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Abstract 

Service composition in the Inter-Cloud raises new challenges that are caused by the different 
Quality of Service (QoS) requirements of the users, which are served by different 
geo-distributed Cloud providers. This paper aims to explore how to select and compose such 
services while considering how to reach high efficiency on cost and response time, low 
network latency, and high reliability across multiple Cloud providers. A new hybrid 
multi-objective evolutionary algorithm to perform the above task called LS-NSGA-II-DE is 
proposed, in which the differential evolution (DE) algorithm uses the adaptive mutation 
operator and crossover operator to replace the those of the Non-dominated Sorting Genetic 
Algorithm-II (NSGA-II) to get the better convergence and diversity. At the same time, a Local 
Search (LS) method is performed for the Non-dominated solution set 𝐹{1} in each generation 
to improve the distribution of the 𝐹{1}. The simulation results show that our proposed 
algorithm performs well in terms of the solution distribution and convergence, and in 
addition, the optimality ability and scalability are better compared with those of the other 
algorithms. 

Keywords: Inter-Cloud; Service Composition; Multi-objective Evolutionary Algorithm;
Differential Evolution Algorithm 
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 1. Introduction

Cloud computing is a paradigm for providing web services [1]. However, with the recent
growth of application requirements, the limited resources of the single Cloud have been 
unable to meet the needs of users. While the Inter-Cloud could provide a large number of 
Cloud service classes, each is composed of many service instances with the same function 
but different QoS levels. The Inter-Cloud has two paradigms: the first paradigm is that 
multiple Cloud providers (CPs) form an alliance to work together to provide services, and 
the second paradigm is that the users choose their own needs from the independent CP [2].  

In order to solve the complex requirements of the users while satisfying the service level 
agreement (SLA), which is established through negotiation between users and CPs, most 
services have to be combined into a single service [3]. For example, a user who wants to 
perform the data analysis needs the data mining services (provided by Google), the data 
storage services (provided by Amazon EC2), and the data processing services (provided by 
Oracle).  

However the service composition in the Inter-Cloud faces the challenges of identifying 
and selecting suitable services instances and service coordination optimization while 
considering how to reach high efficiency on the cost and response time, low network latency, 
and high reliability, especially when the service broker intends to deploy the application in 
multiple different geo-distributed CPs. It is difficult to find the optimal configuration scheme 
when the size of the search space grows exponentially with the increasing numbers of 
service instances. Meanwhile the service composition in the Inter-Cloud must optimize 
multiple different conflicting QoS objectives under several constraints at the same time, 
which increases the complexity.  

In this paper, a new hybrid multi-objective evolutionary algorithm, LS-NSGA-II-DE, to 
optimize the Inter-Cloud service composition that faces the aforementioned challenges is 
proposed. Our main contributions can be summarized as follows: 
▪ In our algorithm, the mutation and crossover operators of the Non-dominated Sorting

Genetic Algorithm-II (NSGA-II) [4] are replaced by those of the adaptive differential 
evolution (DE) algorithm [5], which combines two mutation strategies and changes the 
evolutionary parameters adaptively in the process of generation. So we can search for the 
optimal solution more efficient in the solution space and make the algorithm has better 
convergence and diversity. 
▪ The Local Search (LS) is performed for the Non-dominated solution set 𝐹{1} in each

generation.We set the critical distance changed adaptively according to the number of the 
individuals in 𝐹{1} to improve the distribution of the 𝐹{1} dynamically.  
▪ We simulate the Inter-Cloud environment, where each CP provides the same or different

service classes, and we consider the latency between the sequential service instances 
provided by the different CP.  

The remainder of this paper is organized as follows: Section 2 introduces the related work 
about the service composition. Section 3 presents an overview of the service composition 
architecture, optimization objective and QoS model. Section 4 introduces the NSGA-II and 
DE algorithm and the realization of the LS-NSGA-II-DE algorithm. Section 5 and 6 analyzes 
the performance of the proposed algorithm compared with those of the single-objective and 
multi-objective evolutionary algorithms through experiments, which shows that our 
algorithm is effective and scalable. In the end, we conclude this paper and describe the future 
work in Section 7.  
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2. Related Work 
In recent years, service composition and resource schedule in cloud computing have been well 
studied. Some evolutionary algorithms have been applied to the service composition and 
resource schedule problem. 

In [6] and [7], the authors use a single-objective genetic algorithm (GA) to solve the service 
composition problem. Yu et al. [8] present an ant colony optimization algorithm for web 
service composition (ACO-WSC), which attempts to select CP combinations that are feasible 
and use the minimum number of the CPs. A traffic engineering based adaptive approach to 
maximize the energy-efficiency for Real-Time-Service Data Centers is proposed in [9], which 
improves the energy consumption of the servers by 25% compared to the state of the art 
improvement on average in the entire data center. This paper [10] proposes and tests an 
energy-efficient adaptive resource scheduler, which is capable to effectively adapt to both 
synthetic and the networked Fog platform with real world input traffic, various mobility 
conditions and settings. The authors in [11] present a hybrid approach called FUGE that is 
based on GA and fuzzy theory that aims to settle the job scheduling in cloud computing, which 
improves over 45% in terms of execution time, cost and average degree of imbalance than 
standard GA. However, they all optimize each objective individually or assign the weights to 
each objective to solve the multi-objective problems, while they can’t optimize the 
multi-objective simultaneously and the weight parameter is not easy to determine, which may 
lose many excellent solutions. So the optimization capacity of the above algorithms is not good 
enough compared with multi-objective algorithms. 

In [12] and [13], two popular multi-objective evolutionary algorithms are presented to solve 
the QoS-aware service composition problem, namely, MOPSO (Multi-Objective Particle 
Swarm Optimization) and NSGA-II. The authors in [14] propose a new multi-objective genetic 
algorithm, which uses the approach of data dimension reduction to reduce the number of 
optimization objectives and decrease the complexity of the problem. The authors in [15] 
propose a fuzzy multi-objective genetic algorithm (FMOGA) based on fuzzy QoS attributes in 
which the fuzzy weights are obtained through the Fuzzy Analytical Hierarchy Process (FAHP) 
method. Thus it can express the user's QoS preferences to achieve the QoS-based Cloud 
service composition. The paper in [16] utilizes a combination of the multi-objective 
evolutionary algorithm and AHP, which is applied to the Crowding distance calculation, to 
solve the Cloud service composition optimization problem. Thus, it can precisely meet the 
users’ preferences. However, the above algorithms do not simulate the Inter-Cloud service 
composition very well, and the distribution of the Pareto front of these algorithms is not good 
enough. In this paper, we assume that the CPs provide the same or different service classes, and 
we consider the latency between the sequential service instances provided by the different CP, 
which can simulate the true Inter-Cloud environment well. Additionally, we use LS for the 
Non-dominated solution set 𝐹{1} in each generation to improve the distribution. 
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3. Service Composition Model 

Before the introduction of the system models and the proposed methods, we first provide the 
definitions of the terms and notions in Table 1 for future references. 
 

Table 1. The Notation Description 
Notation Description Notation Description 

𝑇 Response time 𝑁𝐷𝑅 The Non-dominated rank 
𝑅 Reliability 𝑄 The normalized QoS value 
𝐶 Cost 𝑞 The non-normalized QoS value 
𝑀 The number of the optimization 

objectives (𝑚 ∈ (1,2, … ,𝑀)) 
𝐹{𝑟} The set of the individuals 

whose 𝑁𝐷𝑅 is 𝑟 
𝑁 The size of the population 𝐶𝐷 The Crowding distance  

𝑝𝑜𝑝𝐺 The population in the 𝐺-th 
generation 

𝐹 The Mutation probability of the 
LS-NSGA-II-DE 

𝑥𝑖,𝐺 The 𝑖-th individual in 𝑝𝑜𝑝𝐺 . 
(𝑝𝑜𝑝𝐺 = �𝑥1,𝐺 . . ,𝑥𝑖,𝐺 , … , 𝑥𝑁,𝐺�) 

𝐶𝑅 The Crossover probability of 
the LS-NSGA-II-DE 

𝐺𝑚𝑎𝑥 The max number of the generation 
𝐺 

  

 

3.1 Service Composition Architecture 
The architecture of the service composition is shown in Fig. 1, The user submits a service 
composition requirement, which requires 10 service classes S= {𝑆1 , 𝑆2 , 𝑆3, 𝑆4 , 𝑆5 , 𝑆6 , 𝑆7 , 
𝑆8 , 𝑆9, 𝑆10} to complete the user’s tasks. They are provided by 10 different CPs and different 
CP can provide the same or different service classes, Such as CP1 can provide 4 service class: 
S1,S3,S6,S10, CP2 can provide 3 service class S2,S4,S7,…, CP10 can provide 4 service class: 
S3,S6,S7,S9. Each service class provided by each CP contains 10 service instances that have the 
same functionality but different QoS levels. We can select the service instances from the 
different CPs. For example, we can select the service instance of the service class S1 from four 
CPs: CP1, CP3, CP6 and CP9.  

The Cloud service coordinator [17] has four service components (shown in Fig. 1), and it 
acts as an independent broker, which can help the users select and compose the service 
instances. First, the Service Discovery identifies all of the available service instances according 
to the specific functional requirements. Next, the Capability Planning evaluates the QoS 
capability of the candidate service instances. After then, the Service Selection uses the 
optimization method to choose the most appropriate CP and service instances according to the 
non-functional requirement. Finally, the Service Composition combines the selected service 
instances to form the service sequence, for example the service sequence 
 (𝑠1,3

1 , 𝑠2,1
2 , 𝑠7,2

3 , 𝑠8,7
4 , 𝑠9,4

5 , 𝑠3,9
6 , 𝑠5,8

7 , 𝑠7,5
8 , 𝑠10,3

9 , 𝑠4,6
10 ), to satisfy the user's QoS requirements [18]. 

Where  𝑠10,3
9  represents the third service instance of the 9-th service class provided by the 

10-th CP. 
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Fig. 1. The architecture of the Service Composition in the Inter-Cloud 

 

3.2 Optimization Objective 
The optimization objective of the service composition is to find the solution that has better 
performance and meet the user’s QoS requirements over a vast search space. The common 
SLA for service composition are defined as QoS criteria. Here, we optimize three objectives, 
which are to minimize both the cost C ($) and response time T (ms) and maximize the 
reliability R (%) while satisfying the user’s constraints 𝑇0 = 2000𝑚𝑠, 𝐶0 = 800$ , and 
𝑅0 = 15%, which obtained by several experiments. A penalty function is used to optimize the 
constrained problem.  

�

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒             𝑇
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒              𝐶
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒              𝑅

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑇 ≤ 𝑇0 ,𝐶 ≤ 𝐶0,𝑅 ≥ 𝑅0

                                                      �(1) 

  The reliability is the positive criteria, its increase is beneficial for users, while the response 
time and cost is negative criteria, its decrease is well. The optimization process aims to 
promote the increase of the positive criteria and the decrease of negative criteria. 
  To ensure that all of the objectives are converted to the minimized problems and all between 
[0,1], the QoS criteria need to be normalized first. The normalization formulations of negative 
and positive criteria are as Eq.2 and Eq.3, respectively. Where the 𝑞𝑥𝑖,𝐺

𝑚  and 𝑄𝑥𝑖,𝐺
𝑚  are the 

non-normalized and normalized QoS value of the individual 𝑥𝑖,𝐺 for the objective 𝑚, the 
𝑞𝑚𝑎𝑥
𝑚  and  𝑞𝑚𝑖𝑛

𝑚  are the max and min non-normalized QoS values for the objective 𝑚. 
𝑄𝑥𝑖,𝐺
𝑚 = (𝑞𝑥𝑖,𝐺

𝑚 − 𝑞𝑚𝑖𝑛𝑚 )/(𝑞𝑚𝑎𝑥𝑚 − 𝑞𝑚𝑖𝑛𝑚 )                  (2) 
𝑄𝑥𝑖,𝐺
𝑚 = (𝑞𝑚𝑎𝑥𝑚 − 𝑞𝑥𝑖,𝐺

𝑚 )/(𝑞𝑚𝑎𝑥𝑚 −𝑞𝑚𝑖𝑛𝑚 )                   (3) 

3.3 QoS Model 
To obtain the objective value of the composed service instances, it is required to calculate its 
end-to-end QoS value by aggregating QoS measures. There are three types of composition 
structures in Fig. 1: sequential, parallel and conditional, which are calculated by Table 2 [16], 
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where 𝑆 = {𝑆1, … , 𝑆𝑘 , … , 𝑆𝐾} are the composed service classes set, 1 ≤ 𝑘 ≤ 𝐾. 𝑇𝑘 is the 
response time, 𝑅𝑘 is the reliability, 𝐶𝑘  is the cost, and 𝑝𝑘 is the probability for the service 
instance of the 𝑘-th service class 𝑆𝑘 . Because the service instances could come from different 
geo-distributed CPs, the data transmission between the sequential service instances will have a 
network latency, which makes the response time T contain 𝑇𝑘 and the network latency 𝐿𝑘. 
The latency between each CP is generated randomly from 100ms to 200ms, where if two 
sequential service instances are provided by the same CP, then the latency between them is 0.  
 

Table 2. The QoS aggregate functions 
QoS Criteria Sequential Conditional Parallel 
Response Time 𝑇 = ∑𝑘=1

𝐾 𝑇𝑘 + ∑𝑘=2
𝐾 𝐿𝑘 𝑇 = ∑𝑘=1

𝐾 𝑝𝑘 ∗ 𝑇𝑘 𝑇 = 𝑚𝑎𝑥𝑘=1𝐾 𝑇𝑘 
Reliability 𝑅 = ∏𝑘=1

𝐾 𝑅𝑘 𝑅 = ∑𝑘=1
𝐾 𝑝𝑘 ∗ 𝑅𝑘 𝑅 = 𝑚𝑖𝑛𝑘=1𝐾 𝑅𝑘 

Cost 𝐶 = ∑𝑘=1
𝐾 𝐶𝑘 𝐶 = ∑𝑘=1

𝐾 𝑝𝑘 ∗ 𝐶𝑘 𝐶 = ∑𝑘=1
𝐾 𝐶𝑘 

4. Multi-objective Evolutionary Algorithm  
A new hybrid multi-objective evolutionary algorithm with local search LS called 
LS-NSGA-II-DE is proposed based on the NSGA-II and the adaptive DE algorithm to solve 
the service composition problem in Inter-Cloud. Some of the definitions applicable to our 
multi-objective algorithm are as follows, and the process of the NSGA-II and DE algorithm is 
introduced in section 4.1 and 4.2. 

Definition 1 (Pareto optimal solution)：The dominance rule means that if there are two 
solutions 𝑥1 and 𝑥2 for the minimization problem, if the fitness meets the condition:∀𝑚 ∈
(1,2, … ,𝑀): 𝑓𝑚(𝑥1) ≤ 𝑓𝑚(𝑥2)⋀ ∃𝑚 ∈ (1,2, … ,𝑀):  𝑓𝑚(𝑥1) < 𝑓𝑚(𝑥2) , then  𝑥1 
dominates  𝑥2. If  𝑥1 is not dominated by any other solutions, then 𝑥1 is a Non-dominated 
solution, which is also known as the Pareto optimal solution. 

Definition 2 (Non-dominated set and Pareto front): The set 𝐹{1} composed of the 
Pareto optimal solutions is called the Non-dominated set. The surface that is formed by Pareto 
optimal solutions is called the Pareto front. The Pareto front solutions cannot be dominated by 
the others within or out of its surface. 

4.1 The Process of the NSGA-II 
The NSGA-II has three important steps: the Non-dominated Sorting, Crowding distance 
calculation and Elitist strategy. 

Non-dominated Sorting: According to the dominance rule in Definition 1, we assign the 
Non-dominated rank (NDR) to each individual. The lower rank has the priority to enter to the 
next generation. 

Fig. 2 is an example of the Non-dominated Sorting with two QoS optimization objectives: 
minimizing response time and cost. We assign the Non-dominated rank NDR to six individuals. 
The individuals A, B and C are in the first rank, which are the Pareto optimal solutions. 
Individuals D and E are in the second rank because they are dominated only by the individuals 
in the first rank. At the last, individual F is located at the third rank. 
Algorithm 1 gives the process of the Non-dominated sorting, here the 𝑝𝑜𝑝𝐺,𝑥𝑖,𝐺,Q, 𝑁𝐷𝑅 and 
𝐹(𝑟) have been illustrated in Table 1. 
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Algorithm1: Non-domination Sorting 

Input: 𝑝𝑜𝑝𝐺; Output: 𝑁𝐷𝑅𝑝𝑜𝑝𝐺 , 𝐹{𝑟}, 
1: Initialize 𝑟 = 1; 
2: while size(𝑝𝑜𝑝𝐺)≠0 do // Loop until all individuals have been assigned 𝑁𝐷𝑅 
3:  for i=1:size(𝑝𝑜𝑝𝐺) do 
4:    for j=1:size(𝑝𝑜𝑝𝐺) do 
5:       dom_less=0;dom_equal=0; 
6:       for m=1:M do 
7:          if 𝑄𝑥𝑖,𝐺

𝑚 < 𝑄𝑥𝑗,𝐺
𝑚  then 

8:             dom_less= dom_less+1; 
9:          else 𝑄𝑥𝑖,𝐺

𝑚 =  𝑄𝑥𝑗,𝐺
𝑚 then 

10：           dom_ equal = dom_ equal +1; 
11:         end if 
12:       end for 
13:       F{𝑟} = []; 
14:       if dom_less=0 & dom_ equal≠M then 
15:       dominated_number (𝑥𝑖,𝐺) =dominated_number (𝑥𝑖,𝐺) +1; //Calculate the number of 
individuals who dominate 𝑥𝑖,𝐺 
16:       end if 
17:    end for 
18:    if dominated_number(𝑥𝑖,𝐺)=0 then 
19:          𝑁𝐷𝑅𝑥𝑖,𝐺=r;𝐹{𝑟} = [𝐹{𝑟}, 𝑥𝑖,𝐺]; //Join the individual 𝑥𝑖,𝐺 into 𝐹{𝑟} 
20:    end if 
21:  end for 
22:  𝑝𝑜𝑝𝐺 = 𝑝𝑜𝑝𝐺 − 𝐹{𝑟}; // The individuals who have not been ranked  
23:  r=r+1; 
24: end while 

 
 

Crowding distance Calculation: In the process of optimization, excellent individuals will 
occur increasingly more and more, and thus, the algorithm must determine which individuals 
can  enter to the next generation. The Crowding distance (CD) is used to choose the 
individuals who have the same NDR. The basic idea of the CD is to calculate the Euclidean 
distance between the two neighbors of the individual with the same NDR for all of the QoS 
objectives. The CD of the two  boundary individuals is set to infinity [4]. The individual with 
a greater CD will be selected for the next generation when two individuals have the same NDR.  

The CD is calculated by Eq. 4. Where the 𝐹{𝑟}𝑖 means the i-th individual in the 𝐹{𝑟}. For 
example if 𝐹{𝑟} = [𝑥1,𝐺 , 𝑥3,𝐺 , 𝑥5,𝐺 , 𝑥8,𝐺], then the 𝐹{𝑟}3 is the individual 𝑥5,𝐺. The 𝐶𝐷𝐹{𝑟}𝑖

𝑚  
means the CD of the individual 𝐹{𝑟}𝑖 for the objective 𝑚, and the 𝐶𝐷𝐹{𝑟}𝑖 is the sum of 
 𝐶𝐷𝐹{𝑟}𝑖

𝑚  for all of the objectives. The 𝑄𝑚𝑎𝑥
𝑚  and 𝑄𝑚𝑖𝑛

𝑚  are the max and min normalized QoS 
values for the objective 𝑚. Algorithm 2 gives the calculation process of the CD of the 
population  𝑝𝑜𝑝𝐺 . 

 

 𝐶𝐷𝐹{𝑟}𝑖
𝑚 = ��

𝑄𝐹{𝑟}𝑖+1
𝑚 −𝑄𝐹{𝑟}𝑖−1

𝑚

𝑄𝑚𝑎𝑥
𝑚 −𝑄𝑚𝑖𝑛

𝑚 �
2

                      (4) 
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Algorithm 2: Crowding Distance Calculation 

Input:  𝑝𝑜𝑝𝐺 ,𝐹{𝑟}; Output: 𝐶𝐷𝑝𝑜𝑝𝐺 
1: Initialize 𝑟 = 1, 𝐶𝐷 𝑝𝑜𝑝𝐺=0; 
2: while size(𝑝𝑜𝑝𝐺)≠0 do 
3:  s=size(𝐹{𝑟}); 
4:  for  𝑚 = 1:𝑀 do 
5:    (𝑄𝐹{𝑟}

𝑚 ,index)= sort(𝑄𝐹{𝑟}
𝑚 ,’descend’); //sort 𝐹{𝑟} in the descending order  

6:    𝐹{𝑟}′= 𝐹{𝑟}(index); //Obtain the 𝐹{𝑟}′ after the sort 
7:    𝐶𝐷𝐹{𝑟}1′

𝑚 = ∞;𝐶𝐷𝐹{𝑟}𝑠′
𝑚 = ∞;// The CD of the two boundary individuals is set to infinity 

8:    for i=2:(s-1) do 
9:       Calculate  CDF{r}i

′
m  according to Eq.4; 

10:   end for 
11:   for i=1:s do 
12:    CDF{r}i=𝐶𝐷𝐹{𝑟}𝑖 + 𝐶𝐷𝐹{𝑟}𝑖

𝑚  ; 
13:   end for 
14:  end for 
15:  𝑝𝑜𝑝𝐺 = 𝑝𝑜𝑝𝐺 − 𝐹{𝑟}; // The individuals whose CD have not been calculated  
16:  r=r+1; 
17: end while 

 
 

Elite strategy: By using the Elite strategy, the NSGA-II can choose better individuals to be 
retained into the next generation. First, the population 𝑃𝐺 is composed of the parent 𝑃1𝐺 and 
the offspring  𝑃2𝐺. The size of the population 𝑃𝐺 is 2N. Then, the 𝑃𝐺 is sorted to obtain the 
𝐹{1}, F{2} and the other solution sets according to the NDR and CD. The solutions in  𝐹{1} 
are the optimal solutions. If the number of the solutions in the 𝐹{1} is less than N, then we 
choose all of the solutions in the 𝐹{1} for the next population 𝑃𝐺+1. The remaining solutions 
will be chosen from the solution set 𝐹{2}, 𝐹{3}, etc. until the size of the  𝑃𝐺+1 is equal to N 
[4]. Fig. 3 gives the process of the Elite strategy. 
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Fig. 2. An example of the Non-dominated Sorting    Fig. 3. The process of the elite strategy 

 

4.2 The DE Algorithm 

The optimization problem to be solved is 𝑚𝑖𝑛𝑓(𝑥), and the process of the DE algorithm is as 
follows:  

Step1:Encoding and initialization：The DE algorithm uses the real coding, and the 
population size is 𝑁, i.e.,   𝑝𝑜𝑝𝐺 = �𝑥1,𝐺 , … , 𝑥𝑖,𝐺 , … , 𝑥𝑁,𝐺�. The number of the parameters of 
𝑥𝑖,𝐺  is 𝐷, i.e.,   𝑥𝑖,𝐺 = �𝑥𝑖,𝐺,

1 , … , 𝑥𝑖,𝐺
𝑗 , … , 𝑥𝑖,𝐺𝐷 �,   where 𝑥𝑖,𝐺  

𝑗  refers to the 𝑗-th parameter of 
individual 𝑥𝑖,𝐺 . The bounds of 𝑥𝑖,𝐺

𝑗  are 𝑥𝑚𝑖𝑛
𝑗 ≤ 𝑥𝑖,𝐺

𝑗 ≤ 𝑥𝑚𝑎𝑥
𝑗 . Each parameter of each 

individual at generation 𝐺 = 1 is generated by Eq. 5： 
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𝑥𝑖,1
𝑗 = 𝑟𝑎𝑛𝑑(0,1) × �𝑥𝑚𝑎𝑥

𝑗 − 𝑥𝑚𝑖𝑛
𝑗 �+ 𝑥𝑚𝑖𝑛

𝑗                (5) 
Step2: Individual evaluation：Calculate the fitness values 𝑓(𝑥𝑖,𝐺) of the individual 𝑥𝑖,𝐺. 
Step3: Mutation: Obtain the mutated individual  𝑣𝑖,𝐺 by performing Eq. 6 for the original 

individual  𝑥𝑖,𝐺  [19]. Where the mutation probability factor 𝐹 ∈ [0,2] , 𝑟1, 𝑟2, 𝑟3 ∈
{1,2, … ,𝑁} are randomly generated and 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖. 

 𝑣𝑖,𝐺 = 𝑥𝑟1,𝐺 + 𝐹 × �𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺�                                          (6) 
  Step 4: Crossover: The 𝑗-th parameter of the crossover individual  𝑢𝑖,𝐺   can be obtained by 
using the crossover operation between the 𝑗-th parameter of 𝑥𝑖,𝐺 and 𝑣𝑖,𝐺 by Eq. 7 Where 
the crossover probability factor is 𝐶𝑅 ∈ [0,1], 𝑟𝑎𝑛𝑑 is a random number between [0 1], and 
𝛼 ∈ (1,2, … ,𝐷) is a random number to ensure that the crossover individual  𝑢𝑖,𝐺 has at least 
one parameter that can be obtained from the mutation individual 𝑣𝑖,𝐺.  

𝑢𝑖,𝐺
𝑗 = �

𝑣𝑖,𝐺      
𝑗 𝑖𝑓  (𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅) 𝑜𝑟 𝑗 = 𝛼

𝑥𝑖,𝐺    
𝑗 𝑖𝑓   (𝑟𝑎𝑛𝑑 > 𝐶𝑅) 𝑎𝑛𝑑  𝑗 ≠ 𝛼

�                                             (7) 

  Step5: Selection: The selection operation determines which will enter into the next 
generation by comparing the fitness value of the  𝑥𝑖,𝐺  and the fitness value of the  𝑢𝑖,𝐺 

𝑥𝑖,𝐺+1 = �
 𝑢𝑖,𝐺   𝑖𝑓 𝑓(𝑢𝑖,𝐺) ≤ 𝑓(𝑥𝑖,𝐺)
 𝑥𝑖,𝐺   𝑖𝑓 𝑓(𝑢𝑖,𝐺) > 𝑓(𝑥𝑖,𝐺)

�                                                    (8) 

Step6: Terminal test: If the test reaches the maximum number of generations 𝐺𝑚𝑎𝑥 , output 
the optimal solution; otherwise, turn to Step 2.  

4.3 The LS-NSGA-II-DE Algorithm 
The LS-NSGA-II-DE algorithm is designed by the combination of the NSGA-II, adaptive DE 
algorithm and LS. 

NSGA-II：The LS-NSGA-II-DE algorithm retains the ability of the NSGA-II, i.e., the fast 
Non-dominated Sorting, Crowding distance calculation and elite strategy, which improves the 
efficiency of the optimization and ensures the diversity of the solutions. 

The adaptive DE algorithm: The DE algorithm has the advantage to search for the optimal 
solution in the solution space more efficient. So we use the adaptive mutation and crossover 
operators of the DE algorithm instead of the those of the NSGA-II [20]. 

(1) Considering that the DE algorithm has many different mutation strategies [21]. Where 
DE/rand/1/bin in Eq. 9 has strong global search ability but a slow convergence speed and the 
DE/best/1/bin in Eq. 10 has a fast convergence speed but could easily fall into a local optimum 
[22], we combine their better characteristics by Eq. 11. Where 𝛽 = 𝐺/𝐺𝑚𝑎𝑥. 𝛽 changes from 
0 to 1 in the process of the generation, thus the proportion of 𝑥𝑟1,𝐺 decreases gradually, while 
the proportion of 𝑥𝑏𝑒𝑠𝑡,𝐺   increases gradually, which causes the diversity and convergence 
speed of the algorithm to be balanced and enhanced.  

DE/rand/1/bin:       𝑣𝑖,𝐺 = 𝑥𝑟1,𝐺 + 𝐹 × �𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺�                                         (9) 
DE/best/1/bin:        𝑣𝑖,𝐺 = 𝑥𝑏𝑒𝑠𝑡,𝐺 + 𝐹 × �𝑥𝑟1,𝐺 − 𝑥𝑟2,𝐺�                                    (10) 

𝑣𝑖,𝐺 = (1 − 𝛽) × 𝑥𝑟1,𝐺 + 𝛽 × 𝑥𝑏𝑒𝑠𝑡,𝐺 + 𝐹 × �𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺�         (11) 
(2) Simultaneously, we use the adaptive mutation and crossover operators, as shown in Eq. 

12 and Eq. 13. Where  𝐹𝑚𝑎𝑥 = 0.9, 𝐹𝑚𝑖𝑛 = 0.4, 𝐶𝑅𝑚𝑎𝑥 = 0.9 and 𝐶𝑅𝑚𝑖𝑛 = 0.3 [23]. The 
values of the F and CR become smaller in the process of the generation. At the beginning of 
the generation, the 𝐹 and C𝑅 values are large, which can improve the diversity to avoid 
premature. At a later time, the F and CR values are smaller, which is helpful to converge faster 
to the optimal solution. 
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𝐹 = 𝐹𝑚𝑎𝑥 − (𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛) × 𝐺
𝐺𝑚𝑎𝑥

                                                   (12) 
𝐶𝑅 = 𝐶𝑅𝑚𝑎𝑥 − (𝐶𝑅𝑚𝑎𝑥 − 𝐶𝑅𝑚𝑖𝑛) × 𝐺

𝐺𝑚𝑎𝑥
                                           (13) 

 

Local Search LS: The NSGA-II uses the Elitist strategy to select the individual which has a 
lower NDR and a higher CD for the next generation. However, the distance of two individual 
with a larger CD may be not larger, so an individual with a poor distribution can be retained, as 
illustrated in Fig. 4 (a). The CD of the individuals  𝑏 and 𝑐  is larger, and thus, they could be 
retained together, but the distance between them is small; thus, the ideal situation should retain 
only one of them. Individuals 𝑒 and 𝑓 are the same case. 

Next, we will use the LS to improve the distribution of the 𝐹{1} in the NSGA-II-DE 
algorithm. The LS involves three important steps: The calculation of the critical distance, the 
determination of the adjacent individual and eliminating an adjacent individual. 
Step1: The calculation of the critical distance: First, the Non-dominated set 𝐹{1} is sorted 

by one of the objectives 𝑚 (𝑚 ∈ (1:𝑀)) in a descending order. Then, the critical distance is 
calculated by Eq. 14. Where the distance  𝑑𝑖𝑠𝑡𝑖,𝑗   between two individuals 𝑥𝑖,𝐺  and 𝑥𝑗,𝐺  is 
calculated by Eq. 15. |𝐹{1}| is the number of the Non-dominated individuals in the current 
generation, and 𝑑𝑖𝑠𝑡1,𝑛 is the distance between the two boundary individuals 𝐹{1}1 and 
𝐹{1}𝑛. In the evolutionary process, δ  will be changed adaptively according to the |𝐹{1}|, 
which can ensure to maintain the uniformity of the Pareto front dynamically. 

δ = 𝑑𝑖𝑠𝑡1,𝑛/(2 × (|𝐹{1}| − 1))                                         (14) 

𝑑𝑖𝑠𝑡𝑖,𝑗 = ∑ ��𝑄𝐹{1}𝑖
𝑚 − 𝑄𝐹{1}𝑗

𝑚 �
2

 𝑀
𝑚=1                                       (15) 

Step2: Determination of the adjacent individuals: If the distance between the individuals 
 𝐹{1}𝑖 and 𝐹{1}𝑖+1 is equal to or less than  𝛿, i.e., 𝑑𝑖𝑠𝑡𝑖,𝑖+1 ≤ 𝛿, then the individuals 𝐹{1}𝑖 
and 𝐹{1}𝑖+1 are the adjacent individuals. 

Step3: Eliminating one adjacent individual: First, we will use the individuals 𝐹{1}𝑖−1 and 
𝐹{1}𝑖+2 to generate a new individual 𝑥𝑗,𝐺 according to Eq. 16, which is in the middle between 
 𝐹{1}𝑖−1 and 𝐹{1}𝑖+2. Then, we eliminate one individual of the 𝐹{1}𝑖 and 𝐹{1}𝑖+1 which 
is far from the 𝑥𝑗,𝐺  and retain another individual. Algorithm 3 gives the process of the LS. 

     𝑄 𝑥𝑗,𝐺 = 0.5 × 𝑄𝐹{1}𝑖−1 + 0.5 × 𝑄𝐹{1}𝑖+2                                           (16) 
 

Algorithm 3  The Process of the LS 
Input:The 𝐹{1}; Output: The 𝐹{1} after performing the LS 
1: Calculate  𝛿 according to Eq. 14; 
2: (𝑄𝐹{1}

𝑚 , index)= sort(𝑄𝐹{1}
𝑚 ,’descend’);//Sort the 𝐹{1} 

3: 𝐹{1} = 𝐹{1}(𝑖𝑛𝑑𝑒𝑥); // Get the 𝐹{1} after the sort 
4: for  𝑖 = 2: (𝑠𝑖𝑧𝑒(𝐹{1}) − 2) do // 𝐹{1} perform the LS 
5:  if  𝑑𝑖𝑠𝑡𝑖,𝑖+1 ≤ δ  then //Find the adjacent individuals 
6:     𝑄𝑥𝑗,𝐺 = 0.5 × 𝑄𝐹{1}𝑖−1 + 0.5 × 𝑄𝐹{1}𝑖+2; 
7:     if  𝑑𝑖𝑠𝑡𝑖 ,𝑗 ≥ 𝑑𝑖𝑠𝑡𝑖+1,𝑗  then 
8:       𝐹{1} = 𝐹{1}[1: 𝑖 − 1   𝑖 + 1: 𝑠𝑖𝑧𝑒(𝐹{1})]; //remove the individual 𝐹{𝑟}𝑖 
9:     else 𝑑𝑖𝑠𝑡𝑖 ,𝑗 < 𝑑𝑖𝑠𝑡𝑖+1,𝑗 then 
10:      𝐹{1} = 𝐹{1}[1: 𝑖   𝑖 + 2: 𝑠𝑖𝑧𝑒(𝐹{1})]; //remove the individual 𝐹{𝑟}𝑖+1 
11:    end if 
12:  end if  
13: end for 
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According to the process of LS, there are two pairs of adjacent individuals who meet the LS 
rules that can be found in Fig. 4 (a), i.e., (𝑏,𝑐) and  (𝑒,𝑓) Then, individuals 𝑐 and 𝑓 are 
removed. The result of the improved distribution is shown in Fig. 4 (b).  
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Fig. 4. The individual distribution of the population 
 

The process of the LS-NSGA-II-DE is as follows: 
Step1: Initialize a population popG that includes 𝑁 individuals.  
Step2: Calculate the fitness and then calculate the Non-dominated rank 𝑁𝐷𝑅 and the 

Crowding distance 𝐶𝐷 of each individual according to the fitness. 
Step3: Sort the population, and select the optimal individual based on the 𝑁𝐷𝑅 and 𝐶𝐷 
Step4: The differential mutation and crossover operations are performed on the parent 

population to generate the offspring population, which will combine the parent population to 
calculate the 𝑁𝐷𝑅 and 𝐶𝐷. 

Step5: Sort the combined population based on the NDR and CD. Only the first 𝑁 
individuals can enter into the next generation according to the elite strategy. 

Step6: The 𝐹{1} of the population in the current generation will perform the LS.  
Step7: If the generation 𝐺 reaches  𝐺𝑚𝑎𝑥 , output the population, otherwise turn to step 2. 

5. Experiments on Multi-objective Benchmark Functions 
To evaluate the optimization performance of our proposed algorithm, experiments have been 
conducted on multi-objective benchmark functions. The experimental environment is the Inter 
Core CPU i5-4570S (2.9 GHz and 8G RAM). 

5.1 The Multi-Objective Benchmark Functions 
We select 7 different widely used multi-objective benchmark functions, which are listed in 
Table 3 [24], including ZDT1, ZDT3 and UF2 which are unconstrained problems, and Binh2, 
Srinivas, F1 and CTP1 which are constrained problems. Among all of these 7 functions, UF2, 
F1 and CTP1 have a much more complicated search space. 
 

Table 3. Description of Benchmark Functions 
Function Nature Variable Objectives Pareto shape 
ZDT1 Unconstrained 30 2 Convex 
ZDT3 Unconstrained 30 2 Discontinuous 
UF2 Unconstrained 10 2 Convex 
Binh2 Constrained 2 2 Convex 
Srinivas Constrained 2 2 Concave 
F1 Constrained 10 2 Linear 
CTP1 Constrained 2 2 Convex 
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5.2 Compared Algorithms 
We evaluate the proposed algorithm LS-NSGA-II-DE and compare it with three common 
algorithms, NSGA-II [4], MOEA/D [25] and MOPSO [26]. To intuitively show the differences 
in the distribution, the parameters are set as follows: the size of the population is 50, the max 
generation is 200.The crossover probability  𝑝𝑐 and mutation probability  𝑝𝑚 of the NSGA-II 
and MOEA/D are set to 0.8 and 0.2, respectively, and the external file’s size of the MOEA/D is 
set to 20. The initial learning rate of the MOPSO is c1=c2=2, its inertia weight uses the 
adaptive method, which is calculated by Eq. 17. Here, 𝑤𝑚𝑎𝑥   and  𝑤𝑚𝑖𝑛 are set to 0.9 and 
0.4 [27]. 

𝑤 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) × 𝐺
𝐺𝑚𝑎𝑥

                                         (17) 

5.3 Evaluated Method 
The multi-objective algorithm is aimed at making the Pareto front converge quickly to the true 
Pareto front (obtained by the exhaustive method) and has a well uniform distribution. Thus, we 
use the inverted generational distance IGD [28] and Spread to quantify the convergence and 
uniformity of the Pareto front obtained by the algorithm [29]. 

IGD is calculated by Eq. 18 and is the average distance between the obtained Pareto front 
and the true Pareto front, which represents the convergence of the algorithms. 

𝐼𝐺𝐷 =
�∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛
                           (18) 

Where  𝑑𝑖 is the Euclidean distance between the obtained solution and the closest solution 
of the true Pareto front. Here, 𝑛  is the number of obtained solutions. A smaller IGD indicates 
that the achieved Pareto front converges to the true Pareto front better [28]. 

The Spread calculated by Eq. 19 represents the diversity of the Pareto front solutions:  

𝑆𝑝𝑟𝑒𝑎𝑑 =
(𝑑𝑓+𝑑𝑙+∑ |𝑑𝑖−𝑑�|𝑛

𝑖=1
𝑑𝑓+𝑑𝑙+(𝑛−1)×𝑑�

)                (19)
 Where  𝑑𝑖  and 𝑛 are the same as in IGD. Here, 𝑑𝑓 and  𝑑𝑙  are the Euclidean distance of 

the boundary solutions in the obtained Pareto front set. A smaller Spread means that the 
solutions perform well in terms of their diversity [29]. 

5.4 Results and Analysis 
Fig. 5 shows the Pareto front obtained by the four algorithms and the true Pareto front under 
the 7 benchmark functions. Table 4 gives the IGD and Spread values obtained by the four 
algorithms through 30 independent experiments on the 7 benchmark functions. The best values 
of the IGD and the Spread among these algorithms are highlighted with green and red bold 
fonts, respectively, for each function. The LS-NSGA-II-DE obtains 6 best values of Spread and 
3 best values of IGD. The MOEA/D obtains 1 best values of Spread and 2 best values of IGD. 
The MOPSO and NSGA-II each obtain 1 best value of IGD.  

Therefore, it can be intuitively seen in Fig. 5 and Table 4 that the LS-NSGA-II-DE’s 
distribution is better than those of the other algorithms in most cases, and it can converge well 
to the true Pareto front. Even though the other compared algorithms could obtain satisfactory 
results for some functions, they do not distribute and converge to the Pareto front well when 
the search space becomes complicated, such as the UF2, F1 and CTP1. 
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Table 4. The IGD and Spread obtained byfour different algorithm 

 

ZDT1    

ZDT3  
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Binh2  
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F1   

CTP1       
      (a)NSGA-II    (b) MOPSO    (c) MOEA/D       (d) LS-NSGA-II-DE    (e) True Pareto 

Fig. 5. The Pareto front obtained by four different algorithm for Benchmark Functions 

Algorithm Unconstrained functions Constrained functions 
ZDT1 ZDT3 UF2 Binh2 Srinivas F1 CTP1 

NSGA-II IGD 1.64e-2 6.79e-2 1.48e-2 1.16e-1 1.63e-1 4.98e-2 6.42e-3 
Spread 4.14e-1 5.98e-1 4.80e-1 6.48e-1 5.30e-1 3.11e-1 5.94e-1 

MOPSO IGD 8.14e-3 2.88e-1 2.02e-2 1.94e-1 1.59e-1 6.65e-2 1.49e-2 
Spread 7.76e-1 8.16e-1 1.75e-0 1.41e-0 1.04e-0 4.39e-1 9.00e-1 

MOEA/D IGD 9.24e-3 1.94e-2 1.79e-2 8.03e-2 1.67e-1 3.28e-2 5.58e-3 
Spread 2.77e-1 7.15e-1 7.52e-1 9.90e-1 9.77e-2 3.65e-1 4.69e-1 

LS-NSGA-II-DE IGD 8.63e-2 2.45e-2 1.68e-2 8.78e-2 1.43e-1 2.84e-2 5.01e-3 
Spread 2.52e-1 3.21e-1 2.99e-1 4.80e-1 1.62e-1 2.24e-1 3.13e-1 
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6 Experiments on Service Composition 
To evaluate the optimization performance of the algorithm, we also conduct the experiment on 
service composition. The experimental environment is the Inter Core CPU i5-4570S (2.9 GHz 
and 8G RAM). The data of the web services are obtained from the QWS Dataset (2.0) [30]. 
The simulated problem of the service composition is shown in Section 3. 

6.1 Chromosome Encoding 
Fig. 6 is the chromosome encoding, which uses the real encoding according to the service 
composition in Section 3. Each pair of chromosomes represents a service instance of a service 
class. The data in Fig. 6 represents the max value, such as the range of the service instances of 
S1 is 0-39, which represents 40 service instances from 4 CPs, and so on. 
 

3 9 2 49 9 3 99 2 3 9 9 94 1 3 9 2 9

S1 S2 S3 S4 S5 S6 S10S9S8S7

 
Fig. 6. Chromosome Encoding 

 

6.2 The Compromise Solution 
The multi-objective algorithms can obtain the optimal Pareto set, but the user only need one 
best solution. To solve the problem, we need to select a compromise solution from the Pareto 
solutions that can best satisfy the user’s need. In this paper, the fuzzy set theory [31] is adopted 
for the multi-objective decision making. The fuzzy function for the minimization problem in 
Eq. 20 is used to express the satisfaction of each optimal solution. 
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Where the 𝑢𝑥𝑖,𝐺
𝑚  is the satisfaction of the individual 𝑥𝑖,𝐺 for the objective m. 𝑢𝑥𝑖,𝐺

𝑚 = 0 
means that it’s totally dissatisfied, 𝑢𝑥𝑖,𝐺 = 1 means that it’s totally satisfied. The average 
satisfaction for all the objectives is calculated by Eq. 21 .We choose the individual which has 
the max average satisfaction to be the compromise solution. 
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6.3 Results and Analysis 

To validate the performance of the proposed algorithm for the service composition, we 
compare the LS-NSGA-II-DE with the NSGA-II, MOEA/D and MOPSO. The parameters for 
all of the algorithms are set the same as the experiment on benchmark functions. 

Fig. 7 give the Pareto front obtained by the four different algorithms. Fig. 8 gives the Box 
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char of the non-normalized QoS value of the compromise solutions obtained by the four 
algorithms through 30 independent experiments. The optimal vaules are highlighted with red 
bold font. Table 5 gives the average (Avg) values, Standard deviation (Sd) and 95% 
Confidence Interval (CI) of the non-normalized QoS value of the compromise solutions and 
Spread value obtained by the four different algorithms through 30 independent experiments. 
Fig. 8 and Table 5 shows that the LS-NSGA-II-DE has the better optimization ability, i.e., its 
average response time is the lowest, its reliability is the highest, and its cost is relatively low 
compared with the other algorithms. The MOEA/D obtains the lowest average cost, but its 
average response time and reliability are not the best. And the standard deviation and 
Confidence interval of the LS-NSGA-II-DE are the lowest, which illustrates that it is more 
stable than other algorithms. From the Pareto front in Fig. 7 and the Spread value in Table 5, 
we can also see that the LS-NSGA-II-DE has a better distribution than the other 
multi-objective algorithms. 

 
 

Table 5. Comparison of the QoS and Spread values obtained by the different algorithms 
Algorithm Response Time(ms) Cost($) Reliability(%) Spread 

Avg. Sd 95% CI Avg. Sd 95% CI Avg. Sd 95% CI Avg. 
NSGA-II 1626.5 52.2 [1607.0, 

1646.0] 
727.4 17.7 [720.8, 

734.0] 
18.3 2.4 [17.3, 

19.2] 
0.653 

MOPSO 1665.4 58.5 [1643.2, 
1687.5] 

743.6 21.5 [735.5, 
751.6] 

19.3 2.1 [18.5, 
20.1] 

0.571 

MOEA/D 1597.2 49.0 [1579.0, 
1615.5] 

706.1 18.9 [699.0, 
713.1] 

20.6 2.2 [19.7, 
21.4] 

0.536 

LS-NSGA 
-II-DE 

1564.4 30.6 [1556.4, 
1579.2] 

712.4 17.3 [706.0, 
718.9] 

22.3 1.7 [21.6, 
22.9] 

0.480 

 
 

    
    (a)The Pareto front of the NSGA-II           (b) The Pareto front of the MOPSO 

  
    (c) The Pareto front of the MOEA/D     (d) The Pareto front of the LS-NSGA-II-DE 

Fig. 7. The Pareto front obtained by the different algorithms for service composition 
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Fig. 8. The QoS values obtained by four the different algorithm 

 

6.4 The Scalability Analysis 
To evaluate the scalability of the proposed algorithm, we analyze the performance of each 
algorithm when the number of the service instances is increasing. The number of the service 
instances of each service class provided by each CP increases from 10 to 190 by 30. For 
example, the number of the service instances of the S1 increases from 40 to 760 by 120, 
because the service instances of the S1 are provided by 4 CPs. The QoS value of a service 
instance is randomly generated and meets the Gauss distribution, the average response time is 
500 (ms), the standard deviation (sd) is 100 (ms), the average reliability is 90 (%), the sd is 10 
(%), the average cost is 80($), and the sd is 20($). No constraint is set here. The algorithm’s 
parameters are set the same as the experiment on benchmark functions. The single objective 
genetic algorithm GA uses the method of averagely weighting the normalized QoS objectives 
to optimize the multi-objective problem. The crossover probability  𝑝𝑐  and the mutation 
probability  𝑝𝑚 of the GA are set to 0.8 and 0.2, respectively. 

Fig. 9 shows the average non-normalized QoS values of the compromise solutions, i.e. the 
response time, cost and reliability obtained by different algorithms with an increasing number 
of the service instances by 30 independent experiments. The solution of the GA becomes worse 
when the search space becomes larger. Thus, it is difficult to meet the needs of the users. For 
the multi-objective evolutionary algorithms, the solution of the LS-NSGA-II-DE is better than 
that of the other algorithms with an increase in the number of service instances, which shows 
our algorithm has a better scalability. 
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Fig. 9. The QoS obtained by different algorithms with the increasing service instances 

7 Conclusion 
In this paper, we describe the service composition architecture, the optimization objective and 
QoS model in Inter-cloud, while most previous works don’t consider the Inter-cloud 
environment. And a new hybrid multi-objective evolutionary algorithm, LS-NSGA-II-DE, is 
proposed to explore how to select and compose the service instances while considering the 
goals of reaching a high efficiency on cost and response time, low network latency, and high 
reliability across multiple CPs, while most previous papers only optimize only one goal. In 
our proposed algorithm, the DE uses the adaptive mutation operator combined of two 
mutation strategies and crossover operator to replace the those of the NSGA-II and changes 
the evolutionary parameters adaptively in the process of generation. So we can search for the 
optimal solutions more efficient in the solution space and make the algorithm has better 
convergence and diversity. At the same time, the local search LS is performed for the 
Non-dominated solution set 𝐹{1} in each generation, where we set the critical distance 
changed adaptively according to the number of the individuals in 𝐹{1} to improve the 
distribution of the 𝐹{1} dynamically. The experiments on the multi-objective benchmark 
functions and service composition analyzes the performance of our proposed algorithm, 
which shows that the LS-NSGA-II-DE has better optimization ability and scalability and 
performs well in terms of the distribution and convergence compared with other algorithms.  

In our future work, first, we will use more efficient method instead of the simple penalty 
function to settle the constraints. When the constraints become strict, the penalty function may 
result in premature. Then, we should consider the preferences of the users, rather than use the 
compromise solution. Finally, we want to use the multi-objective evolutionary algorithm to 
solve the problem of the Inter-Cloud resource scheduling on the basis of the above work to 
meet the user’s need well. 
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