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Abstract 
 

Multi-view video plus depth (MVD) is a mainstream format of 3D scene representation in free 

viewpoint video systems. The advanced 3D extension of the high efficiency video coding 

(3D-HEVC) standard introduces new prediction tools to improve the coding performance of 

depth video. However, the depth video in 3D-HEVC is time consuming. To reduce the 
complexity of the depth video inter coding, we propose a fast coding unit (CU) size and mode 

decision algorithm. First, an off-line trained Bayesian model is built which the feature vector 

contains the depth levels of the corresponding spatial, temporal, and inter-component 
(texture-depth) neighboring largest CUs (LCUs). Then, the model is used to predict the depth 

level of the current LCU, and terminate the CU recursive splitting process. Finally, the CU 

mode search process is early terminated by making use of the mode correlation of spatial, 
inter-component (texture-depth), and inter-view neighboring CUs. Compared to the 

3D-HEVC reference software HTM-10.0, the proposed algorithm reduces the encoding time 

of depth video and the total encoding time by 65.03% and 41.04% on average, respectively, 

with negligible quality degradation of the synthesized virtual view. 
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1. Introduction 

In free viewpoint video (FVV) systems, users can interactively select the different angle of 

view, and immerse in the three dimensional (3D) scene[1]. With these characters, FVV 

systems have a broad prospect of many potential applications, such as, television, cinema, 
games, education, and mobiles phones. So far, multi-view video plus depth (MVD) is a 

mainstream format of 3D scene representation in FVV systems [2]. MVD signal includes color 

videos of multiple viewpoints and the associated depth videos which represent the geometric 

information of the scene. Using depth image based rendering technique (DIBR), the 
intermediate views can be generated for continuously view switch [3]. Efficient storage and 

transmission of depth video are important for realizing an FVV system.  

Depth video is the auxiliary information in DIBR, and the characteristics of depth maps are 
different from those of the corresponding color video. Therefore, the joint collaborative team 

on 3D video coding extension development (JCT-3V) drafted a 3D video coding standard 
based on the high efficiency video coding (HEVC) standard which is called 3D-HEVC [4] [5]. 

Besides the spatial and temporal correlations exploited by HEVC, the correlation among 

different views is further exploited by 3D-HEVC. JCT-3V launches a test model of 3D-HEVC, 
namely HTM [6], as a common platform for research on MVD encoding. In HTM, 

hierarchical quadtree-based largest coding unit (LCU) structure, flexibly adapts to various 

motion and texture characteristics of video signal, is used. The LCU is the basic unit of 
3D-HEVC, the size of which is predefined [7][8]. Each CTU is recursively divided into four 

coding units (CUs). The largest CU size is 64×64, and the smallest CU size is 8×8. The depth 

of a quadtree coding structure ranges from 0 (CU size of 64×64) to 3 (CU size of 8×8). For 

each CU, Skip, Merge, Inter-2N×2N, Inter-2N×N, Inter-N×2N, Inter-N×N, Inter-2N×nU, 
Inter-2N×nD, Inter-nL×2N, Inter-nR×2N, Intra-2N×2N, and Intra-N×N is probed among all 

temporal and inter-view frames to get the best one with minimal rate distortion (RD) cost. 

Although this scheme can achieve optimal RD performance, its computational complexity is 
extremely high. Moreover, depth videos are not for watching, but for virtual view rendering. 

Hence, unlike color video coding, the distortion of depth video coding causes rendering 

distortion during the DIBR process, and indirectly deteriorated the quality of intermediate 

virtual view. Correspondingly, the distortion measure in mode decision process of depth video 
coding is modified as a weighted average of the synthesized view distortion and the depth map 

distortion. The RD optimization criterion is improved for depth coding [6]. Although the 

HEVC intra-prediction and transform coding are well suited for the regions with nearly 
constant depth, they result in significant coding artifacts at sharp edges, which are visible in 

the synthesized intermediate views. To improve the coding performance in the regions with 

sharp edges, depth model modes are introduced for depth video coding, and appended into the 
HTM platform. Therefore, the coding complexity of depth video coding in 3D-HEVC is 

higher than texture video coding, which hampers the practical application of 3D-HEVC [9]. 

Therefore, low complexity depth video is hot topic in the fields of FVV systems. 

To reduce the computational complexity of depth video, the straightforward way is directly 
using the fast algorithm of color video coding. In [10], an early CU termination algorithm 

(ECU) has been proposed to determine whether to stop the partition process if the best mode of 

current CU is Skip. A coded block flag-based fast mode (CFM) decision algorithm has been 
proposed [11]. The mode selection is terminated if the coded block flag of both luma and two 

chromas are zero. The methods in [10] and [11] were adopted in the test model of 3D-HEVC.  
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Recently, several fast algorithms [12]-[20] have been proposed to reduce the computational 

complexity of depth video inter coding. These algorithms can be classified into two types. The 
first type adjusts the CU size and mode decision strategies on the basis of appropriate 

thresholds [12]-[16], and the second type  directly utilizes the coding information of the 

corresponding color video to accelerate the depth video coding [17]-[20]. A fast CU size 

decision scheme is proposed based on a depth no-synthesis-error model [12], and it hardly 
degrades the quality of the virtual views. Zhang et al. exploited the correlation between the 

current CU and its spatial-temporal neighboring CUs to early terminate the mode decision, and 

reduce the computational complexity of motion and disparity estimation [13]. Lei et al. 
proposed an early termination algorithm for DMM in depth video coding [14]. Zhao et al. 

proposed an efficient DMM decision algorithm for depth video coding [15]. Yang et al. 

proposed a hybrid algorithm, includes a estimation scheme of virtual view distortion, a QP 
adjustment scheme, and a fast CU partition scheme, to improve the encoding performance of 

depth video [16]. However, the complicated threshold selection in the fast algorithms is the 

overhead of depth video coding. Mora et al. utilized the phenomenon that the CU depth is 

generally less than the depth of the co-located CU in the corresponding color video, and 
proposed an algorithm to speed up the quadtree construction process [17]. The algorithm has 

been adopted in both the 3D-HEVC working draft and the HTM software. Lei et al. proposed a 

depth video coding algorithm that utilizes the depth-texture motion and structure similarities 
[18]. The encoding speed and RD performance are improved. Shen et al. proposed a fast mode 

decision for depth video coding by exploiting the inter-view mode correlation, the 

texture-depth correlation and the inter-level correlation [19]. Zhang et al. proposed a fast depth 

mode decision based on texture-depth correlation and edge classification [20]. 
Currently, machine learning, which is widely used in signal processing and big data analysis, 

is a hot research topic. Many fast algorithms based on machine learning have been proposed to 

reduce the complexity of color video coding [21]-[25]. Zhang et al. proposed an machine 
learning-based fast CU depth decision method to optimize the complexity allocation with RD 

cost constraints [21]. Shen et al. proposed an early termination algorithm of transform unit size 

decision based on Bayesian decision theory and correlation between the variance of a block 
and the transform unit size [22]. Tohidypour et al. proposed an online learning-based method 

to speed up the encoding process by adjusting the motion search range and complexity 

reduction of inter-/intra-prediction mode search [23]. Zhu et al. proposed a multi-class support 

vector machine-based fast algorithm for HEVC [24]. Kim et al. proposed a fast for HEVC 
algorithm that CU portioning is early terminated based on online leaning Bayesian decision 

rule [25]. However, the machine learning-based methods were proposed for color video, and 

cannot be efficiently applied to depth video coding because of the different statistics and 
characteristics between color video and depth video. 

Inspired by the machine learning-fast algorithms in color video, we propose and realize a 

fast depth video coding algorithm in the 3D-HEVC encoder. The algorithm contains two parts, 
Bayesian-theory-based fast CU size decision and CU mode decision. In the first part, an 

off-line trained Bayesian model is built to predict the depth level of the current LCU. During 

the training process, the optimal depths of the corresponding LCU in color video, the LCUs in 

reference frames, and the neighboring LCUs are used as feature vector. In the second part, the 
mode decision is accelerated by jointly using the mode correlation of the spatial, 

inter-component (texture-depth), and inter-view neighboring CUs. The major contribution of 

our work is the utilization of off-line trained Bayesian model, and the depth level can be 
precisely predicted without threshold selection. 
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The remainder of this paper is organized as follows. In Section 2, we investigate the depth 

level and the prediction mode distribution in depth video. The proposed algorithm is described 
in detail in Section 3. Experimental results are given in Section 4, and the conclusions are 

drawn in Section 5. 

2. Observation and Statistical Analysis 

The basic encoding structure of 3D-HEVC is shown in Fig. 1. In general, the input signal for 

the 3D-HEVC encoder consists of multi-view color videos and associated depth videos. One 
of the multi-view color videos is selected as the independent view and it is encoded along with 

its corresponding depth video by using an unmodified HEVC encoder. The remaining views, 

known as dependent views, are coded using a modified HEVC encoder [26][27]. New coding 

tools, including disparity-compensated prediction, motion parameter inheritance, and 
inter-view motion prediction, achieve the maximum encoding efficiency. However, the 

computational complexity is increased. 

Fig. 2 shows the possible partition of an LCU and the possible prediction mode of a CU. To 
find the optimal prediction mode of a CU and the optimal partition depth level of an LCU, a 

full search of all possible CU sizes and modes is performed. Therefore, CU size and CU mode 

decision in 3D-HEVC are time consuming. 
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Fig. 1. Encoding structure of 3D-HEVC [26] 
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Fig. 2. Possible partition of an LCU and possible prediction mode of a CU  



1734                                                                Chen et al.: Bayesian-theory-based Fast CU Size and Mode Decision Algorithm for 

3D-HEVC Depth Video Inter-coding 

To investigate the depth level and mode distribution of depth video, we conduct 

explorative experiments under 4 pairs of QPs, (25, 34), (30, 39), (35, 42), and (40, 45). In each 
QP pair, the former and the latter one are QPs for color video and the corresponding depth 

video. Table 1 lists the proportion of LCUs in depth video with four depth levels of optimal 

CTU partition, 0, 1, 2 and 3. The average distribution of LCUs with depth level 0 is up to 

88.14%. The proportion of LCUs, depth level ranging from 0 to 2, is 93.49% on average. 
Specially, the quadtree of CTU partition is simple in low-motion sequences, such as 

GhostTownFly and PoznanStreet. Hence, the distribution of LCUs with depth level 0 or 1 is 

more than 97%. Thus, the quadtree construction strategy in 3D-HEVC, trying all depth levels 
to get the optimal one, cannot further improve the encoding performance of the LCUs with 

depth level 0, 1, or 2. If we can predict the depth level of LCU partition in advance, 

unnecessary search process can be avoided. Consequently, the coding complexity of the 
3D-HEVC encoder can be significantly reduced. 

 

Table 1. Proportion of LCUs in depth video with four depth levels (%) 

Sequences 0 1 2 3 

Balloons 80.82 4.42 3.21 11.55 

Kendo 87.07 4.62 2.54 5.77 

Newspaper 82.09 3.38 2.83 11.69 

GhostTownFly 96.14 1.43 0.86 1.58 

Shark 86.86 4.14 2.47 6.53 

PoznanStreet 95.84 1.29 0.91 1.96 

Average 88.14 3.21 2.13 6.51 

 
Table 2. Proportion of predition modes of depth video in 3D-HEVC encoder (%) 

Sequences Skip Merge Inter-2N×2N Inter-Others Intra 

Balloons 91.93 2.17 3.03 0.46 2.43 

Kendo 88.30 2.25 1.97 0.36 7.12 

Newspaper 93.42 1.44 2.56 0.39 2.18 

GhostTownFly 93.87 4.45 0.65 0.05 0.98 

Shark 92.35 2.52 2.47 0.58 2.08 

PoznanStreet 98.31 0.49 0.48 0.09 0.64 

Average 93.03 2.22 1.86 0.32 2.57 

Inter-Others include Inter-N×2N, Inter-2N×N, Inter-N×N, Inter-2N×nU, Inter-2N×nD, Inter-nL×2N, and Inter-nR×2N； 

Intra include Intra-2N×2N and Intra-N×N. 

 

Table 2 lists the proportion of prediction modes of depth video in 3D-HEVC encoder. The 
CUs that the optimal prediction mode is Skip is more than 93.03%. On the contrary, for the 

remainder 6.97% of CUs, the optimal prediction mode is Merge, Inter-2N×2N, Inter-N×2N, 

Inter-2N×N, Inter-N×N, Inter-2N×nU, Inter-2N×nD, Inter-nL×2N, Inter-nR×2N, 
Intra-2N×2N, and Intra-N×N. If we can predict the optimal prediction mode of a CU in 

advance, and skip the search process of other inter modes, the computational complexity of the 

depth video coding in 3D-HEVC encoder will be reduced significantly. 
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3. Bayesian-theory-based Fast CU Size and Mode Decision Algorithm  

We proposed a fast depth video coding based on machine learning. In the proposed algorithm, 

we model the CTU partition process as a multi-class classification problem and solve it using 
Bayesian theory. Fig. 3 shows the flowchart of the proposed algorithm in which dcur is the 

current partition depth, pre_d is the predicted depth level, CUct and CUcv are the co-located CU 

in the texture video and the co-located CU in the depth video of the independent view. The 
proposed algorithm consists of two parts, fast CU size decision based on Bayesian theory and 

fast CU mode decision. In the CU size decision part, an off-line trained Bayesian model is built 

based on the encoding information of depth and video coding in 3D-HEVC encoder. When an 

CTU is encoded, the features are extracted, and an off-line trained Bayesian model is loaded to 
predict the depth level of the current LCU. The predicted depth level decides whether to early 

terminate CU splitting. In the mode decision part, the depth level is used as one kind of the 

auxiliary information. If the depth level is 0, the Skip, Merge, Inter-2N×2N, and Intra modes 
are searched, and one of them is selected as the prediction mode.  If the mode of the parent CU 

is Skip, only Skip mode is selected as the optimal mode. For the CUs in dependent view, if 

both the modes of CUct and CUcv are Skip, Skip is directly selected as the optimal mode.  
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Fig. 3. Flowchart of the proposed fast depth inter-coding algorithm 
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3.1 Fast CU Size Decision 

In the proposed algorithm, CU size decision is accelerated by off-line trained Bayesian model. 

This subsection describes the model building process in detail, and then analyzes the 

robustness of the Bayesian model. 

3.1.1 Fast CU Size Decision Based on Bayesian Theory 

The statistical results of depth levels are shown in Fig. 4. Ddepth denotes the depth level of 
LCUs to be encoded, Dtexture denotes the depth level of the co-located LCU in the texture 

video, Dref1 and Dref2 respectively denote the depth levels of the co-located LCUs in the 

forward and backward reference frames. Further, Dabove and Dleft denote the depth levels of 
the above and left LCUs, respectively. As far as the distribution trend of depth level is 

concerned, the LCUs to be encoded are similar to that of the co-located and spatial neighbor 

LCUs. Thus, we can use the correlation to predict the optimal partition depth of the current 

LCU. 
 

Ddepth Dtexture Dref1 Dref2 Dabove Dleft

 
Fig. 4. Optimal partition depth distribution of the current LCU and its neighboring LCUs 

 
Let di be the depth levels of optimal partition which have 4 states, 0, 1, 2, and 3, and x be the 

feature vector that consists of five variables, Dtexture, Dref1, Dref2, Dabove, and Dleft, the 

solution of the multi-class classification problem can be given by 

arg max_ ( | )
d

e d Pp dr  x                            (1) 

where pre_d is the class label and also denotes the depth level of optimal partition of the LCU. 

For a given x, P(d|x) denotes the posterior probability of d. The d with maximal probability is 

predicted value of depth level. Since Bayesian theory is a generated learning algorithm, we 

should calculate P(x|d) and P(d). Hence, 

( | ) ( )
arg max ( | ) arg max

( )d d

P d P d
P d

P


x
x

x
                     (2) 

where P(x) denotes the probability of the feature vector x in the LCU training samples. For the 

parameter P(x|d), we suppose that the elements in the feature vector x are independent each 

other. We have 
5

1
( | ) ( | )j

j
P d P x d


 x                                 (3) 
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where P(xj|d) is the occurrence probability of xj ( the j
th 

element in the feature vector x) for a 

given d, and it can be obtained using the LCU training samples, 

1

1

{ } { }

( | ) 1,2,3,4,5

{ }

k

j i i

i

j k

i

i

x z d d

P x d j

d d





   

 

 




                (4) 

where zi denotes the optimal partition depth of the ith LCU, k is the total number of training 

samples,
 { }true equals 1, and { }false equals 0 (i.e., {0 0} 1   , {1 3} 0   ). The 

parameter P(d) denotes the probability of d in the LCU training samples. Because d has four 

kinds of values, we can use polynomial distribution to model P(d), which is defined as 
3 3

{ }

10

( ) . . 1id d

d d

dd

P d P s t P
 



                             (5) 

where Pd denotes the probability of d in the training samples.  
 

Table 3. Predicted depth level and prediction accuracy of Bayesian model (%) 

Sequences 0 1 2 3 pre_acc 

Balloons 62.42 14.89 4.32 18.38 97.59 

Kendo 73.63 13.58 3.76 9.03 96.65 

Newspaper 62.96 13.95 4.28 18.83 97.83 

GhostTownFly 87.41 7.94 1.24 3.42 99.47 

Shark 67.91 17.66 3.69 10.75 97.24 

PoznanStreet 86.64 7.78 1.36 4.23 99.28 

Average 73.49 12.63 3.10 10.77 98.01 

 

3.1.2 Robustness of Model Established by Bayesian Theory 

The off-line training process contains three steps, encoding, training sample selection, and 
model training. We performed encoding experiments on original 3D-HEVC encoding 

platform HTM-10.0. Multiple video sequences, with different scene feature, are encoded 

under 4 pairs of QPs, (25, 34), (30, 39), (35, 42), and (40, 45). For each sequence, the first 25 
frames are used for training, and succeeding 80 frames, except the I and P slices, are used for 

test. We randomly select 30% of the data in the training frames as the training samples to 

establish the Bayesian model. Table 3 lists prediction accuracy of the Baysesian model. In this 

table, 0, 1, 2, and 3 represent the predicted depth levels of depth video. The average proportion 
of LCUs with predicted level 0 is 73.49%. It is noted that the statistical results in Table 1 is 

based on the same LCUs as Table 3. Compared with Table 1, the proportion of LCUs with 

predicted depth level 0 is less than the proportion of LCUs with depth level 0 in original 
3D-HEVC encoder. In other words, the prediction depth level of many LCUs is slightly larger 

than their original depth level. The increment of prediction depth level does not change 

encoding performance. Only the decrement of prediction level, the predicted depth level is less 
than its original depth level, deteriorates the encoding performance. Hence, we estimated the 

robustness of the model by the prediction accuracy pre_acc, and computed by 

1

{ _ }

_ 100%

p

i i

i

d pre d

pre acc
p



 

 


                       (6) 
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where p denotes the total number of test samples. We can see that the prediction accuracy 

ranges from 96.65% to 99.47% for various test sequences, and it is 98.01% on average. 
Therefore, we can conclude that the Bayesian model is sufficiently efficient to predict the 

depth level of an LCU. 

3.2 CU Mode Decision 

The decision process of the CU optimal prediction mode is quite complex. Based on statistical 

analysis, we propose fast CU mode decision method that can be divided into two stages, LCU 

mode decision and early Skip mode decision. 

3.2.1 LCU Mode Decision 

Table 4 lists the statistical results of the optimal prediction modes of LCUs in depth video 
when the depth level equals 0. Clearly, most LCUs in inter frames choose the Skip mode as the 

optimal mode. The total proportion of LCUs that choose Inter-N×2N, Inter-2N×N, Inter-N×N, 

Inter-2N×nU, Inter-2N×nD, Inter-nL×2N, or Inter-nR×2N as the optimal mode is only 0.18%. 

Hence, if the depth level of an LCU is 0, only Skip, Merge, Inter-2N×2N, and Intra modes are 
searched. Unnecessary mode search can be avoided without significant encoding performance 

degradation. 
 

Table 4. Statistical results of the optimal mode of depth video when depth level equals 0 (%) 

Sequences Skip Merge Inter-2N×2N Inter-Others Intra 

Balloons 94.75 1.56 2.39 0.25 1.05 

Kendo 88.93 2.23 1.91 0.27 6.65 

Newspaper 97.09 0.68 1.69 0.15 0.39 

GhostTownFly 93.82 4.89 0.40 0.03 0.87 

Shark 95.30 1.82 1.82 0.32 0.73 

PoznanStreet 99.05 0.34 0.29 0.04 0.29 

Average 94.82 1.92 1.42 0.18 1.67 

Inter-Others includes Inter-N×2N, Inter-2N×N, Inter-N×N, Inter-2N×nU, Inter-2N×nD, Inter-nL×2N, Inter-nR×2N； 

Intra include Intra-2N×2N and Intra-N×N. 

 
Table 5. Statistical results of the optimal mode of CUs if optimal modes of their parent CUs are Skip 

(%) 

Sequences Skip Merge Inter-2N×2N Inter-Others Intra 

Balloons 99.52 0.15 0.17 0.02 0.14 

Kendo 99.70 0.08 0.07 0.01 0.14 

Newspaper 99.41 0.20 0.16 0.03 0.20 

GhostTownFly 99.86 0.08 0.04 0.00 0.02 

Shark 99.68 0.11 0.13 0.04 0.04 

PoznanStreet 99.87 0.06 0.03 0.01 0.03 

Average 99.67 0.11 0.10 0.02 0.10 

Inter-Others include Inter-N×2N, Inter-2N×N, Inter-N×N, Inter-2N×nU, Inter-2N×nD, Inter-nL×2N, Inter-nR×2N； 

Intra include Intra-2N×2N and Intra-N×N. 

 

3.2.2 Early Skip Mode Decision 

Based on observation and statistical analysis, we found the phenomena that the optimal 

modes of almost all the CUs are Skip under two scenarios, 1) the optimal modes of their parent 
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CUs are Skip, and 2) the CUs are in a dependent view and the optimal modes of the 

corresponding CUcv and CUct are Skip. Table 5 lists the statistical results of the optimal 
prediction modes of CUs in depth video if the optimal prediction modes of their parent CUs 

are Skip. Skip is the optimal mode for most CUs. The proportion of CUs that choose other 

modes as the optimal mode amounts to 0.33%. Table 6 lists the statistical results of the 

optimal prediction mode of CUs in a dependent view if the optimal modes of CUcv and CUct 
are Skip. We can conclude that most CUs choose the Skip mode as the best mode. The total 

proportion of CUs that choose other modes as the optimal mode is 0.86%. Hence, only Skip is 

searched for current CU under the two scenarios. The average miss rates are less than 0.33% 
and 0.86 respectively, and negligible. 

 
Table 6. Statistical results of the optimal mode of CUs in a dependent view if optimal modes of CUcv 

and CUct are Skip (%) 

Sequences Skip Merge Inter-2N 2N Inter-Others Intra 

Balloons 98.53 0.46 0.46 0.06 0.50 

Kendo 98.46 0.29 0.25 0.06 0.93 

Newspaper 98.91 0.32 0.35 0.07 0.35 

GhostTownFly 99.49 0.46 0.03 0.00 0.02 

Shark 99.57 0.13 0.21 0.05 0.03 

PoznanStreet 99.88 0.06 0.03 0.01 0.03 

Average 99.14 0.29 0.22 0.04 0.31 

Inter-Others include Inter-N×2N, Inter-2N×N, Inter-N×N, Inter-2N×nU, Inter-2N×nD, Inter-nL×2N, and Inter-nR×2N； 

Intra include Intra-2N×2N and Intra-N×N. 

4. Experimental Results and Analysis 

4.1 Experimental conditions and sequences 

To evaluate the performance of the proposed algorithm, we implemented it on the 3D-HEVC 
reference software HTM-10.0. The test environment recommend by JCT-3V [28] is described 

as follows. The prediction structure is the hierarchical B pictures. The group of pictures (GOP) 

is 8, and the period of the I slice is 24. Both the ranges of motion and disparity search are 64. 

The LCU size is 6464,  and the depth level of an LCU ranges from 0 to 3. Four pairs of QPs, 
(25,34), (30,39), (35,42), and (40,45), are tested. 

As shown in Table 7, six sequences recommended by JCT-3V were tested. The resolution 

of Baloons, Kendo, and Newspaper is 1024768, whileas, the resolution of GhostTownFly, 

Shark, and PoznanStreet is 19201088. The features of these sequences are different. The 
encoded views, virtual view and frames are listed in Table 7. 

 
Table 7. Test sequences 

Sequences Resolution Encoded Views Virtual View Frames 

Balloons 1024768 3,5 4 300 

Kendo 1024768 3,5 4 300 

Newspaper 1024768 4,6 5 300 

GhostTownFly 19201088 1,9 5 250 

Shark 19201088 1,9 5 300 

PoznanStreet 19201088 3,5 4 250 
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The performance of the proposed algorithm is measured in terms of PSNR, computational 

complexity, and bitrate. PSNR is the quality of synthesized virtual view, and the bitrate 
represents the total bitrate of texture video and depth video. The bitrate variation is evaluated 

in terms of the Bjontegaard metric BD-Rate [29]. In order to illustrate the effectiveness of the 

proposed algorithm, the fast algorithms in [10], [11], and [17], embedded into the reference 

software HTM, are used for comprehensive comparison. Mora, ECU, and CFM respectively 
denote the algorithms in [17], [10], and [11]. We also compared the state-of-the-art algorithms 

in terms of speedup and RD performance. 

4.2 Speedup performance of the proposed algorithm 

Table 8 lists the time saving of various fast algorithms under different QPs that is calculated 

by using original HTM-10.0 as benchmark. Negative sign means time reduction. DTx is the 
time saving of depth and color video coding of algorithm x,  

( ) / 100% { , , , , , }x x ori oriDT T T T x Mora CFM ECU CUSD CUMD Pro      (9) 

where Tx denotes the entire encoding time of algorithm x, Tori denotes the entire encoding time 

of the original HTM-10.0. CUSD denotes the first part of our algorithm, i.e., CU size decision 
based on Bayesian theory. CUMD denotes the second part of our algorithm, i.e., CU mode 

decision. Pro denotes the proposed algorithm that is the combination of CUSD and CUMD. 

Dtx is the time saving of depth video of algorithm x, calculated by 

( ) / 100% { , , , , , }x x ori oriDt t t t x Mora CFM ECU CUSD CUMD Pro      (10) 

where tx denotes encoding time of depth video of algorithm x, tori denotes encoding time of  

depth video of the original HTM-10.0. 
 

Table 8. Time saving comparison of various fast algorithms (%) 
Sequences QP DTMora DtMora DTCFM DtCFM DTECU DtECU DTCUSD DtCUSD DTCUMD DtCUMD DTPro DtPro 

 25 -30.76 -51.86 -13.97 -23.24 -23.71 -39.75 -12.26 -20.34 -14.94 -24.74 -30.56 -51.09 

Balloons 

30 -35.16 -57.62 -16.20 -26.45 -29.87 -48.75 -19.41 -31.70 -16.25 -26.37 -35.81 -58.49 

35 -38.71 -61.16 -18.10 -28.39 -34.39 -54.12 -26.03 -40.95 -17.37 -27.22 -40.54 -63.80 

40 -41.68 -63.71 -19.21 -29.17 -38.86 -59.03 -31.20 -47.41 -18.44 -27.92 -44.80 -68.17 

Kendo 

25 -33.19 -54.72 -12.44 -20.29 -20.81 -34.15 -19.26 -31.44 -13.44 -22.00 -33.56 -55.14 

30 -35.53 -58.23 -15.32 -24.99 -28.57 -46.75 -25.23 -41.38 -15.09 -25.18 -38.02 -62.45 

35 -37.96 -60.93 -17.10 -27.21 -33.24 -53.30 -28.97 -46.21 -16.41 -26.43 -40.83 -65.72 

40 -40.36 -63.24 -18.24 -28.44 -37.48 -58.65 -31.10 -49.16 -17.32 -27.39 -43.49 -68.18 

Newspaper 

25 -35.81 -56.83 -14.63 -23.12 -28.18 -44.73 -13.46 -21.18 -15.12 -23.76 -31.79 -50.37 

30 -38.97 -60.19 -16.85 -25.95 -32.53 -50.09 -20.78 -31.80 -16.49 -25.14 -36.99 -57.00 

35 -41.33 -62.28 -17.82 -26.74 -35.81 -53.78 -26.51 -39.79 -17.19 -25.74 -40.95 -61.38 

40 -43.57 -64.32 -18.81 -27.89 -39.37 -58.01 -31.51 -46.26 -17.79 -26.34 -44.30 -65.25 

GhostTownFl
y 

25 -34.40 -57.84 -16.36 -27.25 -28.25 -47.52 -27.92 -46.77 -15.59 -26.29 -40.56 -68.04 

30 -39.44 -62.92 -19.04 -30.22 -34.91 -55.87 -33.22 -52.83 -15.69 -24.80 -44.90 -71.57 

35 -43.23 -65.37 -19.19 -28.93 -40.00 -60.73 -36.13 -54.57 -17.33 -25.99 -48.34 -72.49 

40 -46.01 -67.64 -20.88 -30.61 -43.69 -64.18 -38.47 -56.40 -18.98 -27.87 -50.93 -74.70 

Shark 

25 -25.85 -46.79 -13.36 -24.27 -24.16 -43.77 -15.94 -28.44 -13.35 -24.13 -31.28 -56.62 

30 -31.10 -54.72 -15.88 -27.84 -30.55 -53.77 -24.64 -42.83 -15.17 -26.20 -37.65 -66.28 

35 -36.27 -60.08 -17.84 -29.38 -36.47 -60.56 -30.57 -50.17 -16.50 -27.03 -42.91 -71.01 

40 -41.26 -64.38 -19.60 -30.51 -41.21 -64.50 -34.84 -54.13 -17.80 -27.60 -47.06 -73.40 

PoznanStreet 

25 -33.07 -56.97 -15.89 -27.32 -32.95 -56.72 -24.64 -41.85 -15.49 -26.23 -36.68 -63.09 

30 -39.43 -62.91 -18.46 -29.41 -38.94 -62.28 -32.30 -51.10 -17.35 -27.51 -43.82 -69.92 

35 -43.49 -65.28 -20.09 -29.98 -42.92 -64.43 -35.86 -53.68 -18.37 -27.54 -48.27 -72.51 

40 -46.06 -67.05 -20.57 -29.85 -46.14 -67.17 -38.70 -56.14 -18.95 -27.44 -50.88 -74.13 

Average  -38.03 -60.29 -17.33 -27.39 -34.29 -54.28 -27.46 -43.19 -16.52 -26.12 -41.04 -65.03 
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Compared with the original HTM-10.0 encoder, the proposed algorithm can reduce the 

entire encoding time and depth video encoding time by 41.04% and 65.03%, respectively. The 
proposed algorithm is efficient for the sequences with slight motion sequences and higher 

resolution, such as GhostTownFly and PonzanStreet. The main reason is that more CUs can 

satisfy the early termination condition. The fast algorithm CFM reduces the entire encoding 

time and depth video encoding time by 17.33% and 27.39%, respectively. The fast algorithm 
ECU reduces the entire encoding time and depth video encoding time by 34.29% and 54.28%, 

respectively. The algorithms CFM and ECU are initially designed for color video. They are 

directly applied into 3D-HEVC, and have not taken the feature of depth video into 
consideration. Hence, the time saving of the algorithms is less than the proposed algorithm. 

The fast algorithm Mora reduces the entire encoding time and depth video encoding time by 

38.03% and 60.29%, respectively. In terms of time saving, the proposed algorithm is 

equivalent to the algorithm Mora for sequences with resolution 1024768, and is superior to 

the algorithm Mora for other sequences with resolution 19201088. As a whole, the speedup 
performance of the proposed algorithm is better than the algorithms Mora, CFM and ECU. 

The underlying reason of the better speedup performance is that the contribution on both 

CU size decision and CU mode decision. CUSD reduces the depth video encoding time by 

43.19% on average. For the sequences GhostTownFly and PonzanStreet, CUSD can 

efficiently skip unnecessary CU partition levels, and respectively saves the encoding time 
ranging from 46.77% to 56.40%, and from 41.85% to 56.14%. CUMD reduces the depth video 

encoding time by 26.12% on average. The time saving of CUMD is nearly the same for all 

sequences, because the proportion of CUs that meet the early termination condition is nearly 
the same for all sequences. 

Table 9 lists the encoding performance comparison with Lei’s [14], Zhao’s [15], Yang’s 

[16], Shen’s [19], and Zhang’s [20] algorithms. The proposed algorithm outperforms Lei’s 

and Zhao’s algorithms because the algorithms are optimization for DMM. Yang’s algorithm 
improves the encoding speed by a CU partition scheme, while Shen’s, Zhang’s algorithms 

optimize the mode selection process. Hence, the algorithms cannot overall improve the 

speedup performance. 
 

Table 9. Encoding performance comparison with the state-of-the-art algorithms 

Algorithms HTM Version BD-Rate (%) Time Saving (%) 

Lei [14] 15.1 0.0 20 

Zhao [15] 16.0 0.6 31 

Yang [16] 14.0 -12.4 47 

Shen [19] 9.0 1.3 34 

Zhang [20] 16.0 0.8 43 

Proposed 10.0 -0.4 65 
 

 

4.3 Rate distortion performance of the proposed algorithm 

Table 10 tabulates the quality variation of the synthesized view of various fast algorithms 

under different QPs that is calculated by using original HTM-10.0 encoder as benchmark. 

Negative sign means quality decrease.  DPSNRx is the PSNR difference between algorithm x 
and the original HTM-10.0 encoder,  

{ , , , , , }x x ori MorDPSNR PSNR PSNR x CFM ECU CUSD CUMD roa P     (11) 

where PSNRx and PSNRori in the synthesized view are measured with respect to the view 

synthesized using a compressed view. 
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For the proposed algorithm, the synthesized view quality variation ranges from -0.01dB to 

-0.17dB. For the algorithms Mora, CFM, and ECU, the synthesized view quality variation 
ranges from -0.01dB to -0.23dB, -0.02dB to 0.01dB, and -0.01dB to -0.26dB, respectively. 

Compared with the algorithms ECU and Mora, the proposed algorithm can get the virtual view 

with nearly the same quality on average. The average quality of the proposed algorithm is 

slight lower than that of the CFM. The average quality variation of CUSD and CUMD are 
-0.01dB and 0.00dB. The proposed algorithm, combination of CUSD and CUMD, slight 

degrades the quality of synthesized virtual view. The depth videos of sequences Baloons and 

Kendo are estimated by software. There are many errors in the depth videos of these sequences. 
These sequences can tolerate more distortion than the computer-generated sequences. Thus, 

coding errors introduced by the fast algorithms slightly impacts on the quality of the 

synthesized view. By contrast, the coding errors of depth videos in sequence Shark leads to a 
severe decline in the quality of the synthesized view. 

 

Table 10. Quality variation of synthesized view of various fast algorithms (dB) 
Sequences QP DPSNRMora DPSNRCFM DPSNRECU DPSNRCUSD DPSNRCUMD DPSNRPro 

 25 -0.03 0.00 -0.01 0.01 0.00 0.00 

Balloons 

30 -0.01 0.01 -0.01 0.02 0.01 0.01 

35 -0.04 -0.02 -0.04 -0.01 -0.01 -0.01 

40 -0.04 0.00 -0.02 -0.01 0.00 -0.01 

Kendo 

25 -0.08 0.00 -0.04 -0.01 -0.01 -0.03 

30 -0.06 0.01 -0.05 -0.01 0.00 -0.04 

35 -0.05 0.00 -0.04 -0.01 -0.01 -0.05 

40 -0.02 0.01 -0.02 0.00 0.01 -0.03 

Newspaper 

25 -0.03 -0.01 -0.02 0.00 0.00 0.00 

30 -0.01 0.00 -0.02 0.00 0.00 0.00 

35 -0.02 0.01 -0.01 0.00 0.01 0.00 

40 -0.03 -0.01 -0.01 -0.01 0.00 -0.02 

GhostTownFl
y 

25 -0.09 -0.02 -0.09 -0.06 -0.03 -0.07 

30 -0.02 -0.01 -0.06 -0.01 0.00 -0.04 

35 -0.03 0.00 -0.03 0.00 0.00 -0.03 

40 -0.01 0.00 -0.01 0.00 -0.01 -0.01 

Shark 

25 -0.23 -0.02 -0.26 -0.04 -0.02 -0.13 

30 -0.12 -0.01 -0.19 -0.05 -0.01 -0.17 

35 -0.06 -0.01 -0.13 -0.06 -0.01 -0.13 

40 -0.02 0.01 -0.08 -0.02 -0.01 -0.08 

PoznanStreet 

25 -0.02 0.00 -0.02 -0.01 0.00 0.00 

30 -0.01 0.00 -0.01 -0.01 -0.01 0.00 

35 -0.01 0.00 -0.03 0.00 0.00 -0.02 

40 -0.01 0.00 -0.02 -0.01 0.00 -0.02 

Average  -0.04 0.00 -0.05 -0.01 0.00 -0.04 

 

Fig. 5 shows the results of distortion comparison of various fast algorithms. The distortion is 
the difference of synthesized virutal images between the fast algorithm and the original 

HTM-10.0. For visualization, the distortion part of the virtual view synthesized image is 

enlarged by a factor of 6. White means distortion. The virtual view is synthesized using the 

color video and the associated depth video. The depth value generates the pixel displacement 
between the synthesized virtual view and the real view during the DIBR process. The depth at 

boundaries is sensitive to the distortion as far as the quality of synthesized virtual view is 

concerned. The depth distortion results in quality deterioration at boundaries. Consequenly, as 
illustrated in Fig. 5, the distortion in synthesized virtual view mainly locates at boundaries. 

Among the fast algorithms, CUSD can get synthesized virtual view with minimal distortion, 

whereas the algorithm Mora generates virtual view with maximal distortion. It is consistent 
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with the the PSNR variation in Table 10. 

 

   
Mora CFM ECU 

   
CUSD CUMD Pro 

Fig. 5. Synthesized image distortion of various algorithms of 6th frame in 4th view in Balloons 

sequence when QP equals to 25. 

 

Table 11 lists the BD-Rate variation of various fast algorithms that is calculated by using 

original HTM-10.0 encoder as benchmark. Negative sign means bitrate saving. The fast 

algorithms Mora, CFM, and ECU achieve BD-Rate variation of -3.45%, -0.10%, and -1.40% 
on average, respectively. The BD-Rate variation of the proposed algorithm is -0.37% on 

average. It indicates that the bitrate saving of the proposed algorithm is 0.37% on average 

under same PSNR when compare to original HTM-10.0. The BD-Rate variation of CUSD and 
CUMD are -0.41% and 0.10%, respectively.  

For many sequences, The BD-rate is negative which means the bitrate saving under the 

same quality. PSNR increase and bitrate decrease, individually or collectively, will leads to 

negative BD-rate. As shown in Table 10, the fast algorithms decrease the PSNR for most of 
the sequences. Hence, the reason of the negative BD-rate is bitrate decrease. In sequences 

GhostTownFly and PozanStreet, the bitrate decrease cannot counterbalance the PSNR 

decrease, and the BD-rate is positive for all fast algorithms. The bitrate saving of these 
algorithms is contributed by large CU size and more Skip mode. In the proposed algorithm, 

more CTUs are encoded with large CU size, and more CUs selected Skip as optimal mode. In 

algorithm Mora, CU depth limitation and mode pre-decision are utilized, and the bitrate 
reduction of depth video mainly caused by the cost of transmitting split flags and partition 

sizes. 

For the proposed algorithm, the BD-Rate variation of Newspaper and Shark is -3.67% and 

2.44%, respectively. The large difference is caused by PSNR variance. The PSNR variation of 
Newspaper and Shark are ranging from -0.02dB to 0.00dB, and from -0.17dB to -0.08dB. 

Hence, the PSNR decrease of Shark is more than that the Newspaper.  

Compared with other methods, the algorithm CFM slightly changes the quality of the 
synthesized view, the BD-Rate is ranging from -0.64% to 0.34%, and -0.10% on average. It 

indicates that the fast mode selection strategy in the algorithm CFM does not work for many 

CUs. It is coincide with analysis of time saving. 
Table 9 also tablutes the RD performance comparson with the state-of-the-art algorithm. 

The proposed algorithm is equivalent to the Lei’s, Zhao’s, Shen’s, and Zhang’s algorithms. 
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Because a region-based QP adjustment scheme is adopted in Yang’s algorithm, the bitrate is 

great reduced, and significantly less than other than algorithms. 
 

Table 11. BD-Rate variation of various fast algorithms (%) 

Sequences BDBRMora BDBRCFM BDBRECU BDBRCUSD BDBRCUMD BDBRPro 

Balloons -8.00 -0.23 -4.32 -1.36 -0.34 -3.28 

Kendo -2.66 -0.10 -1.37 -1.38 0.67 0.25 

Newspaper -10.90 -0.64 -6.48 -1.08 -0.72 -3.67 

GhostTownFly 0.55 0.34 1.18 0.45 0.46 1.41 

Shark 0.17 -0.05 1.78 0.47 0.18 2.44 

PoznanStreet 0.15 0.11 0.81 0.43 0.32 0.64 

Average -3.45 -0.10 -1.40 -0.41 0.10 -0.37 
 

 5. Conclusion 

The encoding process of the 3D-HEVC encoder includes color video encoding and depth 

video encoding. However, compared with color video encoding, depth video encoding 
consumes more encoding time under the same configuration. In this paper, we proposed a fast 

CU size decision and CU mode decision algorithm to reduce the computational complexity of 

depth video coding by exploiting correlations among MVD signals. The experimental results 
showed that the proposed algorithm significantly reduces the computational complexity of the 

3D-HEVC encoder with negligible quality deterioration of synthesized view. Moreover, the 

proposed algorithm outperforms the state-of-the-art algorithms in terms of time saving. The 

BD-Rate variation indicates that the proposed algorithm can nearly maintain the RD 
performance. In the future, we will further investigate the feature of depth video coding, and 

realize fast algorithm based on machine learning to achieve better coding performance. 
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