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Abstract 
 

The primary aim of this paper is to propose a non-linear regression based technique for 
mapping different network Quality of Service (QoS) factors to an integrated end-user Quality 
of Experience (QoE) or Mean Opinion Score (MOS) value for an online video streaming 
service on a mobile phone. We use six network QoS factors for finding out the user QoE. The 
contribution of this paper is threefold. First, we investigate the impact of the network QoS 
factors on the perceived video quality. Next, we perform an individual mapping of the 
significant network QoS parameters obtained in stage 1 to the user QoE based upon a 
non-linear regression method. The optimal QoS to QoE mapping function is chosen based 
upon a decision variable. In the final stage, we evaluate the integrated QoE of the system by 
taking the combined effect of all the QoS factors considered. Extensive subjective tests 
comprising of over 50 people across a wide variety of video contents encoded with 
H.265/HEVC and VP9 codec have been conducted in order to gather the actual MOS data for 
the purpose of QoS to QoE mapping. Our proposed hybrid model has been validated against 
unseen data and reveals good prediction accuracy. 
 
 
Keywords: QoS, QoE, MOS, H.265, VP9, Subjective Test, Regression Analysis 

 
 
https://doi.org/10.3837/tiis.2017.11.012                                                                                                              ISSN : 1976-7277 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017                              5393 

1. Introduction 

 Recently as per a report published in [1], video traffic constitutes more than 55% of the 
overall Internet traffic and it is predicted to grow at a very fast pace. Online video streaming is 
gaining popularity on devices having small form factor screens ranging from 4 inches to 6 
inches [2]. This rapid growth in the demand for network bandwidth has resulted in the 
emergence of newer codecs like H.265/HEVC and VP9 that provides a good quality to 
compression ratio. For streaming services like video there should be a continuous assessment 
of the end users perceived video quality as the network over which data is being transmitted is 
inherently unreliable. This leads us to the concept of Quality of Experience (QoE) which is a 
result of multidimensional factors being influenced by the system, user or some other 
contextual factors [3]. The International Telegraph Union Telecommunication 
Standardization Sector (ITU-T) defines QoE as the overall acceptability of an application or 
service, as perceived subjectively by the end user [4]. It includes the complete end-to-end 
system effects that can be due to the client, terminals, network, service infrastructure or some 
other factors. From an Internet Service Provider’s (ISP’s) point of view however, it is more 
important to understand the fundamental relationship between the various network and 
application level Quality of Service (QoS) factors and the underlying QoE. This is an 
extremely important requirement for any effective QoE management scenario. Hence, the QoS 
parameters are the most important business relevant parameters for the ISP’s [5]. Therefore; 
there is a sharp demarcation between QoS and QoE- the former being easier to measure and 
hence more technical, while the latter being a more psychological state of mind of the end 
users and hence relatively complex to evaluate mathematically.  

    QoE is generally evaluated using three different approaches such as subjective tests, 
objective tests and pseudo-subjective or hybrid tests [6]. Subjective tests are considered to be 
the most accurate amongst the three mentioned, wherein the people need to watch video 
samples and then rate those. Results of the tests are generally expressed in the form of Mean 
Opinion Score (MOS) or some variation of it depending upon the method used [7-10]. Such 
tests though accurate are time consuming and costly to conduct. Objective tests on the other 
hand are extremely effective for in-service quality monitoring but require complex algorithms 
or specialized equipment for evaluation [11]. They are extremely fast and easy to deploy, but 
the accuracy as compared to the subjective tests is questionable and depends upon the 
assessing algorithm. Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM) and 
Video Quality Metric (VQM) are some of the well-known objective algorithms [12-14]. These 
methods are full reference (FR) methods that require the presence of the original signal and 
hence require an additional bandwidth overhead. As such, they are not suitable for streaming 
applications for which the hybrid tests are preferred. These methods use a combination of the 
subjective and objective methods to predict the video quality and do not require the source 
signal to be present. ITU-T G.1070 model and Pseudo Subjective Quality Assessment (PSQA) 
are some of the well-known examples [15]. 

    In this paper, we are proposing a new regression based hybrid and integrated QoS/QoE 
mapping model in order to evaluate the quality of streaming videos, impaired solely due to the 
network QoS parameters. The model is a hybrid one as it combines the subjective results with 
relevant mathematical techniques to predict the video quality. We begin by conducting a 
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subjective test where the videos are impaired by six different network QoS parameters x1 to x6 
(three Key Performance Indicators or primary network factors + three secondary network 
factors). Packet loss, jitter and throughput are the 3 Key Performance Indicators (KPI’s), 
whereas variable initial delay, buffering delay and auto scale resolution are the 3 secondary 
factors taken into consideration. We use only H.265/HEVC and VP9 as the video codecs as 
they are representative of the modern day streaming scenario. After gathering the subjective 
MOS from the experiment, we investigate into the effectiveness of the network parameters 
that we have chosen for the purpose of QoS to QoE mapping. This is done by carrying out an 
Analysis of Variance (ANOVA) measure over the 6 QoS parameters considered and 
Subjective MOS as the target output i.e. dependent variable. Next, a non-linear regression 
technique is used to map each individual QoS parameter (x1 to x6 ) its QoE counterparts Q1(x1) 
to Q6(x6). At this point, we also consider other popular mapping functions used by different 
authors and select the optimal one based upon a decision variable DV that has been explained 
in a later section. The individual mapping functions that we obtain are quite different from the 
ones found in papers [16-18]. 

    After deriving the individual quality models Q1(x1) to Q6(x6) empirically, we try to find out 
the generic structure of the integrated model Q(x1, x2,..., x6). This is a challenging task, where 
the QoE is affected by several QoS parameters simultaneously. The most common approach 
adopted by many researchers in papers [17-19], is based upon an additive/weighted-sum 
approach that is not only less accurate, but also suffers from some serious drawbacks that we 
have proved in this research. The weighted sum approach that we have undertaken is based 
upon the Analytical Hierarchical Process (AHP) algorithm. In this paper, we propose a generic 
QoE equation in the multiplicative format keeping in mind the drawbacks of the additive 
format. The final integrated multivariate QoE estimation function is obtained by carrying out a 
liner regression over the additive and multiplicative QoE’s found already. Finally, we conduct 
another subjective test with videos being impaired by multiple factors and evaluate our model 
performance. 

    Rest of the paper is organized as follows. In Section 2, other related works are reviewed. 
Section 3 presents the various QoS factors that we select and the subjective tests that are 
carried out in detail. Section 4 provides the analytical approach for individual QoS to QoE 
mapping functions along with the decision variable. In Section 5, we evaluate the integrated 
QoE for the various QoS factors and estimate the accuracy of the model. Finally, Section 6 
provides the conclusion and scope of future work. 

2. Related Work 
In this section we present a concise information about the work that has been done till date to 
estimate the video quality, correlation between QoS and QoE and evaluating QoE from QoS 
parameters. 

2.1 Video Quality Estimation 
Subjective measurement techniques are the most accurate video quality estimation tools 
available till date. Standard procedure to conduct subjective tests has been laid down by ITU-T 
in its various Recommendations. Different techniques can be used depending upon the 
application requirements. Absolute Category Rating (ACR), Absolute Category Rating with 
Hidden Reference (ACR-HR), Degradation Category Rating (DCR) and Pair Comparison (PC) 
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are some of the most commonly used experimental techniques. Both ACR and ACR-HR are 
examples of single stimulus method where only one video sequence is shown at a time, while 
DCR and PC are examples of double stimulus method where the original and degraded video 
sequences are presented in pairs to the user. The Recommendations mandate the video 
sequences to be under 10s duration; a criterion which cannot represent a real life video 
streaming scenario [20]. A detailed comparison between the different subjective techniques 
can be found in papers [21, 22]. As subjective methods are very expensive and time 
consuming to conduct, hence we need to go for other objective techniques. 

    Objective models are based upon certain algorithms or mathematical equations that try to 
predict the subjective video quality. They can be classified based upon the amount of reference 
information presented to the assessing software/model into three main types viz. Full 
Reference (FR), Reduced reference (RR) and No Reference (NR) methods [23]. In FR 
technique, both the original video sequence and the impaired one must be presented to the 
assessing software/model. PSNR, SSIM and VQM are examples of such technique. RR 
schemes extract certain features of interest from the original video and use that for comparison 
against the impaired ones. Authors in paper [24] discuss about one such approach. In case of 
NR technique, no reference video is needed for quality estimation. ITU-T G.1070 and the 
work done by authors in [25] and [26] represent such a method. 

    The metrics that have been taken for video quality prediction can be of different types. 
Generally, they are classified into three main types as the network QoS, application QoS and 
the user QoS factors [27]. Network QoS refers to the network performance that includes the 
effects of packet loss, jitter and bandwidth. Application QoS is mainly related with the codec 
related factors like type of codec used, video resolution, type of video content and the Group of 
Pictures (GOP) structure. User QoS is equivalent to the MOS. 

2.2. Correlation between QoS and QoE 
Due to the high cost of the subjective tests, several authors have attempted to find the QoE 
from various QoS factors. Mathematically QoE can be defined by a mapping function being 
affected by a number of influence parameters on the visual quality being perceived by the end 
user. If xi denotes a general influence parameter; then the QoE can be represented as QoE = 
f(x1, x2, xi… xn) for n number of factors. 

    Authors in paper [28] investigated the relationship between voice transmission conditions 
and the human perception quality and they concluded that the relationship is not linear. 
However, it needs to be seen if the same relationship holds true for video traffic. Authors 
propose similar models in [29] and [30]. However, they consider the effect of only one QoS 
factor on the user QoE that is not representative of a practical video streaming scenario. With 
rapid growth of the Internet, apart from packet loss several other factors need to be considered 
while evaluating the perceived quality. Another study in [31] finds the relationship between 
bit-rate, packet-loss rate and jitter on QoE and proposes a logarithmic relationship. This is the 
IQX hypothesis, which is an extension of the Weber-Fechner law, but gives the QoE for a 
single impairment factor only at any point of time. Although, the IQX hypothesis is good at 
estimating the QoE of any network parameter, the authors tested it with voice traffic only that 
differs substantially from video traffic. Thus, the generic exponential relationship between the 
network QoS and user QoE might need some fine-tuning which we explore in this paper. In 
addition, since the IQX hypothesis considers a single impairment factor only, we propose a 
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regression based approach for QoE determination from multiple impairment factors. Authors 
in paper [32] have proposed an adaptive QoE measurement scheme for IPTV services. 
However, they measure the QoE based upon the quality of images contained in the video 
stream and do not consider any network related impairment factor. They just give a proof of 
concept without analyzing the performance of their proposed method. Similarly, authors in 
paper [33] try to find a general approach towards the identification of the QoE influence 
factors where they categorize the QoE into multidimensional IF spaces. The different 
influence factors are given different weights that depend upon the application context while 
evaluating the QoE. Their proposed ARCU model does not address the issue of modeling QoE 
in the case of multimedia services composed of multiple media components. 

    A Dynamic Adaptive Streaming over HTTP (DASH) based multi-view video streaming 
system that can minimize the view-switching delay by employing proper buffer control, 
parallel streaming and server push schemes has been presented by authors in [34]. Similar 
HTTP based video streaming for long-term evolution (LTE) cellular networks has been 
proposed in [35]. Authors in papers [36] and [37] try to predict the video QoE for a DASH 
based video streaming scenario. Similarly, in paper [38] the authors present a general 
framework for robust video adaptation by several commercial players by proposing a new 
algorithm. Papers [39], [40] and [41] provide an excellent survey on the QoE estimation 
techniques in place for a video streaming scenario in general. 

    The main challenge is to understand the fundamental relationship between the various QoS 
factors and QoE first, and then go for the multidimensional relationship between the two. 
Authors in paper [42] propose a multidimensional QoE model for a mobile web-browsing 
experience in which they use an additive approach. However, their basic assumption in 
following an additive approach is a linear relationship between the QoS and QoE factors, 
which is not true in our case, as experiments will reveal in later part of the paper. Thus, 
following a weighted sum approach is questionable in our case. In paper [43], authors try to 
evaluate the QoS/QoE of an IPTV service based upon network impairments only. Instead of 
taking the MOS scores, they consider the Structural Similarity (SSIM) scores, for the purpose 
of QoS to QoE mapping. After evaluating the final QoE, they do not provide any sort of model 
validation by carrying out a subjective test. A weighted sum approach is again followed which 
has certain drawbacks as will be explained in later sections. Authors in paper [44] determine 
the audiovisual quality of a service where the combined audio and video quality predicted by 
the model is given by: 

𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴 = 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴 + 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴 + 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴 × 𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴 + 𝜁𝜁, where 

MOSAV refers to the overall audiovisual quality, MOSA and MOSB refers to the audio and 
video quality respectively. The main drawback of this study is the lack of any subjective tests 
to validate the results. Also, the primary emphasis of the paper was to provide an effective 
audio video synchronization rather than modeling the QoE in terms of the QoS factors. 
Extensive literature review that has been done shows that although QoE estimation is not a 
new technique, yet there are a number of loopholes in the process. Most of the papers have 
tried to provide an individual QoS to QoE mapping by following an IQX hypothesis for the 
network parameters. Only, the effect of packet loss, jitter, throughput and delay has been taken 
into account while estimating the QoE. However, with the rapid growth in video streaming 
services especially over mobile devices that has limited hardware capability in terms of 
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storage buffer, the effects of buffering delay need to be considered also. Recently introduced 
adaptive playout strategies by services like YouTube, wherein depending upon the network 
condition resolution of the streamed videos can change also need to be accounted for. For this 
reason, we include three new parameters for this research and justify their inclusion also by 
carrying out an ANOVA analysis. Variable Initial Delay, Buffering Delay and Auto Scale 
Resolution are the three new parameters that we introduce in this work. A weighted sum 
approach is generally followed for calculating the QoE from multiple QoS parameters. 
However, such a technique has its own drawback that we will explain later. We follow an 
alternative approach for QoE estimation and validate our model with unseen results obtained 
from the subjective test. 

3.  QoS Metric Selection and Subjective Evaluation 
In this section, we discuss about the subjective experiment carried out, video sequences used 
and the network QoS parameters that have been selected for this purpose. 

3.1 Subjective Evaluation 
We carry out two subjective tests as per the ITU-T Recommendation P.910. Fifty-nine 
participants were involved in each test and mixed in gender. The age range varied from 18-70 
years. Fig. 1 shows the breakdown of the participant ages. 
 

 
Fig. 1. Breakdown of the participant ages. 

 
In the first test, the subjects are shown videos that are impaired with only one network QoS 

factor. Since, we have considered six different network QoS factors; therefore each of the 
videos have been impaired by exactly one factor for the first test. The experimental details 
have been provided in Section 3.3 later. For the second test; the same set of master video 
sequences are impaired by more than one network QoS factor. The details are given later in 
Section 5.3. We use eleven different video sequences for the purpose of this research. While 
eight of the video sequences are used for building our prediction model, the remaining three 
are used for the purpose of model validation only. Video sequences 1, 2, 4, 5, 6, 7, 9 and 11 are 
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used for model building, while the remaining ones are used for validation. This has been 
shown in Table 1. All the volunteers have been screened for any visual defects specifically 
color blindness or myopia before conducting the test. None was discarded in this process. 
Before conducting the experiment approval has been obtained from the ethical committee of 
the university as it involves human subjects. The entire test is conducted in a controlled 
laboratory environment over a period of 8 weeks. Training sessions have been conducted 
using demo videos in order to familiarize the participants to the actual test conditions. We used 
the Samsung Galaxy Note 5 for showing the videos as it supports resolutions of up to 2K and 
has inherent support for the modern codecs H.265 and VP9. Each video sequence is of 10s 
duration and of Full HD resolution. During the assessment, the participants are left alone in 
order to minimize the unwanted effects of being supervised [45]. Details about the video 
sequences used have been provided in the next sub-section. The subjective opinion is gathered 
using the single stimulus ACR technique in which the participants were asked to rate each 
video presented to them on a scale of 1 to 5; where 1 represents the worst and 5 the best quality. 
The subjects are provided with scoring sheets to record their opinions. As subjective 
assessment is a tedious and high concentration task, we divided the viewing into multiple 
sessions with each session lasting for 15 minutes duration. After the test, all the offline scores 
are manually entered into a computer for the purpose of data analysis. The subjective test is 
done by strictly adhering to the standards mentioned in ITU-T Recommendation P.910. 

3.2 Video Selection 

We use the publicly available SVT High Definition Multi Format Test Set database 
maintained by the Video Quality Experts Group (VQEG) for selecting the reference videos 
[46]. Eleven reference videos were chosen; each having different levels of spatial and 
temporal information i.e. SI and TI values. This has been shown in Fig. 2 for easy reference. A 
snapshot of all the video sequences that have been considered are given in Fig. 3. 

    The spatial perceptual information (SI) is based upon the Sobel filter; whereas the temporal 
perceptual information (TI) is based upon the motion difference feature. These values have 
been calculated for each video sequence based upon the outline given in ITU-T 
Recommendation P.910. Perceived video quality depends heavily upon the type of video 
content, which has been established by researchers in [47] and [48]. Since, SI and TI values are 
a direct indication of the extent of video content complexity; hence, we chose those videos 
where these values vary over a wide range in order to cover the entire gamut possible. This fact 
is evident from Fig. 2 shown in next page. 

    Further details about the eleven clips have been provided in Table 1. All the clips are of 10 
seconds duration and in the native YUV 4.2.0 format. Resolutions of all the videos are fixed at 
Full HD (1920×1080). We did not take resolutions higher than Full HD since video streaming 
is normally not done at higher resolutions and due to the lack of reference video contents. 
Similarly, lower resolutions were also not chosen, as they are not representative of present day 
video streaming scenario. 
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Fig. 2. SI and TI values for selected video clips 
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                              (g)                                                                            (h) 

         
                               (i)                                                                                (j) 

 
                                                                         (k) 
Fig. 3. Snapshot of used video sequences (a) Harbor (b) Ice (c) DucksTakeOff (d) ParkJoy (e) Crew (f) 

CrowdRun (g) Akiyo (h) Soccer (i) Foreman (j) Football (k) News 
 

Table 1. Video Clip Details 
Seq. Number Seq. Name Frame Rate Resolution Chroma 

Format 
Content 

Complexity 
1 Harbor 60 fps 1920 × 1080 4.2.0 1014 
2 Ice 60 fps 1920 × 1080 4.2.0 756 
3 DucksTakeOff 50 fps 1920 × 1080 4.2.0 2728 
4 ParkJoy 50 fps 1920 × 1080 4.2.0 2450 
5 Crew 60 fps 1920 × 1080 4.2.0 1053 
6 CrowdRun 50 fps 1920 × 1080 4.2.0 2688 
7 Akiyo 30 fps 1920 × 1080 4.2.0 255 
8 Soccer 60 fps 1920 × 1080 4.2.0 2704 
9 Foreman 30 fps 1920 × 1080 4.2.0 1140 
10 Football 30 fps 1920 × 1080 4.2.0 2760 
11 News 30 fps 1920 × 1080 4.2.0 1470 

 

    We encode the reference videos with both H.265 and VP9 codecs. The same encoder 
configuration has been used for both the reference and impaired videos to get the best quality. 
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In this work, we are interested in finding out the effect of the network QoS factors only on the 
overall video QoE, due to which we keep the distortions arising from the codec the same for 
both the original and impaired sequences.  

    Next we present the network QoS factors that have been used to create the impaired videos 
and evaluate the QoE. 

3.3 Network QoS Factors 
In this work, we select six different network QoS metrics. As most of the authors have taken 
into account the effect of packet-loss, jitter and throughput to be the main factors for QoS to 
QoE mapping as discussed earlier, we consider these to be the primary factors or Key 
Performance Indicators (KPI’s). In addition, we introduce three more factors variable initial 
delay, buffering delay and auto scale resolution in our experiment to calculate the QoE. This 
has been shown in Fig. 4. 
 
 
  
 
 

 
 
 
 
 
 
 

 
 

Fig. 4. Network QoS factors 
 
Next, we present a description of the factors included. 
 

• Packet loss (P): IP packets may be discarded during their transit over the network or 
dropped at any intermediate nodes due to network congestion or buffer overflow. Here, 
we consider a random packet loss pattern as it has a significant detrimental effect on 
the video stream quality as compared to other types of packet losses [49].  

• Jitter (J): It is defined as the variable delay in receiving packets at the receiver. It can 
occur due to network congestion, improper queuing or several other factors. 

• Throughput (T): It refers to the amount of data that is successfully transferred from 
one place to another in a given time period. Its influence towards the video QoE has 
been well accepted by the research community. 

• Variable Initial Delay (VID): In order to overcome the effect of jitter, every client is 
equipped with a play- out buffer. A streaming video will start to play only after the 
buffer has been filled up to a certain threshold value [50] [51]. VID is defined as the 
time-gap between the arrival of the first frame in the buffer and its subsequent 
play-out on the client screen at the start of video playback. i.e. VID =  TPlayout −
 TArrival (1st Frame) 

• Buffering Delay (BD): During video playback, there can be a situation where the 
play-out buffer at the client is temporarily empty. In such cases, the video playback 

Network Parameters 

Primary Secondary 

Packet Loss Jitter Throughput 
Variable 

Initial Delay Buffering 
Delay 

Auto Scale 
Resolution 



5402                        Debajyoti Pal and Vajirasak Vanijja: Model for Mobile Online Video viewed on Samsung Galaxy Note 5 

would be intermittent and the quality will be degraded seriously. The video playback 
would stall. The total playback time is increased by each buffering delay interval. The 
viewers will encounter frequent buffering delays when the player at the client side 
requests a higher bitrate than what is actually available in the network. 

• Auto Scale Resolution (ASR): In an adaptive video streaming scenario the videos are 
encoded at multiple discreet bitrates i.e. at different resolutions. For example, the most 
commonly used video resolutions by YouTube are at 144p, 240p, 360p, 480p, 720p or 
1080p  Depending upon the available network bandwidth and other factors a 
particular bitrate stream is broken into multiple segments or chunks, with each 
segment lasting between 2 to 10 seconds. For the sake of this research the resolution 
combinations that we choose are (360p+480p), (720p+360p), (720p+480p), 
(360p+1080p) and (1080p+720p) combination. The duration of the video, sequences 
that we use in our experiment are 10 seconds each. Considering the fact that the 
duration of each fragmented segment should be between 2 to 10 seconds in case of a 
resolution switch, we take into account only those cases where the number of 
resolution switches is two. Higher number of resolution switches has not been 
considered keeping in mind the total length of the original video sequences. We 
express the ASR factor as the ratio of a particular resolution combination to the 
minimum resolution combination of the videos that we use. For, example the ASR 
factor for (720p+360p) combination is (1280×720+640×360) / (640×360+854×480) = 
1.8. Similarly, for (360p+480p), (720p+480p), (360p+1080p) and (1080p+720p) the 
ASR factor is 1, 2.1, 3.6 and 4.7 respectively. This has been shown in Table 2. 

 
    As it is evident from the description of the network QoS factors considered above, we find 
that the secondary factors are dependent upon the three primary factors. For example, variable 
initial delay is a direct effect of jitter. Due to the effect of jitter, the different video packets can 
reach at the destination side at different points of time. In order to improve the viewing 
experience, every client is equipped with a buffer to ensure a smooth playback. Therefore, 
unless the buffer is filled up to a certain extent video playback will not begin. Having 
intermittent delays during video startup can reduce the viewing experience, which arises due 
to the effect of jitter. Similarly, buffering delays are caused when the player at the client side 
requests a higher bitrate than what is actually available in the network. The video players are 
normally equipped with a throughput estimator with the help of which they can monitor the 
available network throughput during a download. Thus, if the network throughput is low and 
the playout buffer at the client end not entirely full, then there can be a situation where 
momentarily the playout buffer becomes empty, thereby resulting in an intermittent video 
playback. Similarly, the player can also experience a low frame rate when a significant number 
of packets are lost during the video rendering process. Hence, both packet loss and network 
throughput has a direct impact on buffering delay, which in turn degrades the QoE of the 
viewers. Auto scale resolution is a type of adaptive bitrate streaming technique that is used by 
the video content providers with an aim to improve the viewing QoE. The video content 
provider stores the same video contents in multiple resolutions and then depending on various 
network factors like the available network bandwidth, extent of jitter present and the overall 
network loading conditions selects a particular resolution for showing to the users. Automatic 
switching to lower or higher resolutions than what is current being played happens depending 
upon the network conditions and other factors like amount of playout buffer left, video 
rendering capability of the viewer’s device, etc. Hence, all the secondary factors that we have 
considered are a consequence of the primary ones. 
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Table 2 shows the parameter settings that are used to create the impaired videos for the first 
subjective test. For every set of parameter, the range of values has been carefully selected so 
that they match with those used by authors in other papers or beyond which the perceived 
video quality saturates (either excellent or poor). 

    Table 3 and Table 4 show the encoder configuration details for H.265/HEVC and the VP9 
codec respectively. All these video samples were prepared and preloaded into a Samsung 
Galaxy Note 5 having 4 GB of RAM, 64 GB of internal storage and running Android 6.0.1 
before being shown to the subjects. 
 

Table 2. Experimental Setup 
Parameter Details 

Video Codec H.265, VP9 
Encoder Version Ffmpeg version 3.1.3 

Video Format Full HD progressive (1080p) 
Packet Loss in % 0.1, 0.5, 1, 3, 5, 10 

Jitter in milliseconds 1, 2, 3, 4, 5 
Throughput in kbps 500, 1000, 2000, 3000, 5000 

Variable Initial Delay in seconds 5, 15, 25, 35, 45 
Buffering Delay in seconds 2, 4, 6, 8, 10 

Auto Scale Resolution 1, 1.8, 2.1, 3.6, 4.7 
 

Table 3. H.265/HEVC Encoder Configuration 
Parameter Details 

Encoder Version HM 16.6 
Profile Main 

Reference Frames 4 
R/D Optimization Enabled 

GOP 8 
Coding Unit Size/Depth 64/4 

Fast Encoding Enabled 
Rate Control Disabled 

Internal Bit Depth 8 
 

Table 4 VP9 Encoder Configuration 
Parameter Details 

Encoder Version Ffmpeg 3.1.3 
Encoding Quality Best 

No Of Passes 2 
Bit Rate Control Mode Variable Bit Rate (VBR defined by target bit 

rate) 
Constrained Quality (CQ) Level Kept same as Quantization Parameter QP 

Initial, optimal and maximum buffer level 4000 ms, 5000 ms, 6000 ms 
GOP Size Auto 

GOP Length (Intra Period) 320 
Internal Bit Depth 8 

 
    Since, the scope of this work is limited to a mobile video viewing experience only, we chose 
to use a Samsung Galaxy Note 5 as it supports inherent (hardware level) decoding of the 
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videos encoded with H.265 and VP9 codec. At the time when the experiment was performed, 
there was no other mobile device that supported hardware level decoding of both these codecs 
to the best of knowledge of the authors. To create the impaired videos we used the Network 
Emulator for Windows Toolkit (NEWT) provided by Microsoft to simulate the various QoS 
parameters. The overall methodology for creating the impaired videos and measuring the 
QoE/MOS has been shown in Fig. 5. 
   
                                                      
                                                Compression (H.265/VP9 

 
 
 
 

                                                                                                                       Network QoS Factors 
 
 
 

Subjective Test (ITU-T P.910) 
 
 
 
 

Fig. 5. Process of measuring MOS. 
 
    In the next section, we present the subjective test results and the QoS to QoE mapping 
approach. 

4.  Subjective Results and Individual QoS to QoE Mapping 
 
4.1 Subjective Results 
 
For the first subjective test we recorded 40,238 scores (341 impaired videos × 59 subjects × 2 
codecs). Tables 5 to 10 shows the summary of the results that we obtain for the six different 
network QoS factors. The standard deviation (σ) and mean MOS (with 95% CI) are shown for 
both the codecs H.265 and VP9 for a sample size of 59. For reasons of simplicity, results 
across the 11 different video sequences are consolidated into one for each factor.  

    To begin with, the process of outlier detection was performed in order to remove any sort of 
data inconsistency. If 𝑀𝑀𝑖𝑖𝑖𝑖  represents the score obtained by the jth subject for the ith test 
sequence, then Sij  would be considered as an outlier if Sij >  q3 + 1.5(q3 − q1)  OR 
Sij < q1 − 1.5(q3 − q1), q1 and q3 being the 25th percentile and 75th percentile of the score 
distribution respectively [52]. This range is approximately equal to 99.3% of the normally 
distributed data. A subject will be removed from any further consideration if more than 20% of 
his/her scores are outliers. Following this method in our experiment, we did not find any 
outliers. For a sample size N, the MOS has been calculated as: 
 
MOSi = �∑ SijN

j=1 �/N                                                                                                                                 (1) 
 

Original Raw Video 
Codec Impaired 

Videos 

Codec and Network 
Impaired Videos 

Final MOS 
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Table 5. Consolidated Report for Packet Loss (PL) % 
PL σ(H.265/VP9) Mean(95%CI)(H.265/VP9) 
0.1 1.04/0.87 3.71±0.16/3.63±0.13 
0.5 0.84/1.03 3.07±0.13/3.29±0.16 
1 0.77/0.81 2.42±0.12/2.72±0.13 
3 0.67/0.65 1.88±0.10/2.15±0.10 
5 0.77/0.65 1.78±0.12/1.57±0.10 

10 0.60/0.64 1.33±0.09/1.44±0.10 
 

Table 6. Consolidated Report for Jitter (J) in milliseconds 
J σ(H.265/VP9) Mean(95%CI)(H.265/VP9) 
1 0.84/0.86 3.12±0.13/3.81±0.13 
2 0.56/0.62 1.40±0.09/1.41±0.10 
3 0.51/0.58 1.16±0.08/1.35±0.10 
4 0.23/0.38 1.06±0.04/1.11±0.06 
5 0.14/0.37 1.02±0.02/1.07±0.06 

 
Table 7. Consolidated Report for Throughput (T) in kbps 

T σ(H.265/VP9) Mean(95%CI)(H.265/VP9) 
500 0.27/0.13 1.06±0.05/1.02±0.02 

1000 0.67/0.63 1.76±0.12/1.67±0.11 
2000 1.02/1.11 3.82±0.18/4.00±0.20 
3000 0.97/0.97 3.87±0.17/4.09±0.17 
5000 0.98/1.06 3.87±0.18/4.12±0.19 

 
Table 8. Consolidated Report for Variable Initial Delay (VID) in seconds 
VID σ(H.265/VP9) Mean(95%CI)(H.265/VP9) 

5 0.80/0.73 4.27±0.12/4.36±0.11 
15 1.11/0.99 3.24±0.17/3.98±0.15 
25 0.89/1.13 2.03±0.14/3.14±0.18 
35 0.76/0.89 1.68±0.12/2.43±0.14 
45 0.44/0.83 0.75±0.07/1.67±0.13 

 
Table 9. Consolidated Report for Buffering Delay (BD) in seconds 

BD σ(H.265/VP9) Mean(95%CI)(H.265/VP9) 
5 1.01/0.77 3.69±0.16/4.06±0.12 
10 1.02/0.79 2.83±0.16/3.21±0.12 
20 1.25/1.26 1.57±0.19/1.93±0.19 
30 1.04/1.02 1.09±0.16/1.56±0.16 
40 0.72/0.77 0.68±0.11/1.01±0.12 

 
Table 10. Consolidated Report for Auto Scale Resolution (ASR) 

ASR σ(H.265/VP9) Mean(95%CI)(H.265/VP9) 
1 0.63/0.64 3.91±0.09/3.86±0.10 

1.8 0.86/0.86 3.11±0.13/3.14±0.13 
2.1 0.70/0.69 3.92±0.11/3.97±0.11 
3.6 0.70/0.62 4.12±0.11/4.17±0.09 
4.7 0.88/0.88 3.29±0.14/3.29±0.14 
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4.2 Individual QoS to QoE Mapping 
 

Here, we go for the individual QoS to QoE mapping by using a non-linear regression approach. 
We select the optimal model based upon a decision variable DV. The overall goodness of fit 
statistics is generally expressed in terms of the sum of squared error (SSE), root mean square 
error (RMSE), 𝑅𝑅2 change or the 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑅𝑅2 change values. For SSE and RMSE; values 
closer to 0 indicate that the model has a smaller random error component, and that the fit will 
be more useful for prediction. Similarly, 𝑅𝑅2 and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑅𝑅2 values closer to 1 indicate 
that a greater proportion of variance is accounted for by the model. When describing the 
modeling accuracy; different authors have used these different metrics. Therefore, in this 
research we use a combined decision variable DV that is defined as: 
 

𝐷𝐷𝐷𝐷 = �𝑟𝑟2 ×𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝑟𝑟2�
(𝑆𝑆𝑆𝑆𝑆𝑆×𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆)                                                                                                                   (2) 

 
    Equation 2 suggests that a higher value of DV is always desirable. So, our model is 
optimized to get the highest value of DV possible. Apart from building our own model 
prediction equations, we also considered mathematical relationships between the QoS and 
QoE as outlined by other authors that have been pointed out in the related work section. In 
particular, we consider the following popular equation types as given from (3) to (8). 
 
𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 (Linear mapping)                                                                                                  (3) 
𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑏𝑏2 + 𝑎𝑎𝑏𝑏3 (Cubic polynomial [53])                                                                (4) 
𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑎𝑎

1+𝐴𝐴𝑒𝑒𝑒𝑒[−𝑏𝑏(𝑥𝑥−𝑐𝑐)]  (Logistic function [53][54])                                                                        (5) 
𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎(−𝑏𝑏𝑏𝑏) + 𝑐𝑐  (IQX hypothesis)                                                                                  (6) 
𝑄𝑄𝑄𝑄𝑄𝑄 = −𝑎𝑎𝑎𝑎𝑄𝑄𝑎𝑎(𝑏𝑏) + 𝑏𝑏  (Logarithmic function [54])                                                                    (7) 
𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑎𝑎 + 𝐴𝐴

�1+�𝑥𝑥𝑐𝑐�
𝑏𝑏
�
𝑎𝑎  (Logistic function [55])                                                                             (8) 

    The above equations are generic QoS to QoE mapping equations for which we need to find 
out the different coefficients as per the application scenario. Our regression based fitting 
functions are discussed next. We obtained the maximum value of the decision variable DV for 
our set of equations that has been shown in Table 11. 
 

Table 11. Value of Decision Variable DV 
Network QoS Factors Decision Variable DV 

(H.265/VP9) 
Generic Relationship 

Packet Loss 1132.51/2407.75 Exponential Variation 
Jitter 8328.25/9687.12 Exponential Variation 

Throughput 60.13/54.66 Logarithmic 
Variable Initial Delay 37.08/77.60 Exponential Variation 

Buffering Delay 871.13/1052.12 Exponential Variation 
Auto Scale Resolution 1235.68/915.54 Exponential Variation 

. 
Fig. 6(a) shows the relation between packet loss and MOS. Both the codecs show a similar 

performance trend. However, the performance of VP9 is slightly better especially at higher 
values of packet loss. There is a sharp decline in MOS for packet loss greater than 0.5%. The 
relationship between the two is expressed by the two-factor exponential function as given by 
equation 9. The coefficients a, b, c and d are found from our experiment i.e. from the 
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regression analysis that we carry out and presented in Table 12. 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 = 𝑎𝑎 × 𝑎𝑎𝑏𝑏𝑎𝑎(𝑏𝑏×𝑃𝑃𝑃𝑃) + 𝑐𝑐 × 𝑎𝑎𝑏𝑏𝑎𝑎(𝐴𝐴×𝑃𝑃𝑃𝑃)                                                                                   (9) 

 
Fig. 6(b) shows the graph of jitter vs. MOS. With an increase in jitter, the viewing quality 

considerably drops for both the codecs. However, the performance of VP9 is slightly better 
than H.265 for all values of jitter. Equation 10 shows the relationship between them. 
Coefficients a, b, c and d are given in Table 12. 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝐽𝐽 = 𝑎𝑎 × 𝑎𝑎𝑏𝑏𝑎𝑎(𝑏𝑏×𝐽𝐽) + 𝑐𝑐 × 𝑎𝑎𝑏𝑏𝑎𝑎(𝐴𝐴×𝐽𝐽)                                                                                       (10) 
 

 
 

Fig. 6(a). Packet Loss vs. MOS 

 
 

Fig. 6(b). Jitter vs. MOS 
 

The relationship between MOS and the network throughput has been depicted in Fig. 6(c). In 
this case, we get a logarithmic relationship between the two as the best-fit model and has been 
shown by equation 11. Coefficient values are presented in Table 12. Performance of H.265 is 
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seen to be marginally better than VP9 for lower values of network throughput up to 2000 
Kbps. 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇 = 𝑎𝑎 × 𝑎𝑎𝑄𝑄𝑎𝑎(𝑇𝑇) + 𝑏𝑏                                                                                                            (11) 
 
    Variable initial delay was the new factor that we had introduced in this paper. Fig. 6(d) 
suggests that it has a significant impact on the viewing quality. As we increase the delay before 
the start of video playback, the MOS deteriorates rapidly. In fact, for initial delays greater than 
15s the viewing quality is very poor. Their relationship has been shown by equation 12. 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝑉𝑉𝑉𝑉 = 𝑎𝑎 × 𝑎𝑎𝑏𝑏𝑎𝑎(−𝑏𝑏×𝐴𝐴𝑉𝑉𝑉𝑉) + 𝑐𝑐                                                                                                 (12) 
 

 
 

Fig. 6(c). Network Throughput vs. MOS 

 
 

Fig. 6(d). Variable Initial Delay Delay vs. MOS 
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Fig. 6(e). Buffering Delay vs. MOS 

  
 

Fig. 6(f). Auto Scale Resolution vs. MOS 
 

    Fig. 6(e) shows the effect of buffering delay on the viewing MOS. Even for slight buffering 
delays in the range of 5 to 10 seconds, there is a sharp fall in the MOS value. In fact, the 
viewing quality is severely affected as the value of buffering delay increases. Though 
marginally, the performance of VP9 seems to be a little better. Equation 13 depicts the 
relationship between the two. Table 12 gives the coefficients. 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝑉𝑉 = 𝑎𝑎 × 𝑎𝑎𝑏𝑏𝑎𝑎(𝑏𝑏×𝐵𝐵𝑉𝑉) + 𝑐𝑐 × 𝑎𝑎𝑏𝑏𝑎𝑎(𝐴𝐴×𝐵𝐵𝑉𝑉)                                                                                            (13) 
 
    Finally, Fig. 6(f) shows the graph of MOS vs. auto scale resolution. MOS is maximum for 
HD resolution combination. For other combinations too, this technique gives a satisfactory 
result. Thus, definitely such methods as employed by services like YouTube can improve the 
viewing quality. The relationship has been shown by equation 14. 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝑆𝑆𝑅𝑅 = 𝑎𝑎 × 𝑎𝑎𝑏𝑏𝑎𝑎(𝑏𝑏×𝐴𝐴𝑆𝑆𝑅𝑅) + 𝑐𝑐 × 𝑎𝑎𝑏𝑏𝑎𝑎(𝐴𝐴×𝐴𝐴𝑆𝑆𝑅𝑅)                                                                           (14) 
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Table 12. Coefficient Values obtained from our Experiment 
Codec Parameter a 

(95%CI) 
b 

(95%CI) 
c 

(95%CI) 
d 

(95%CI) 
H.265 Packet loss 3.66 -1.56 0.57 -0.06 
H.265 Jitter 4.51 -0.37 -2.09×10-16 6.73 
H.265 Throughput -1.39 -7.44 - - 
H.265 Variable Initial Delay 9.69 0.01 -4.99 - 
H.265 Buffering Delay 4.26 -0.07 0.71 -0.01 
H.265 Auto Scale Resolution 3.47 -4.46×10-8 8.65×10-16 1.15×10-5 
VP9 Packet loss 2.96 -1.38 1.13 -0.05 
VP9 Jitter 11.62 -3.39 4.41 -0.35 
VP9 Throughput -1.65 -9.40 - - 
VP9 Variable Initial Delay 15.9 0.0047 -11.14 - 
VP9 Buffering Delay 2.44 -0.11 3.04 -0.03 
VP9 Auto Scale Resolution 3.38 -3.72×10-7 0.69 4.66×10-7 

 
Next, we study the impact of the QoS factors considered on the video quality. For this, we 

perform an ANOVA (analysis of variance) on the MOS dataset that we have. The results have 
been shown in Table 13. The second column shows the Sum of Squares, third column is the 
Degrees of Freedom associated with the model, fourth column is the Mean Squares i.e. the 
ratio of the Sum of Squares to the Degrees of Freedom, fifth column shows the F-statistic 
value and the sixth column represents the p-value. We observe from the table that for both the 
3 KPI’s as well as the 3 factors that we have introduced in this paper; all the predictors are 
statistically significant (p-value of less than 0.01). Hence, we justify their inclusion in this 
research. 

 
We also calculate the PCC (Pearson Correlation Coefficient) of our model for the various 

factors considered. This has been shown in Table 14. We see that the MOS values which our 
model predicts has a high degree of correlation with the actual subjective scores. 

 
Table 13. ANOVA Result for the predictors 

Parameter Sum of Squares Degrees of 
Freedom 

Mean Squares F Statistic p- Value 

PL 15.747 5 3.149 37.382 1.91×10−4 
J 8.505 4 2.126 114.556 4.2 ×10−5 
T 15.695 4 3.923 109.568 4.7×10−3 

VID 18.561 5 3.712 13.798 3×10−3 
BD 12.51 4 3.128 43.038 4.59×10−4 

ASR 1.433 4 0.358 59.70 2.08×10−4 
 

Table 14. Correlational Analysis of the Network QoS Factors 
Parameter Pearson Correlation 
Packet Loss 0.952 

Jitter 0.978 
Throughput 0.874 

Variable Initial Delay 0.885 
Buffering Delay 0.914 

Auto Scale Resolution 0.924 
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5. Integrated QoE Measurement 
In this section we try to evaluate the integrated QoE of all the network QoS factors that we 
have introduced here. A subjective test containing multi-factor impaired videos is also 
conducted in the last to establish the validity of the proposed model. To the best of our 
knowledge, all the QoE assessment models in literature follow the weighted sum approach. 
We try to obtain the integrated QoE by adopting the following procedure: 

 
• In step 1, the overall QoE due to all the network QoS factors is found out by using 

an additive approach. We use the Analytic Hierarchy Process (AHP) technique for 
this purpose and denote the QoE obtained as QoEAdd. 

• In step 2, we propose a method to calculate the QoE using a multiplicative approach 
and denote it by QoEMul. 

• Finally, in step 3 we take into account the interaction between QoEAdd and QoEMul 
to propose the integrated QoE using a linear regression approach and denote it by 
QoEIntegrated. 

 
5.1 Finding the Additive QoE 
 
AHP algorithm has been widely used in the past to solve multi-index problems. In the additive 
approach, every QoS factor has to be assigned a weight depending upon the extent of its effect 
on the viewing experience. The general form for additive QoE is shown in equation 15. 

 
QoEAdd = w1MOS1 + w2MOS2 + ⋯wnMOSn                                                                         (15) 
 
The key here is to calculate the weights w1,w2, etc., for which we use the AHP technique. 

Table 15 shows the normalized weight of the various QoS parameters as calculated by this 
method. Thus, for our case equation 15 reduces to: 

 
 𝑄𝑄𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 = 0.26𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 + 0.30𝑀𝑀𝑀𝑀𝑀𝑀𝐽𝐽 + 0.04𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇 + 0.09𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝑉𝑉𝑉𝑉 + 0.10𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝑉𝑉 +
                      0.20𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝑆𝑆𝑅𝑅                                                                                                                               (16)  
 

Table 15. Normalized Weight of all the Network QoS Factors 
Network QoS Parameter Normalized Weight 

Packet Loss 0.26 
Jitter 0.30 

Throughput 0.04 
Variable Initial Delay 0.09 

Buffering Delay 0.10 
Auto Scale Resolution 0.20 

 
QoE, which is obtained by this weighted sum approach, has a disadvantage. A video that has 

been distorted by two QoS metrics should not have a better QoE than the video which has been 
distorted by only one of the two QoS metrics. This statement should be valid for any multiple 
QoS factor impaired videos. We illustrate this with an example given in Table 16. The MOS 
values are calculated from the individual QoS to QoE mapping functions that we presented 
previously in equations 9 to 14. The normalized MOS is calculated by multiplying each 
individual network QoE factor by its weight. Finally, QoEAdd is obtained by adding the 
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corresponding impairment terms. In this particular case, the range of the MOS values is from 
0.62-4.07. The normalized MOS value obtained by the additive approach is 2.028, which is 
within the range. However, it contradicts the fact that the MOS should not be greater than 0.62, 
which is the minimum MOS obtained in this case. Thus, clearly there is an anomaly while 
calculating the MOS using the weighted sum approach. We overcome this problem in the next 
section. 

Table 16. Calculation of QoEAdd 
Network Factor QoS Value MOS Normalized MOS 

Packet Loss 1% 1.31 0.34 
Jitter 5 ms 0.62 0.18 

Throughput 2000 Kbps 3.10 0.12 
Variable Initial Delay 15 s 3.17 0.28 

Buffering Delay 10 s 2.78 0.27 
Auto Scale Resolution 1 4.07 0.81 

QoEAdd   2.03 
 
5.2 Finding the Multiplicative QoE 

 
In order to solve the problem of the weighted sum approach, we introduce the multiplicative 
form in this section. Since, the MOS rating is given on a scale of 1 to 5 hence; we normalize 
the effect of each QoS factor by dividing it by 5. This has been shown in equation 17. 
 

QoEMul = 5 × �MOSPL
5

�× �MOSJ
5
�× �MOST

5
�× �MOSVID

5
�× �MOSBD

5
�× �MOSASR

5
�           (17) 

 
We find that each individual QoE factor has been normalized on a scale of 5, while 

evaluating its contribution towards the final multiplicative QoEMul. This can eliminate the 
problem that was associated with the weighted sum approach. Table 17 shows the sample 
calculation for QoEMul using equation 17. The same set of values for the various network QoS 
factors have been used that we had considered while calculating QoEAdd. 

 
We observe that the QoEMul value is 0.03 for this particular set of condition that is 

considerably lesser than the minimum MOS value of the network QoS factors considered 
(0.62 for jitter in this case). Thus, the problem associated with the weighted sum approach has 
been solved. 

Table 17. Calculation of QoEMul 
Network Factor QoS Value MOS Normalized MOS 

Packet Loss 1% 1.31 0.26 
Jitter 5 ms 0.62 0.12 

Throughput 2000 Kbps 3.10 0.62 
Variable Initial Delay 15 s 3.17 0.63 

Buffering Delay 10 s 2.78 0.56 
Auto Scale Resolution 1 4.07 0.81 

QoEMul   0.03 
 
Comparing the values of QoEAdd and QoEMul for the same set of network QoS values reveal 

that the additive approach tends to over-predict the actual viewing quality, while the 
multiplicative approach tends to under-predict the same. Hence, we must also consider the 
effect due to the interaction between these two factors i.e. QoEAdd and QoEMul. Therefore, in 
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order to find the final integrated QoE of the video streaming service, we use a linear regression 
approach to include the effect of both. 

 
5.3 Towards the Final Integrated QoE 
 
In order to evaluate and validate our integrated QoE function for multiple network QoS 
impairments, we carry out a second subjective test which contain videos distorted by more 
than one QoS metrics. The same 59 subjects who participated in the first test were considered 
here too in order to remove any chances of subject bias. We created 88 multi-factor impaired 
video sequences for obtaining the subjective results across both the codecs (44 for each codec). 
The impairment detail has been shown in Table 18. 

 
Table 18. Details of Second Subjective Testl 

No of Impairment Factors Impairment Factor Details No of Impaired Video Sequences 
2 Packet Loss + Jitter 8 
2 Jitter + Throughput 6 
3 Packet Loss + Variable Initial Delay + 

Auto Scale Resolution 
6 

3 Jitter + Buffering Delay + Throughput 6 
4 Packet Loss + Throughput + Buffering 

Delay + Auto Scale Resolution 
6 

4 Jitter + Auto Scale Resolution + Variable 
Initial Delay + Throughput 

6 

6 Packet Loss + Jitter + Throughput + 
Variable Initial Delay + Buffering Delay 

+ Auto Scale Resolution 

6 

 
Fig. 7 shows our proposed integrated QoE model and it is described by equation 18 
 

 
 Fig. 7. Proposed QoEIntegrated as a function of QoEAdd and QoEMul 
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QoEIntegrated =              0.18QoEAdd + 1.33QoEMul −   0.34(QoEAdd ×
                                            QoEMul)                                                                                             (18) 

Therefore, we are able to obtain an integrated QoE model for various network QoS factors 
that consider the interaction between the additive and multiplicative effects of QoE. Equation 
18 suggests that QoEMul has a greater contribution towards QoEIntegrated as compared to QoEAdd 
(coefficient values of 1.33 and 0.18 respectively). Next, we consider the accuracy of the 
proposed model. 

 
5.4 Accuracy of the Proposed Model 
 
The accuracy of our proposed model has been shown in Fig. 8. Table 19 illustrates the𝐑𝐑𝟐𝟐, 
adjusted 𝐑𝐑𝟐𝟐 and PCC values for all the three stages of model building. We note that there is a 
gradual increase in the prediction accuracy of the model. Thus, the new integrated QoE model 
that we have proposed here for the various network QoS factors is feasible for an online video 
streaming service. 
 

Table 19. Network Modelling Accuracy 
Model Stages 𝑹𝑹𝟐𝟐 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝟐𝟐 PCC 

Additive 0.654 0.649 0.808 
Multiplicative 0.889 0.888 0.943 

Regression Based 0.913 0.912 0.951 
 

 
Fig. 8. Accuracy of Our Model 

5. Conclusion 
In this paper, we have proposed an integrated QoE evaluation model for multiple network QoS 
parameters in video streaming application. The experiments are carried out using the latest 
generation H.265 and VP9 codecs. We start the process by identifying the appropriate network 
QoS factors that have a potential effect on the viewing quality. In doing so, apart from the 

MOSSubjective5.004.003.002.001.005.004.003.002.001.00
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three well-established network QoS KPI’s, we introduced three more factors into 
consideration. A ANOVA analysis revealed the justification in including the new factors. 
After this, we obtained the individual QoS to QoE mappings for all the parameters considered. 
Optimality of the chosen model was calculated on the basis of a decision variable DV. Based 
upon these individual QoS to QoE mapping functions, next we calculated the overall QoE 
based upon an additive and multiplicative approach. AHP technique was used for the additive 
approach. We obtained the final integrated QoE model by using a linear regression technique 
that takes into consideration the effect of both the additive and multiplicative QoE’s. This 
calculated QoEIntegrated has a high accuracy in predicting the quality of muti-factor impaired 
videos that was proved from further subjective tests. 
 
    In this study, we considered the effects of network QoS only. However, other codec related 
parameters like bit-rate, frame rate, etc. can also affect the video quality that we did not take 
into account. The effect of these factors on video quality will be investigated as part of our 
future work. 
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