

k-shell  Selecting nodes with the top-k largest k-core centrality as seeds. 

MCC Covering all the neighbors of a selected seed by the maximum k-core 
centrality.  

PageRank An algorithm used by Google Search to rank websites in their search engine. 
The damping factor is 0.85 and the converging threshold is 0.001. 

DDH Discounting the degrees of the seed’s neighbors. 

NCCDH Covering the neighbors inside the shell layer and discounting the neighbors 
outside the shell layer for a seed obtained by the neighborhood coreness.  

 

4.3 Experiment results 
(a) Spreading influence with different numbers of seeds 

 
Fig. 3 shows the spreading influence with the number of seeds in the SIR model. Fig. 3 (a), 

http://snap.stanford.edu/data/ca-GrQc.html
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Google_Search
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(b), and (c) shows that the DDH can achieve the best results when the probability of infection 
is smaller (β=0.01). Therefore, the performance of the DDH is better than that of the Degree, 
PageRank, NCCDH, MCC and k-shell algorithms. Although the performance of the NCCDH 
has been greatly improved as shown in Fig. 3(b)(c) and outperforms the Degree, PageRank, 
and MCC algorithms, the spreading scale of the NCCDH is closer to that of the DDH because 
when the probability of infection is smaller, the node can spread only within a limited depth 
range. Therefore, the spreading sphere of the nodes with larger degrees will be wider. Because 
the DDH considers both the degree and the decentralization for the seed selection, the method 
has the best spreading results when the probability of infection is smaller. The NCCDH 
considers the seed's position and decentralization; however, the node in the core of the 
network does not always have the largest degree. Therefore, the advantage is not obvious 
when the infection probability is smaller. Compared with Fig. 3(a), the spreading ability of the 
NCCDH in Fig. 3(b) and (c) is better than the Degree, PageRank, MCC and other algorithms. 
This phenomenon can be explained by the greater transitivity of the Ca-GrQc and 
COND-MAT networks (shown in Table 1), which is beneficial to the spreading influence for 
the nodes located in the core of the network when the infection probability is smaller.  

When β is defined as 0.03 and 0.06, the NCCDH outperforms all other algorithms. In 
addition, the MCC algorithm, which randomly chooses the seeds in the high-order shell, even 
achieves good performance in the Hamsterster friendships and Ca-GrQc. Fig. 3 (d), (e), (f), 
(g), (h), and (i) shows that the advantage of the NCCDH is more obvious with increases in the 
value of k, which can be explained by the greater impact of the decentralized seeds in the core 
of the network on the spreading influence when the infection probability is increased 
compared with the impact of the nodes that have a large degree but may be located in the 
periphery. Moreover, when k increases, the growth rate of the spreading influence by the 
k-shell tends to be slower, which can be explained by the clustering of the seeds obtained by 
the k-shell without considering the overlapping regions.  
 
(b) Spreading influence with different infection probabilities 

Almost all nodes can be infected when β is set to a large value; in addition, the role of the 
seeds is no longer important because the final affected scale is independent of spreaders’ 
location. To distinguish the spreading results, the infection probability β is set to [0.01, 0.06]. 
Fig. 4 (a), (b), and (c) show the spreading results of different probabilities in the SIR model 
with a fixed seed number (k=50). Fig. 4(a), (b), and (c) show that when β≥0.03, the advantage 
of the NCCDH is more obvious than all the other algorithms, especially in the Ca-GrQc and 
COND-MAT. For example, limited spreading is promoted by applying the k-shell 
decomposition on the Ca-GrQc and COND-MAT because these seeds are mostly in close 
proximity to one another. When β is too small (β≤0.02), information can spread only at a finite 
depth regardless of how the seeds are selected; therefore, the DDH algorithm, which is based 
on the degree of centrality, has a slight advantage. However, the NCCDH considers the 
position of the node and the neighborhood information. As a result, the spreading influence of 
the NCCDH is always better than that of the MCC and k-shell. Therefore, the NCCDH has a 
better spreading influence with respect to other benchmark algorithms when the infection 
probability increases. 
 
(c) Spreading influence in the SIR and SI models 

Fig. 5 shows the spreading influence at time t in the SIR model, with k=50 and β=0.06. Fig. 
5(a), (b), and (c) show that the seeds obtained by the NCCDH can generate a larger scale of 
influence than that of the other algorithms. For example, in terms of the spreading influence, 
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the NCCDH outperforms the DDH, PageRank, Degree and k-shell by 3.98%, 5.86%, 7.79%, 
and 12.44% in Hamsterster friendships, respectively, and by 8.63%, 17.87%, 28.84%, and 
47.3% in the Ca-GrQc, respectively. Because the SI model can eventually infect all nodes 
(steady state), the model is often used to evaluate the spreading speed of different algorithms. 
Fig. 6(a) and (b) represent the spreading influence at time t in the SI model, with k=50 and 
β=0.06. The experimental results are given here for the Ca-GrQc and COND-MAT with a 
larger scale. The proposed method is always better than the other methods for the average 
spreading influence at each step. For example, in the Ca-GrQc, the NCCDH infected 90.31% 
of nodes at t=10 and achieved the steady state at t=16, whereas the DDH and Degree infected 
83.45% and 76.36% of nodes at t=10, respectively, and reached the steady state at t=17 and 
t=18, respectively. The propagation speed of NCCDH is faster than that of the other methods 
in the SI model. In other words, less time is required to achieve the same spreading scale.  

 
 (a) Hamsterster friendships (β=0.01)                 (b) Ca-GrQc (β=0.01)                        (c) COND-MAT (β=0.01) 

 
 (d) Hamsterster friendships (β=0.03)                 (e) Ca-GrQc (β=0.03)                                  (f) COND-MAT (β=0.03) 

 
 
 
 
 
 

http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-GrQc.html
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(g) Hamsterster friendships (β=0.06)                  (h) Ca-GrQc (β=0.06)                             (i) COND-MAT (β=0.06) 

 
Fig. 3. Spreading influence F in the SIR with different numbers of seeds k∈[1,50] and 

β∈{ 0.01,0.03,0.06} . (a–c) Hamsterster friendships; (d–f) Ca-GrQc; and (g–i) COND-MAT. 
 

 
(a) Hamsterster friendships                                 (b)  Ca-GrQc                                            (c) COND-MAT 

 
Fig. 4. Spreading influence F in the SIR with different infection probabilities 

β∈{ 0.01,0.02,0.03,0.04,0.05,0.06} , with k=50. (a) Hamsterster friendships; (b) Ca-GrQc; and (c) 
COND-MAT. 

http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-GrQc.html
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(a) Hamsterster friendships                                 (b)  Ca-GrQc                                            (c) COND-MAT 

 
Fig. 5. Spreading influence F in the SIR, where β=0.06 and k=50. (a) Hamsterster friendships;  

(b) Ca-GrQc; and (c) COND-MAT. 

 
 

     (a)  Ca-GrQc                                                                 (b) COND-MAT 
 

Fig. 6. Spreading influence F in the SI model where β=0.06 and k=50. (a) Ca-GrQc and (b) 
COND-MAT. 

 
(d) Running time  

 
K-core decomposition can be applied to large-scale networks because of its low 

computational complexity. Therefore, the NCCDH algorithm based on the nc obtained by the 
k-core decomposition also has a superior computational efficiency. The computational time of 
the NCCDH is mainly composed of four parts: the time to initialize the k-core centrality for all 

http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-GrQc.html
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nodes, the time to calculate the nc for all nodes, the time to select a node with the largest nc 
value and uncovered status, and the time to cover or discount the neighbors of a seed. 

First, the shell indices of all nodes are calculated by the k-core decomposition, where the 
time complexity is O(m) and m is the number of edges in a network. Second, the nc index of 
each node is calculated according to the k-core positions of the neighbors, where the time 
complexity is O(<d>*n)=O(m), <d> is the average degree of the network and n is the number 
of nodes. Third, the node that has the largest nc value and uncovered status in each round will 
be selected as a seed, where the time complexity is O(n). Finally, the neighbors of the node 
that has been selected as a seed will be covered or discounted where the time complexity is 
O(<d>)=O(m/n). Therefore, to select k seeds with k times in steps 3 and 4, the total 
computational complexity of the NCCDH is O(m)+O(m)+O(k*n)+O(k*m/n). If k≪n and the 
networks are sparse, the time complexity of the NCCDH is approximately O(n). 

The running time for the seed selection in three real networks is shown in Table 3. This 
table shows that because the Degree algorithm considers only the local properties, this method 
achieves the highest computational efficiency. The computational efficiency of the NCCDH 
algorithm is better than that of the DDH and PageRank algorithms because once a node is 
selected as the seed, the neighbors within the same shell layer of this node will be covered. In 
a subsequent selection, those covered nodes will be directly ignored to reduce the 
computational complexity. The computational efficiency of the DDH and NCCDH in the 
Ca-GrQc is better than that of the Hamsterster friendships, which can be interpreted as the 
lower average degree <d> in the Ca-GrQc (shown in Table 1). Therefore, it is beneficial to 
reduce the complexity of the discount calculation. 

 
Table 3. Running time for selecting seeds in the three networks (seconds). 

Network Algorithm k=10 k=20 k=30 k=40 k=50    

Hamsterster friendships 

Degree 0.2340 0.2340 0.2340 0.2340 0.2340 
k-shell  0.2360 0.2360 0.2360 0.2360 0.2370 
MCC 1.5600 2.2308 2.9172 3.1668 3.4994 

PageRank 60.946 60.946 60.946 60.983 60.983 
DDH 4.6956 7.0824 9.1260 11.4036 12.6984 

NCCDH 3.7128 5.3820 6.6300 7.7532 8.7048 

Ca-GrQc  

Degree 0.2495 0.2495 0.2495 0.2496 0.2496 
k-shell  0.2496 0.2498 0.2652 0.2652 0.2652 
MCC 1.1232 1.4820 1.6536 1.9500 2.1684 

PageRank 40.0862 40.0863 40.0879 40.0879 40.0879 
DDH 2.5428 3.8532 4.9296 5.6940 6.6924 

NCCDH 2.0904 2.7612 3.3696 3.9624 4.4616 

COND-MAT 

Degree 0.2496 0.2496 0.2651 0.2652 0.2652 
k-shell  0.2963 0.2963 0.2964 0.2964 0.2964 
MCC 2.0905 3.3852 4.5708 5.5536 6.5676 

PageRank 124.764 124.764 124.782 124.782 124.782 
DDH 5.5848 9.0168 12.2772 15.0696 18.8400 

NCCDH 5.4444 8.8608 11.7936 14.6172 17.2224 

5. Conclusions 
In this paper, we focused on limitations of the heuristic influence maximization algorithms in 
current social networks and proposed a nc cover and discount heuristic algorithm named 
“NCCDH”. After choosing a node as the seed in each turn, the neighbors within the same shell 

http://snap.stanford.edu/data/ca-GrQc.html
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layer of this seed are covered. At the same time, the nc of the neighbors outside the shell will 
be discounted in the subsequent round. The NCCDH can not only prevent many nodes with 
overlapping spheres in the high-order shell from being selected as the seeds but also overcome 
the shortcoming in which nodes with a large degree in the periphery of the network are not 
given a reasonable assessment. The method can identify a set of influential and decentralized 
seeds at a more fine-grained level. The experimental results show that because of its increasing 
spreading probability, the NCCDH outperforms other benchmarks in terms of the affected 
scale and spreading speed under the SIR and SI models. More importantly, the time complexity 
of this approach is superior. Recent works have begun to study temporal networks; thus, 
identifying influential spreaders in a temporal network will become an important topic in 
related fields in the future. The network community structure will also have an important 
effect on the influence maximization. Extending our work to these fields is worthy of further 
study. 
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