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Abstract 
 

For the problem of cross-layer joint resource allocation (JRA) in the Long-Term Evolution 
(LTE)-Advanced standard using carrier aggregation (CA) technology, it is difficult to obtain 
the optimal resource allocation scheme. This paper proposes a joint resource allocation 
algorithm based on the weights of user’s average quality of experience (JRA-WQOE). In 
contrast to prevalent algorithms, the proposed method can satisfy the carrier aggregation 
abilities of different users and consider user fairness. An optimization model is established by 
considering the user quality of experience (QoE) with the aim of maximizing the total user rate. 
In this model, user QoE is quantified by the mean opinion score (MOS) model, where the 
average MOS value of users is defined as the weight factor of the optimization model. The 
JRA-WQOE algorithm consists of the iteration of two algorithms, a component carrier (CC) 
and resource block (RB) allocation algorithm called DABC-CCRBA and a subgradient power 
allocation algorithm called SPA. The former is used to dynamically allocate CC and RB for 
users with different carrier aggregation capacities, and the latter, which is based on the 
Lagrangian dual method, is used to optimize the power allocation process. Simulation results 
showed that the proposed JRA-WQOE algorithm has low computational complexity and fast 
convergence. Compared with existing algorithms, it affords obvious advantages such as 
improving the average throughput and fairness to users. With varying numbers of users and 
signal-to-noise ratios (SNRs), the proposed algorithm achieved higher average QoE values 
than prevalent algorithms. 
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1. Introduction 

With the continual evolution of communication technology, increasing number of mobile 
users, and growing user demands, spectral resources have become increasingly scarce. To 
achieve higher data transmission rates and better user quality of experience (QoE), carrier 
aggregation (CA) technology has been proposed in the 3GPP LTE-Advanced mobile 
communication standard. CA technology increases the system bandwidth by aggregating 
multiple continuous or discrete frequency bands to realize faster data transmission rates and 
higher spectrum utilization [1]. However, in practice, allocating component carrier (CC) and 
resource blocks (RBs) and assigning transmission power to users have lately emerged as 
pressing issues. 

According to research on CA resource allocation in recent years, CC allocation methods 
can be divided into those based on round-robin scheduling and those based on free-hash 
scheduling [1,2,3]. Assuming that CC allocation has been determined, two schemes are 
available for allocating RBs: joint resource allocation scheme (JRS) and independent resource 
allocation scheme (IRS) [2,4,5]. In JRS, all CCs are combined into a “large carrier” for 
allocating RBs. JRS requires that each user continuously receive signals from all CCs 
simultaneously; this increases the complexity of signal processing and the power consumption 
of the user terminal [6,7,8]. In turn, this increases the complexity of resource allocation [9]. 
However, JRS can obtain the maximal frequency diversity gain and automatically balance 
loads among CCs; this is called the optimal resource allocation scheme in the LTE-Advanced 
CA system. In [2], a proportion-fair scheduler for cross-carriers was studied, and it was proved 
that the cross-carrier JRS is superior to IRS. In [3], an improved CC selection method was 
proposed for discontinuous carrier aggregation. In [8], for the cross-carrier scheduling 
problem in LTE-Advanced, a mathematical model based on logarithmic benefit was 
established. When the logarithm of the throughputs of all users is considered the optimization 
objective, optimal network benefit can be obtained. A cross-carrier resource scheduling 
algorithm was proposed in [10]. In [11], CCs and RBs were jointly considered and a 
suboptimal allocation algorithm was proposed. To reduce the complexity of resource 
allocation, CA resource allocation in IRS is divided into two steps: CC selection and RB 
allocation. In this scheme, a user can only use the RB on the selected CC for data transmission. 
Therefore, the scheme can only obtain low-frequency diversity gain, and the load imbalance 
among the CCs affects the system performance [2,12]; this results in poor performance of IRS, 
as described in [13] and [14]. [15] proposes a low-complexity and low-feedback-rate channel 
allocation approach for CA MIMO systems as an application for heterogeneous networks 
(HetNets) with multiple CCs and users. 

The above studies did not consider the transmission power of each RB. In [16], a novel 
CA scheme was proposed for licensed/unlicensed MIMO LTE systems that optimally allocate 
the resources (power and RBs) of an eNodeB to UE (user equipment). Furthermore, the 
proposed approach handles coexisting matters in unlicensed bands in an efficient and 
decentralized manner. [17] studied the resource allocation problem for CA-enabled HetNets in 
which the spectrum owned by a macro-cell operator (MCO) can be shared by both unlicensed 
users (UUs) and licensed users (LUs). The authors also formulated a novel hierarchical game 
theoretic framework to jointly optimize the transmit powers and subband allocations of the 
UUs and the pricing strategies of the MCO. In [18], a resource scheduler was proposed by 
considering the CC, RB, and power allocation. However, CC and RB allocations were 
addressed separately from the issue of power allocation and were based on the suboptimal 
allocation method proposed in [11]. Therefore, the algorithm in [18] cannot yield optimal 
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results. The problems of CC allocation, RB allocation, and power allocation were considered 
in [19] as well; however, the computational complexity of the proposed solution was high. In 
[18,19], the problem of QoE was not considered. [20,21,22] focused on improving the 
quality-of-service (QoS) performance of CA systems. [20] guaranteed users’ QoS 
requirements by satisfying the minimum transmission rate. A resource scheduling algorithm 
based proportional fairness (PF) approach is used to allocate CC, RB, and Modulation and 
Coding Scheme (MCS). [21] uses a utility PF approach. In this approach, users are partitioned 
into different groups based on the carrier coverage area. In each user group, RBs from all 
in-band carriers are assigned to UEs. In the case of average power allocation, each user is 
guaranteed a minimum QoS because no user is allocated zero RBs. [22] proposed joint user 
scheduling (JUS) based on Earliest Deadline First (EDF) for CC and RB allocation. However, 
[20,21,22] did not consider power allocation and users’ QoE. 

To ensure user satisfaction, operators have shifted the focus of their services from QoS to 
QoE. As far as I know, there is only little literature on resource allocation considering user’s 
QoE, especially in the CA technology scenario. [23] proposes a downlink cross-layer 
QoE-aware sub-carrier and power allocation algorithm in Heterogeneous OFDMA system. 
[24] researches the multi-channel energy-efficiency resource allocation of user’s QoE in 
HetNet. [25] proposes an algorithm based device-to-device communication to enhance user’s 
QoE in software defined multi-layer LTE-Advanced network. Therefore, a resource allocation 
scheduler that jointly considers the QoE of the CC, RBs, and power and low-computational 
complexity needs to be further studied for CA systems. 

The rest of this paper is organized as follows. Chapter 2 describes the resource allocation 
problem based on QoE. Chapter 3 introduces the resource allocation algorithm, including 
discrete artificial bee colony algorithm; the proposed CC and RB allocation algorithm; the 
proposed power algorithm; and the proposed joint CC, RB, and power source allocation 
algorithms. Chapter 4 presents an analysis of the simulation results. Finally, Chapter 5 
summarizes this study. 

2. Resource Allocation Problem Based on QoE 
The initial goal of network optimization is to improve the network QoS. However, QoS as an 
objective evaluation index of communication network performance depends on factors such as 
the bit error rate, packet loss rate, jitter, delay, etc. These factors depend on the communication 
network technology or transmission performance. Therefore, QoS cannot directly reflect a 
user’s true attitude toward a business. According to the International Telecommunications 
Union (ITU), a user’s QoE reflects the degree of subjective acceptance of use of the entire 
application or service, including the user’s satisfaction with the usability, stability, integrity, 
and cost performance of the service [26,27,28]. QoE involves various factors, including not 
only objective factors related to network transmission but also subjective factors related to the 
user's experience. Therefore, QoE includes QoS. 

LTE-Advanced is a further evolution based on LTE. It imposes more stringent 
requirements on system performance and customer service satisfaction. Only considering QoS 
as a service standard in LTE-Advanced cannot correctly reflect users’ satisfaction. QoE is a 
direct reflection of user satisfaction that can not only reflect the impact of various QoS indices 
on user experience but also evaluate users’ subjective experience of different businesses. 
Therefore, this paper focuses on the down-link resource allocation scheme by considering user 
QoE in LTE-Advanced CA technology. 



2236                                                                 Liu et al.: CA Joint Resource Allocation Algorithm Based on QoE Weight 

2.1 QoE Quantification Model 
The mean opinion score (MOS) proposed by the ITU is widely used for QoE 

quantification and evaluation [28]. In this technique, QoE is divided into five grades, for 
which the corresponding MOSs are 5, 4, 3, 2, and 1. Score of “1” and “5” represent “extremely 
low quality” and “excellent quality,” respectively. The MOS quantification method reflects a 
user’s subjective QoE. By using this quantification method, a user’s subjective perception is 
mapped to an objective technical index. Different MOS quantification models are available for 
various services. Three types of businesses are considered in this paper: audio, video, and Web 
browsing. Different businesses can use pointed schedulers to further improve user satisfaction 
and resource utilization [29]. 

(1) Audio application 
𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the MOS of audio businesses, and it is expressed as follows [23,30]: 

                                             𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎 log(𝑏𝑏𝑅𝑅(𝑆𝑆)������(1− 𝑒𝑒𝑚𝑚))                               (1)  

where 𝑅𝑅(𝑆𝑆)������ (bit/s) is the transmission rate of the audio user and 𝑒𝑒𝑚𝑚 is the target packet-error 
probability (𝑒𝑒𝑚𝑚  is directly related to the target bit error rate). The constants 𝑎𝑎 and 𝑏𝑏 are 
calculated when the transmission rate is known and there is no packet error (𝑒𝑒𝑚𝑚 = 0). 

(2) Video application 

𝑀𝑀𝑀𝑀𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉) is the MOS of video application businesses, and it is given by (2). 
This scoring model only applies to H.264/MPEG-4 AVC standard video services [23,30]:       

𝑀𝑀𝑀𝑀𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉) = �
1.0,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉 ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1.0

𝑑𝑑 log(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉) ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1.0 < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉 < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃4.5
4.5,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉 ≥ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃4.5

        (2) 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉 represents the peak signal-to-noise ratio (PSNR) of the video service. As given 
by (3), the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉  value is related to the data rate of the video stream. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1.0 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃4.5 
represent the PSNR corresponding to the user perceiving quality as being unacceptable and the 
user being “very satisfied” with the quality, respectively. The constant 𝑑𝑑 is determined by the 
PSNR, where the MOS value is in the interval [1.0,4.5]: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉 = u + v�𝑅𝑅(𝑆𝑆)������

𝑤𝑤
(1 − 𝑤𝑤

𝑅𝑅(𝑆𝑆)������)                                     （3） 

where 𝑅𝑅(𝑆𝑆)������  is the transmission rate of the video user, and u, v, and 𝑤𝑤 are time-variable 
constants that can be obtained by matching the distortion model of the measured video bit 
stream. 

(3) Web browsing application 

The MOS of the Web browsing service is expressed as 

𝑀𝑀𝑀𝑀𝑀𝑀𝑤𝑤𝑤𝑤𝑤𝑤 = −𝑘𝑘1 ln(𝑑𝑑(𝑅𝑅(𝑆𝑆)������)) + 𝑘𝑘2                                   （4） 

where 𝑘𝑘1(= 1.1120) and 𝑘𝑘2(= 4.647) are obtained by analyzing experimental results for a 
Web browsing application, 𝑅𝑅(𝑆𝑆)������ is the transmission rate achieved by a Web browsing user, 
and 𝑑𝑑(𝑅𝑅(𝑆𝑆)������ is the time delay between the transmission and acceptance of a Web browsing 
sending request. The time delay depends on multiple factors such as the webpage size, 
protocol type, and round-trip time [31]. 
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2.2 CA Resource Allocation Optimization Model Based on QoE Weight 
This study addresses the joint resource allocation problem of CC, RB, and transmission 

power. It is assumed that a base station eNB (eNodeB) provides communication services for K 
users over N CCs in an LTE-A system. Different users can support different bandwidths. 
Broadband users can support more CCs, whereas narrow-band users can support fewer CCs, 
or even only one CC.  𝐶𝐶𝑘𝑘  indicates that user 𝑘𝑘  can support 𝐶𝐶  number of CCs; 𝐶𝐶 =
[𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑘𝑘] represents the numbers of CCs that different users can support, 𝑛𝑛 ∈ {1,2, … ,𝑁𝑁} 
represents a group of CCs, and 𝑘𝑘 ∈ {1,2, … ,𝐾𝐾}  represents an end user, where one CC contains 
M RBs. 

When the m-th RB of the n-th CC is allocated to user 𝑘𝑘, user  𝑘𝑘 can acquire rate 𝑟𝑟𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡) 

in time slot 𝑡𝑡 . The rate is expressed as 

𝑟𝑟𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡) = 𝐵𝐵𝑅𝑅𝑅𝑅 log2(1 + 𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 (𝑡𝑡)𝛾𝛾𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡))                      (5) 

where 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡) is the transmission power when the m-th RB of the n-th CC in time slot 𝑡𝑡 is 

allocated to user 𝑘𝑘 ,  𝐵𝐵𝑅𝑅𝑅𝑅  is the bandwidth of an RB, and 𝛾𝛾𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡)  is the channel state 

information when the m-th RB of the n-th CC in time slot 𝑡𝑡 is allocated to user 𝑘𝑘 (assuming 
that the base station contains all channel state information). 𝛾𝛾𝑛𝑛,𝑚𝑚

𝑘𝑘 (𝑡𝑡) is expressed as 

𝛾𝛾𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡) = �ℎ𝑛𝑛,𝑚𝑚

𝑘𝑘 (𝑡𝑡)�2 𝑁𝑁0𝐵𝐵𝑅𝑅𝑅𝑅�                                  (6) 

where ℎ𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡) denotes the channel gain, 𝑁𝑁0 is the unilateral power spectral density of additive 

white Gaussian noise. 

𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡) denotes the assignment identifier of the RB. When the m-th RB of the n-th CC is 

allocated to user 𝑘𝑘 , 𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡) = 1 ; otherwise, 𝜂𝜂𝑛𝑛,𝑚𝑚

𝑘𝑘 (𝑡𝑡) = 0 . 𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡)  needs to satisfy the 

constraint in (7): 

                                                         ∑ 𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡)𝐾𝐾

𝑘𝑘=1 ≤ 1,∀𝑛𝑛,∀𝑚𝑚                                   (7) 

𝜒𝜒𝑛𝑛𝑘𝑘(𝑡𝑡) represents the assignment identifier of the CC. When the n-th CC is allocated to 
user 𝑘𝑘, 𝜒𝜒𝑛𝑛𝑘𝑘(𝑡𝑡) = 1; otherwise, 𝜒𝜒𝑛𝑛𝑘𝑘(𝑡𝑡) = 0. 𝜒𝜒𝑛𝑛𝑘𝑘(𝑡𝑡) needs to satisfy the constraint in (8): 

∑ 𝜒𝜒𝑛𝑛𝑘𝑘(𝑡𝑡)𝑁𝑁
𝑛𝑛=1 ≤ 𝐶𝐶𝑘𝑘,∀𝑘𝑘                                        (8) 

 𝑃𝑃𝑇𝑇 denotes the total transmission power. The base station allocates the total transmission 
power to each RB. Therefore, the actual power consumption of the system is the sum of 
powers on all RBs. Power 𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 (𝑡𝑡) must satisfy the following constraint: 

∑ ∑ ∑ 𝜒𝜒𝑛𝑛𝑘𝑘(𝑡𝑡)𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1 𝜂𝜂𝑛𝑛,𝑚𝑚

𝑘𝑘 (𝑡𝑡)𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡) ≤ 𝑃𝑃𝑇𝑇              (9) 

Let 𝑅𝑅𝑘𝑘(𝑡𝑡) denote the total rate obtained by user 𝑘𝑘 in time slot 𝑡𝑡, as expressed in (10): 

𝑅𝑅𝑘𝑘(𝑡𝑡) = ∑ ∑ 𝜒𝜒𝑛𝑛𝑘𝑘(𝑡𝑡)𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘 (𝑡𝑡)𝑀𝑀

𝑚𝑚=1
𝑁𝑁
𝑛𝑛=1 𝑟𝑟𝑛𝑛,𝑚𝑚

𝑘𝑘 (𝑡𝑡)                      (10) 

Considering user k’s average QoE as the weight factor, it can be defined as in (11): 

𝑤𝑤𝑘𝑘(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘(𝑛𝑛, 𝑡𝑡) ∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘(𝑛𝑛, 𝑡𝑡)𝐾𝐾
𝑘𝑘=1⁄                             (11) 

where 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘(𝑛𝑛, 𝑡𝑡) is the instantaneous QoE score for user 𝑘𝑘 in time slot  𝑡𝑡, and it is calculated 
using the MOS quantification model described in Section 2.1, where the user rate is substituted 
into the instantaneous rate. 
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In considering the user fairness condition, the optimal mathematical model that considers 
the user’s QoE and maximizes the system’s total rate is as follows (time slot variable t is 
omitted for simplicity): 

𝑃𝑃1: max𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 ,𝜒𝜒𝑛𝑛𝑘𝑘,𝜂𝜂𝑛𝑛,𝑚𝑚

𝑘𝑘 ∑ ∑ ∑ 𝑤𝑤𝑘𝑘
1

𝑅𝑅𝑘𝑘(𝑡𝑡)�������� 𝐵𝐵𝑅𝑅𝑅𝑅𝜒𝜒𝑛𝑛
𝑘𝑘𝐾𝐾

𝑘𝑘=1
𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1 𝜂𝜂𝑛𝑛,𝑚𝑚

𝑘𝑘 log2(1 + 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 𝛾𝛾𝑛𝑛,𝑚𝑚

𝑘𝑘 )  (12) 

𝑠𝑠. 𝑡𝑡. (7):�𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘

𝐾𝐾

𝑘𝑘=1

≤ 1,∀𝑛𝑛,∀𝑚𝑚 

(8): �𝜒𝜒𝑛𝑛𝑘𝑘
𝑁𝑁

𝑛𝑛=1

≤ 𝐶𝐶𝑘𝑘 ,∀𝑘𝑘 

(9): � � �𝜒𝜒𝑛𝑛𝑘𝑘
𝐾𝐾

𝑘𝑘=1

𝑀𝑀

𝑚𝑚=1

𝑁𝑁

𝑛𝑛=1

𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘 𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 ≤ 𝑃𝑃𝑇𝑇 

(13):𝜒𝜒𝑛𝑛𝑘𝑘 ∈ {0,1},𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘 ∈ {0,1},𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 ≥ 0,∀𝑛𝑛,∀𝑚𝑚,∀𝑘𝑘 

where model P1 is defined as a total rate maximization problem based on the weighted average 
QoE,  𝑅𝑅𝑘𝑘(𝑡𝑡)������� is the average rate of user k from time 0 to t. The time-window smoothing 
technique is employed, as in (14):                  

                                        𝑅𝑅𝑘𝑘(𝑡𝑡)������� = �1 − 1
𝑡𝑡𝐶𝐶
�𝑅𝑅𝑘𝑘(𝑡𝑡 − 1)������������� + 1

𝑡𝑡𝐶𝐶
𝑅𝑅𝑘𝑘(𝑡𝑡)                  (14) 

where 𝑡𝑡𝐶𝐶  represents the length of the smoothing time window. Condition (7) indicates that an 
RB can only be allocated to one user in the same time slot. Condition (8) implies that the 
number of CCs allocated to users must satisfy the constraints of each user by supporting the 
maximum number of CCs because each user has different CA capabilities. Condition (9) 
indicates that the sum of the consumed power at each allocated RB should be less than or equal 
to the total transmission power. Condition (13) indicates that the CC assignment identifier and 
RB assignment identifier are 0 and 1, respectively, and the power assigned to each RB is 
nonnegative. 

The physical meaning of the optimization model P1 is the maximization of the total user 
rate, where the average user QoE is taken as the weight factor for considering user fairness and 
the satisfaction of CA capabilities under different users’ conditions. 

3. Resource allocation algorithm 
P1 is a nonlinear mixed optimization problem that is divided into two subproblems: the CC and 
RB allocation problem and the power allocation problem. The former is addressed when 
power allocation has been determined. Once the CC and RB allocations are complete, power is 
allocated to further improve the overall system performance. In this paper, a discrete artificial 
bee colony optimization algorithm (DABC) is used for CC and RB allocation. The basic 
principles of DABC are introduced below. 

3.1 DABC Algorithm 
The ABC algorithm is inspired by the food foraging behavior of honey bees. Honey bees 

are divided into three groups: employed bees, onlooker bees, and scout bees. These bees 
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complete different tasks at each stage according to the division of labor. They search for the 
optimal solution to a problem by collecting and sharing information concerning food sources. 
The employed bees and onlooker bees exploit the food source, namely, nectar. The scout bees 
observe whether the search falls into a local optimal solution. Every food source represents a 
possible solution, and fitness is determined in terms of the quality of the food source. In the 
search process, SN initial solutions 𝜃𝜃𝑖𝑖(𝑡𝑡) (𝑖𝑖 = 1,2, … , 𝑆𝑆𝑆𝑆) are generated, where 𝑆𝑆𝑆𝑆 is the 
number of food sources. Every solution is a d-dimensional vector. In the t-th search, the 
location of the i-th honey source is given by 

𝜃𝜃𝑖𝑖(𝑡𝑡) = {𝜃𝜃𝑖𝑖,1(𝑡𝑡),𝜃𝜃𝑖𝑖,2(𝑡𝑡), … ,𝜃𝜃𝑖𝑖,𝑑𝑑(𝑡𝑡)} ∈ 𝑅𝑅𝑑𝑑                       (15) 

Following initialization, all honey bees search in circles until the iterator reaches the 
maximum number of iterations or satisfies the given minimal error [32,33]. 

At the beginning of the search stage, every employed bee updates the position of the food 
source by  

  𝜃𝜃𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝜃𝜃𝑖𝑖,𝑗𝑗(𝑡𝑡) + 𝜙𝜙𝑖𝑖,𝑗𝑗(𝜃𝜃𝑖𝑖,𝑗𝑗(𝑡𝑡) − 𝜃𝜃𝑘𝑘,𝑗𝑗(𝑡𝑡))                   (16) 

where 𝜙𝜙𝑖𝑖,𝑗𝑗  is the weight of the length of the random search step in the range [-1,1], 𝑘𝑘 ∈
{1,2, … , 𝑆𝑆𝑆𝑆}, 𝑗𝑗 ∈ {1,2, … ,𝑑𝑑}, and  𝑘𝑘 ≠ 𝑖𝑖. In comparing the fitness of the old food source with 
that of the new one, if the latter is better than the former, it replaces the old one; otherwise, the 
old food source is retained and the new one is discarded. Once all employed bees have 
completed one search iteration, the employed bees share food source information through a 
waggle dance. The probability of each food source is calculated by the onlookers as in (17): 

𝑃𝑃𝑖𝑖 = 𝐻𝐻(𝜃𝜃𝑖𝑖(𝑡𝑡))
∑ 𝐻𝐻(𝜃𝜃𝑘𝑘(𝑡𝑡))𝑀𝑀
𝑘𝑘=1

                                  (17) 
A random number within the range [0,1] is then generated. If the probability of the solution is 
higher than the random number, the onlooker bees generate a new solution using (16). In 
comparing the fitness values of the old and new food sources, if the fitness value of the new 
food source is better than that of the old one, it replaces the old one; otherwise, the old solution 
is retained. Once all honey bees have completed one search iteration, if the solution cannot be 
further improved by 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 iterations, the food source is discarded, and the corresponding 
honey bee becomes a scout bee. This scout bee searches for a new food source randomly. 
Moreover, 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚  is the global optimal solution. After every iteration, if 𝐻𝐻(𝜃𝜃𝑖𝑖(𝑡𝑡 + 1)) >
𝐻𝐻(𝜃𝜃𝑖𝑖(𝑡𝑡)), 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 is updated, that is, 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜃𝜃𝑖𝑖(𝑡𝑡 + 1) [34,35,36]. 

As the classic artificial bee colony algorithm is suitable for the continuous domain 
optimization problem, it cannot be directly used for discrete variable in the CC and RB 
optimization problem. To implement the artificial bee colony algorithm in the discrete domain, 
the sigmoid function discrete method is used to map the continuous domain of the ABC 
algorithm into a binary discrete domain; the mapping formula is [37,38] 

  𝜃𝜃𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = �
1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(1) < 1

1+exp (−𝜃𝜃𝑖𝑖,𝑗𝑗(𝑡𝑡+1))

0,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒
                 (18)  

3.2 CC and RB Allocation Algorithm Based on DABC 
If the power allocation is known, the problem of the joint assignment of CC and RB can 

be expressed as 𝑃𝑃11: 
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𝑃𝑃11: max𝜒𝜒𝑛𝑛𝑘𝑘,𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘 ∑ ∑ ∑ 𝑤𝑤𝑘𝑘

1
𝑅𝑅𝑘𝑘(𝑡𝑡)�������� 𝐵𝐵𝑅𝑅𝑅𝑅𝜒𝜒𝑛𝑛

𝑘𝑘𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1 𝜂𝜂𝑛𝑛,𝑚𝑚

𝑘𝑘 log2(1 + 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 𝛾𝛾𝑛𝑛,𝑚𝑚

𝑘𝑘 )   (19) 

𝑠𝑠. 𝑡𝑡. (7):�𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘

𝐾𝐾

𝑘𝑘=1

≤ 1,∀𝑛𝑛,∀𝑚𝑚 

(8): �𝜒𝜒𝑛𝑛𝑘𝑘
𝑁𝑁

𝑛𝑛=1

≤ 𝐶𝐶𝑘𝑘 ,∀𝑘𝑘 

(20):𝜒𝜒𝑛𝑛𝑘𝑘 ∈ {0,1},𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘 ∈ {0,1},∀𝑛𝑛,∀𝑚𝑚,∀𝑘𝑘 

As 𝑃𝑃11 is an NP-hard problem, we can use an artificial intelligence algorithm to obtain 
the optimal CC and RB allocation scheme. 

When the power allocation is known, the proof that 𝑃𝑃11 is an NP-hard problem is as 
follows: 

Proof: 

First, it is proved that the joint assignment problem 𝑃𝑃11 of CC and RB can be mapped to 
a 0-1 multidimensional backpack problem. 

(1) 0-1 multidimensional knapsack problem (0-1MKP): 0-1MKP comprises m items and 
𝑛𝑛  knapsacks with different capacities 𝐶𝐶𝐶𝐶𝑖𝑖 , where 𝑖𝑖 ∈ {1,2, … ,𝑛𝑛}  and 𝑛𝑛  is the number of 
knapsacks. Each item 𝑗𝑗 has profit 𝑝𝑝𝑗𝑗 , where 𝑗𝑗 ∈ {1,2, … ,𝑚𝑚} and 𝑚𝑚 is the number of items. 
Item 𝑗𝑗 is placed in knapsack 𝑖𝑖; this will generate the weight wij. xj is the assignment index that 
indicates whether item 𝑗𝑗 is placed in the knapsack; xj = 1 indicates that item j is placed in the 
knapsack, and xj = 0 indicates that item 𝑗𝑗 is not placed in the knapsack. The goal of 0-1MKP 
is to maximize the profit generated by placing the item in the knapsack without exceeding the 
capacity of each backpack. The mathematical expression of 0-1MKP is [39]: 

max ∑ 𝑝𝑝𝑗𝑗𝑚𝑚
𝑗𝑗=1 xj                                               (21) 

𝑠𝑠. 𝑡𝑡. (21 − 1)�wijxj

𝑚𝑚

𝑗𝑗−1

≤ 𝐶𝐶𝐶𝐶𝑖𝑖,∀𝑖𝑖 

(21 − 2)xj ∈ {0,1},∀𝑗𝑗 

(2)Mapping of 𝑃𝑃11 to 0-1MKP: Assume that the power allocation is known and that each 
user can only use one RB. K users represents the K knapsacks of 0-1MKP. The CA capability 
𝐶𝐶𝑘𝑘 of each user represents the capacity of each knapsack. RB represents the items; there are 
𝑁𝑁 × 𝑀𝑀 items, where N is the number of CCs and M is the number of RBs in each CC. An RB 
(item) is assigned to (placed in) a user (knapsack) that will generate weight "1." An RB in a CC 
is assigned to (placed in) a user (knapsack) to achieve a rate (generate profit) 𝑟𝑟𝑛𝑛,𝑚𝑚

𝑘𝑘  . 𝜒𝜒𝑛𝑛𝑘𝑘𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘  

represents whether an RB is assigned to a user (an item is placed in the backpack). The 
objective function and constraints of 𝑃𝑃11 are mapped to maximize the total profits of 0-1MKP 
when the knapsack capacity is not exceeded. 

At this point, the CC and RB joint distribution problem 𝑃𝑃11  is mapped to a 
multidimensional 0-1 knapsack problem. 

Second, as the multidimensional 0-1 knapsack problem is a well-known NP-hard 
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problem, 𝑃𝑃11 is also an NP-hard problem. 

Finally, it is proved that the joint assignment problem 𝑃𝑃11 of CC and RB is an NP-hard 
problem. 

End of proof. 

The discrete optimization problem 𝑃𝑃11 is an NP-hard problem. The DABC optimization 
theory is used to solve 𝑃𝑃11 . The designed objective function of the DABC algorithm is 
expressed as 

f(t) = H�𝜃𝜃𝑖𝑖(𝑡𝑡)� =∑ ∑ ∑ 𝑤𝑤𝑘𝑘
1

𝑅𝑅𝑘𝑘(𝑡𝑡)�������� 𝐵𝐵𝑅𝑅𝑅𝑅𝜒𝜒𝑛𝑛
𝑘𝑘𝐾𝐾

𝑘𝑘=1
𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1 𝜂𝜂𝑛𝑛,𝑚𝑚

𝑘𝑘 log2(1 + 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 𝛾𝛾𝑛𝑛,𝑚𝑚

𝑘𝑘 )   (22) 

𝑠𝑠. 𝑡𝑡. (7):�𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘

𝐾𝐾

𝑘𝑘=1

≤ 1,∀𝑛𝑛,∀𝑚𝑚 

(8): �𝜒𝜒𝑛𝑛𝑘𝑘
𝑁𝑁

𝑛𝑛=1

≤ 𝐶𝐶𝑘𝑘 ,∀𝑘𝑘 

(20):𝜒𝜒𝑛𝑛𝑘𝑘 ∈ {0,1},𝜂𝜂𝑛𝑛,𝑚𝑚
𝑘𝑘 ∈ {0,1},∀𝑛𝑛,∀𝑚𝑚,∀𝑘𝑘 

3.2.1 Definition of Nectar Position 
The position of the source of honey is an M-dimensional vector as follows: 

𝜃𝜃𝑖𝑖 = �𝜃𝜃𝑖𝑖,1,𝜃𝜃𝑖𝑖,2, … ,𝜃𝜃𝑖𝑖,𝑀𝑀�, 𝑖𝑖 = 1,2, … ,𝑁𝑁                           (23) 
where 𝑁𝑁 is the number of CCs and 𝑀𝑀 is the number of RBs in one CC. Then, the allocation 
scheme matrix of the positions of the honey source is 𝐹𝐹𝑎𝑎, and it is expressed as 

𝐹𝐹𝑎𝑎 = �
𝜃𝜃1,1 ⋯ 𝜃𝜃1,𝑀𝑀
⋮ ⋱ ⋮

𝜃𝜃𝑁𝑁,1 ⋯ 𝜃𝜃𝑁𝑁,𝑀𝑀

�                                             (24) 

where the allocation scheme matrix element 𝜃𝜃𝑛𝑛,𝑚𝑚 is a binary variable. 𝜃𝜃𝑛𝑛,𝑚𝑚 = 1 indicates that 
the m-th RB of the n-th CC is allocated to the user, and 𝜃𝜃𝑛𝑛,𝑚𝑚 = 0 implies that the m-th RB of 
the n-th CC is not occupied. 

3.2.2 Dealing with Constraint Violations 

𝑓𝑓𝑐𝑐𝑗𝑗(𝜃𝜃𝑖𝑖) is defined according to whether individual iθ  violates the j-th constraint; the 
expression is as follows: 

𝑓𝑓𝑐𝑐𝑗𝑗(𝜃𝜃𝑖𝑖) = �
1, θi violates the constraint condiction j
0, θi satisfies the constraint condiction j                        (25)   

𝐹𝐹𝐹𝐹(𝜃𝜃𝑖𝑖) represents the degree to which individual iθ  violates all constraints; the expression is 
as follows:  
                                                      𝐹𝐹𝐹𝐹(𝜃𝜃𝑖𝑖) = ∑ 𝑓𝑓𝑐𝑐𝑗𝑗(𝜃𝜃𝑖𝑖) 𝑝𝑝𝑝𝑝⁄𝑝𝑝𝑝𝑝

𝑗𝑗                                       (26) 
where 𝑝𝑝𝑝𝑝 is the number of constraints. 

According to the idea in [40], the maintenance of the ratio of non-feasible solutions with 
probability pt is used in the comparison strategy of the individual, which is as follows. 

When 𝜃𝜃1  and 𝜃𝜃2  are feasible solutions, by comparing their objective functions, the 
individual with the larger value is dominant. When 𝜃𝜃1 and 𝜃𝜃2 are both unfeasible solutions, by 
comparing their degrees of violations of constraints, the individual with smaller 𝐹𝐹𝐹𝐹(𝜃𝜃𝑖𝑖) is 
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dominant. When 𝜃𝜃1 is a feasible solution and 𝜃𝜃2 is not, if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() < 𝑝𝑝𝑡𝑡, by comparing their 
objective functions, the larger value is dominant; otherwise, 𝜃𝜃1 is dominant. 

3.2.3 DABC-CCRBA Algorithm 
According to the above definition and the improved method, the discrete artificial bee 

colony algorithm optimization problem 𝑃𝑃11 optimizes the CC and RB allocation algorithm 
(DABC-CCRBA). The DABC-CCRBA algorithm involves the following steps: 
(1) Parameter settings: number of honey sources SN, number of employed bees = number of 
onlooker bees = SN, number of iterations 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , maximum number of iterations 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚,  number 
of CCs 𝑁𝑁 = 𝑆𝑆𝑆𝑆, number of RBs on each CC 𝑀𝑀 = 𝑑𝑑, probability 𝑝𝑝𝑡𝑡 of using the objective 
function value for comparison, and initial number of iterations 𝑡𝑡 = 0. 
(2) Initialize the position of nectar sources and allocation scheme matrix 𝐹𝐹𝑎𝑎, calculate the 
fitness value of all nectar sources, and record the fitness value of the initial position as the 
initial optimal solution 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚. 
(3) Employed bees’ stage: The employed bees search for new solutions from the neighborhood 
according to (16) and (18). If the new nectar source is better than the given source, update the 
nectar source. Otherwise, discard the update. 
(4) Onlooker bees’ stage: According to the waggling dance of the employed bees, the onlooker 
bees have information concerning the fitness of the nectar sources. According to the 
probability obtained by (17), use the roulette method to select the food source. Then, the new 
food source is generated according to (16) and (18). At the same time, calculate the fitness of 
the new food source and compare it with the old one to determine whether the nectar source 
needs to be updated. Then, record the number of times the nectar source is not updated. 
(5) Scout bees’ stage: According to the recorded number of nectar sources that are not updated, 
determine whether sources are not updated more than 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 times. If they are, the onlooker 
bees corresponding to the honey source become scout bees, and they randomly search for new 
nectar sources using (16) and (18). 
(6) Compare the optimal solution of the given iteration with the global optimal solution of the 
last iteration, and choose the better one as the global optimal solution of the given iteration. 
(7) Update iteration variable t = t + 1, and judge whether it is greater than 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚. If 𝑡𝑡 > 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 
the algorithm ends, and the resource allocation scheme 𝐹𝐹𝑎𝑎  corresponding to the optimal 
solution is recorded. Otherwise, return to Step (3). 

The computational complexity of the DABC-CCRBA algorithm is 𝑂𝑂(𝑁𝑁𝑁𝑁), compared 
with the computational complexities 𝑂𝑂(𝑁𝑁𝑁𝑁𝐾𝐾1) of the MSUL algorithm (minimizing system 
utility loss)[18] and 𝑂𝑂(𝑁𝑁𝐾𝐾1𝐾𝐾∑ 𝑅𝑅𝐵𝐵𝑖𝑖 ∑ 𝐶𝐶𝑘𝑘𝑘𝑘∈𝑘𝑘1𝑖𝑖∈𝑁𝑁 )

 
of the MSU algorithm (maximum system 

utility) (𝐾𝐾1 is the number of narrow-band users[19]). The computational complexity of the 
proposed DABC-CCRBA algorithm is the lowest. 

3.3 SPA Power Allocation Algorithm 
When the CC and RB allocations are known, power allocation can be determined by 

problem 𝑃𝑃12 

𝑃𝑃12: max𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 ∑ ∑ ∑ 𝑤𝑤𝑘𝑘

1
𝑅𝑅𝑘𝑘(𝑡𝑡)�������� 𝐵𝐵𝑅𝑅𝑅𝑅

𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1 log2(1 + 𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 𝛾𝛾𝑛𝑛,𝑚𝑚
𝑘𝑘 )𝐾𝐾

𝑘𝑘=1
𝑘𝑘∈𝑘𝑘(𝑛𝑛,𝑚𝑚)

     (27)
 

s.t. ∑ ∑ ∑ 𝜒𝜒𝑛𝑛𝑘𝑘𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1 𝜂𝜂𝑛𝑛,𝑚𝑚

𝑘𝑘 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 ≤ 𝑃𝑃𝑇𝑇 

𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 ≥ 0,∀𝑛𝑛,∀𝑚𝑚,∀𝑘𝑘 
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where 𝑘𝑘(𝑛𝑛,𝑚𝑚) denotes the user to which the m-th RB of the n-th CC is allocated. The 
objective function of the power optimization problem is expressed in (27). It shows that the 
objective function is a concave function and that the constraints are linear. Therefore, the 
power optimization problem P12 involves concave programming. The optimal solution is 
obtained using the Lagrangian dual method [41]. The Lagrangian function is defined as 
follows: 
𝐿𝐿��𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 �,𝜆𝜆� = ∑ ∑ ∑ 𝑤𝑤𝑘𝑘
1

𝑅𝑅𝑘𝑘(𝑡𝑡)�������� 𝐵𝐵𝑅𝑅𝑅𝑅
𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1 log2�1 + 𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 𝛾𝛾𝑛𝑛,𝑚𝑚
𝑘𝑘 � + 𝜆𝜆(𝑃𝑃𝑇𝑇 −𝐾𝐾

𝑘𝑘=1
𝑘𝑘∈𝑘𝑘(𝑛𝑛,𝑚𝑚)

 ∑ ∑ ∑ 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘𝑀𝑀

𝑚𝑚=1
𝑁𝑁
𝑛𝑛=1

𝐾𝐾
𝑘𝑘=1

𝑘𝑘∈𝑘𝑘(𝑛𝑛,𝑚𝑚)
)                                                                                        (28) 

where 𝜆𝜆 is the Lagrangian dual variable. The Lagrangian dual function of problem 𝑃𝑃12 is 
defined as )(λg , and it is expressed as 

𝑔𝑔(𝜆𝜆) = max𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 𝐿𝐿��𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 �,𝜆𝜆�                                   (29)   
Then, the dual programming of 𝑃𝑃12 is as follows: 

min𝜆𝜆>0 𝑔𝑔(𝜆𝜆) = min𝜆𝜆>0 ∑ 𝑔𝑔𝑛𝑛(𝜆𝜆) + 𝜆𝜆𝑃𝑃𝑇𝑇𝑛𝑛,𝑚𝑚                         (30) 
where 

𝑔𝑔𝑛𝑛(𝜆𝜆) = max𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 𝑤𝑤𝑘𝑘

1
𝑅𝑅𝑘𝑘(𝑡𝑡)�������� 𝐵𝐵𝑅𝑅𝑅𝑅 log2(1 + 𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 𝛾𝛾𝑛𝑛,𝑚𝑚
𝑘𝑘 )− 𝜆𝜆𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘         (31) 
The minimum value of 𝑔𝑔𝑛𝑛(𝜆𝜆) is obtained by finding the partial derivative of 𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 , namely, 
𝜕𝜕𝑔𝑔𝑛𝑛(𝜆𝜆)
𝜕𝜕𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 = 0 ⇒ 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 = �𝑤𝑤𝑘𝑘𝐵𝐵𝑅𝑅𝑅𝑅

𝜆𝜆𝑅𝑅𝑘𝑘(𝑡𝑡)�������� −
1

𝛾𝛾𝑛𝑛,𝑚𝑚
𝑘𝑘 �

+
,𝑘𝑘 ∈ 𝑘𝑘(𝑛𝑛,𝑚𝑚)                    (32) 

 where [𝑥𝑥]+ = max (0,1). The subgradient searching is used to obtain the optimal power 
allocation scheme; all 𝜆𝜆 are defined as 𝜆𝜆′ Then, 

𝑔𝑔(𝜆𝜆′) ≥ 𝑔𝑔(𝜆𝜆) + 𝑑𝑑𝑇𝑇(𝜆𝜆′ − 𝜆𝜆)                                    (33) 
 where 𝑑𝑑 is the subgradient of 𝑔𝑔(𝜆𝜆), and the subgradient of the Lagrangian dual function 𝑔𝑔(𝜆𝜆) 
of problem 𝑃𝑃12 is defined as 

𝑑𝑑 = 𝑃𝑃𝑇𝑇 − ∑ 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘∗

𝑛𝑛,𝑚𝑚 ,𝑘𝑘 ∈ 𝑘𝑘(𝑛𝑛,𝑚𝑚)                              (34) 
Proof: 

∵ 𝑔𝑔(𝜆𝜆′) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑤𝑤𝑘𝑘
1

𝑅𝑅𝑘𝑘(𝑡𝑡)������� 𝐵𝐵𝑅𝑅𝑅𝑅 log2�1 + 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 𝛾𝛾𝑛𝑛,𝑚𝑚

𝑘𝑘 �+ 𝜆𝜆′𝑇𝑇 �𝑃𝑃𝑇𝑇 −�𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘

𝑛𝑛,𝑚𝑚

�
𝑛𝑛,𝑚𝑚

 

∴ 𝑔𝑔(𝜆𝜆′) ≥ ∑ 𝑤𝑤𝑘𝑘
1

𝑅𝑅𝑘𝑘(𝑡𝑡)�������� 𝐵𝐵𝑅𝑅𝑅𝑅 log2�1 + 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 𝛾𝛾𝑛𝑛,𝑚𝑚

𝑘𝑘∗ �+ 𝜆𝜆′𝑇𝑇�𝑃𝑃𝑇𝑇 − ∑ 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘∗

𝑛𝑛,𝑚𝑚 �𝑛𝑛,𝑚𝑚 =

∑ 𝑤𝑤𝑘𝑘
1

𝑅𝑅𝑘𝑘(𝑡𝑡)�������� 𝐵𝐵𝑅𝑅𝑅𝑅 log2�1 + 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 𝛾𝛾𝑛𝑛,𝑚𝑚

𝑘𝑘∗ �+ 𝜆𝜆𝑇𝑇�𝑃𝑃𝑇𝑇 − ∑ 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘∗

𝑛𝑛,𝑚𝑚 � −𝑛𝑛,𝑚𝑚

𝜆𝜆𝑇𝑇�𝑃𝑃𝑇𝑇 − ∑ 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘∗

𝑛𝑛,𝑚𝑚 � +𝜆𝜆′𝑇𝑇�𝑃𝑃𝑇𝑇 − ∑ 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘∗

𝑛𝑛,𝑚𝑚 � = 𝑔𝑔(𝜆𝜆) + �𝑃𝑃𝑇𝑇 − ∑ 𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘∗

𝑛𝑛,𝑚𝑚 �𝑇𝑇(𝜆𝜆′ − 𝜆𝜆)  (35) 
where 𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘∗  is the optimal power variable. 
By comparing (35) and (33), we can obtain 𝑔𝑔(𝜆𝜆′) ≥ 𝑔𝑔(𝜆𝜆) + 𝑑𝑑𝑇𝑇(𝜆𝜆′ − 𝜆𝜆). 
So the expression for the subgradient is obtained as given in (34). 

End of proof 
The update method for λ  in the optimal power expression (31) is the subgradient method 

in [41]. The update expression for λ  is given by 
𝜆𝜆(𝑖𝑖+1) = [𝜆𝜆(𝑖𝑖) + 1

𝑖𝑖
(𝑃𝑃𝑇𝑇 − ∑ 𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘
𝑛𝑛,𝑚𝑚 )]+,𝑘𝑘 ∈ 𝑘𝑘(𝑛𝑛,𝑚𝑚)               (36) 

where 1
𝑖𝑖  

is the update step scalar sequence of 𝜆𝜆 in the subgradient direction, and 𝑖𝑖  is the 
number of iterations. 

In this section, the power allocation algorithm for power allocation problem 𝑃𝑃12  is 
defined as the subgradient power allocation algorithm (SPA). SPA involves the following 
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steps: 
(1) Input: CC and RB allocation scheme 𝐹𝐹𝑎𝑎; weight 𝑤𝑤𝑘𝑘 of each user QoE. 
(2) Initialization: 𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 = 𝑃𝑃𝑇𝑇 𝑀𝑀 × 𝑁𝑁⁄ , 𝛾𝛾𝑛𝑛,𝑚𝑚
𝑘𝑘 = 𝛾𝛾𝑛𝑛,𝑚𝑚

𝑘𝑘∈𝑘𝑘(𝑛𝑛,𝑚𝑚) , 𝑤𝑤𝑘𝑘 = 𝑤𝑤𝑘𝑘∈𝑘𝑘(𝑛𝑛,𝑚𝑚) , ∀𝑛𝑛,∀𝑚𝑚, 𝜆𝜆(0) ≥ 0, 
number of iterations 𝑖𝑖 = 0. 
(3) While �𝜆𝜆(𝑖𝑖) − 𝜆𝜆(𝑖𝑖−1)� < 𝜀𝜀, do 
           calculate the power allocation of each RB according to (32), 

       update 𝜆𝜆 according to (36). 
End while; 

(4) Power allocation {𝑝𝑝𝑛𝑛,𝑚𝑚
𝑘𝑘 ,∀𝑛𝑛,∀𝑚𝑚} on each RB is the output. 

 
3.4 CA Joint Resource Allocation Algorithm Based on Average User QoE 

Weight 
In this paper, the optimization model of CA resource allocation is problem P1. In the 

context of considering fairness among users, the system total rate is maximized while 
considering user QoE. P1 is divided into two subproblems P11 and P12 that are iterated 
repeatedly until the P1 value of the optimization model ceases to increase. We define the CA 
resource allocation algorithm as a joint resource allocation algorithm based on the weights of 
the user’s average QoE (JRA-WQOE), and its computational complexity is 𝑂𝑂(𝑁𝑁𝑁𝑁 +
𝑁𝑁𝑁𝑁𝑁𝑁 𝜀𝜀2⁄ ). 𝜀𝜀 is the iteration termination condition. The JRA-WQOE algorithm has lower 
computational complexity than JCRPA and CARA. The computational complexity of JCRPA 
is 𝑂𝑂(𝑁𝑁𝑁𝑁𝐾𝐾1 + 𝑁𝑁𝑁𝑁𝑁𝑁 𝜀𝜀2⁄ ) [18] and that of CARA is 𝑂𝑂(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜒𝜒𝑁𝑁2𝐾𝐾3𝑀𝑀) [19]. 
The steps in the JRA-WQOE algorithm are as follows: 
(1)  Initialize the required parameters, and input the average QoE weight {𝑤𝑤𝑘𝑘,∀𝑘𝑘} for each 
user; each user can support the maximum number of CCs in set{𝐶𝐶𝑘𝑘,∀𝑘𝑘}. 
(2)  𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 = 𝑃𝑃𝑇𝑇 𝑀𝑀 × 𝑁𝑁⁄ ,∀𝑛𝑛,∀𝑚𝑚. 
(3)  Call DABC-CCRBA, and dynamically gain the CC and RB allocation scheme. 
(4)  While the P1 value does not increase, do 

      𝑡𝑡 = 𝑡𝑡 + 1; 
      call the SPA power allocation algorithm to allocate power to each RB; 
      call the DABC-CCRBA algorithm to allocate frequency resources CC and RB for the 

user. 
End while; 

(5) Output: CC and RB allocation scheme 𝐹𝐹𝑎𝑎 , and power allocation on each RB 
{𝑝𝑝𝑛𝑛,𝑚𝑚

𝑘𝑘 ,∀𝑛𝑛,∀𝑚𝑚,∀𝑘𝑘}. 

4. Simulation and Performance Analysis 
To further analyze the performance of the proposed JRA-WQOE algorithm, its average 
convergence, throughput, fairness, and average user QoE were analyzed through numerical 
simulations. In the LTE-A network, the downlink performance of CA technology was 
simulated. The cell radius was 1 km. The base station eNB was at the center of the cell, and 
users (including narrow-band users and broadband users) were randomly distributed inside the 
cell. The main parameters of the simulation are shown in Table 1. 
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Table 1. Main parameters of simulation test 

   Parameters of the simulation Parameter settings 
Number of CCs; bandwidth of each CC 5 CCs; bandwidth of each CC was 20 MHz 
Each CCs contains the number of RBs 100 

Maximum total power PT 45 dBm 
Path loss PL(d) = 137.74 + 5.22log(d) 

Thermal noise power spectral density -174 dBm/Hz 
Standard deviation of shadowing loss 7 dB 

Small-scale fading distribution Rayleigh fading 

 

We have conducted 50 simulation experiments on the proposed JRA-WQOE algorithm, 
and these algorithms can all fast converge in each experiment. Fig. 1 shows the convergence 
of the JRA-WQOE algorithm when the number of users was 20. It can be seen that it can 
converge speedily. The JRA-WQOE algorithm only use six iterations to achieve convergence. 

 

Fig. 1.  Convergence of JRA-WQOE algorithm 

The simulation experiments were designed to compare the performance of the following 
four resource allocation algorithms: proposed JRA-WQOE. DABC-CCRBA combined with 
equal power allocation algorithm (DABC-CCRBA + EPA), where the CC and RB allocation 
algorithm was based on DABC-CCRBA from Section 3.2. Joint CC, RB, and power resource 
allocation algorithm (JCRPA)[18]. And cross-CC-PF algorithm [2] combined with the equal 
power allocation algorithm (Cross-CC-PF + EPA), where the cross-CC-PF spectral resource 
allocation algorithm has been shown to be the optimal static carrier allocation algorithm. 

The average throughputs of the four algorithms are shown in Fig. 2. The number of 
narrow-band users was equal to those of broadband users; numbers 1–10 on the abscissa 
represent narrow-band users and 11–20 represent broadband users. Compared with the other 
three algorithms, JRA-WQOE significantly improved average user throughput, especially the 
average throughput of broadband users. This is because the artificial intelligence algorithm 
was used to allocate CC and RB resources in the JRA-WQOE algorithm by considering user 
QoE. The DABC-CCRBA + EPA algorithm was less efficient than JRA-WQOE in improving 
the average throughput of users because the equal power allocation strategy was adopted in the 
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power allocation process. The average throughputs of JRA-WQOE and DABC-CCRBA+ 
EPA were higher than those of the JCRPA algorithm and cross-CC-PF + EPA algorithm. The 
dynamic resources allocation of CC and RB and the adaptive power allocation method were 
adopted in the JCRPA algorithm. It achieved higher average throughput than the cross-CC-PF 
+EPA algorithm, as this is a static resource allocation algorithm. 

       

Fig. 2.  Comparison of average user throughput 

The fairness to users was measured using Jain's fairness index, which is expressed as 

𝐹𝐹 = (∑𝑅𝑅(𝑘𝑘)������)2 𝐾𝐾 ∑(𝑅𝑅(𝑘𝑘)������)2�                       (37) 

where 𝑅𝑅(𝑘𝑘)������ represents the average transmission rate of user 𝑘𝑘, F value is [1/K, 1], and K is the 
number of users. When 𝐹𝐹 = 1, it means that all users had the same average transmission rate. 
The greater the 𝐹𝐹 value, the better is the fairness. The user fairness comparison is show in Fig. 
3. 

 

Fig. 3 Comparison of user fairness 
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Fig. 3 shows that the JRA-WQOE algorithm had the best fairness. With an increase in 
the number of users, fairness decreased slightly primarily owing to user QoE. The fairness of 
JCRPA was better than that of DABC-CCRBA + EPA. The cross-CC-PF + EPA is a static 
resource allocation algorithm, and therefore, its fairness was the worst. 

The average user QoE is expressed by (11). In the resource allocation model, the average 
user QoE was defined by the weight coefficient 𝑤𝑤𝑘𝑘(𝑡𝑡). We redefined the average user QoE as 
𝑄𝑄𝑄𝑄𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, and it is expressed as 

𝑄𝑄𝑄𝑄𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑤𝑤𝑘𝑘(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘(𝑛𝑛, 𝑡𝑡) ∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘(𝑛𝑛, 𝑡𝑡)𝐾𝐾
𝑘𝑘=1⁄       (38) 

Fig. 4 shows simulation results of average user QoE that were compared in a 
communication network containing different numbers of users. 

 

Fig. 4. Comparison of average user QoE based on different numbers of users 

Fig. 4 shows that the JRA-WQOE algorithm improved the average user QoE. With an 
increase in the number of users, the system had higher 𝑄𝑄𝑄𝑄𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and the variation was 
stable. The DABC-CCRBA + EPA algorithm also had a satisfying average user QoE, and the 
change in the trend was relatively gentle. This is mainly because the above two algorithms 
considered user QoE. The power distribution of the DABC-CCRBA + EPA algorithm was the 
average allocation method, and the user 𝑄𝑄𝑄𝑄𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  value of DABC + EPA was slightly 
lower on the whole than that of the JRA-WQOE algorithm. For the JCRPA algorithm and 
cross- PF + EPA, the user 𝑄𝑄𝑄𝑄𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  values were lower than those of the JRA-WQOE 
algorithm and DABC-CCRBA + EPA. The average user QoE of cross-CC-PF + EPA was the 
worst, mainly because it is static frequency resource allocation combined with equal power 
allocation. 

Fig. 5 shows that the average user QoE changed with SNR values when the number of 
users was 20. 
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Fig. 5. Comparison of average user QoE for different SNRs 

Fig. 5 shows that the average user QoE values increased with SNR. When SNR ≤ 10, the 
average QoE of each algorithm was not satisfied because the system resources could not meet 
all user needs. The average user QoE of the JRA-WQOE algorithm increased rapidly with 
SNR, and it was the maximum among the four algorithms. The average user QoE of 
DABC-CCRBA+EPA was the second highest, and those of JCRPA and cross-CC-PF + EPA 
algorithms were generally low. This is because they are designed to ignore user QoE, and 
therefore, they can only satisfy a part of it. Figs. 4 and 5 show that the proposed JRA-WQOE 
algorithm can improve the resource utilization rate from the perspective of user experience. 

5. Conclusion 
In this paper, the resource allocation problem in the context of newly added CA technology 
was studied in an application scenario in the LTE-Advanced standard. To further improve user 
satisfaction, communications operators have shifted focus from objective network QoS to 
subjective user QoE. Therefore, the QoE quantification MOS models of three application 
businesses were studied and analyzed. On this basis, the mathematical model 𝑃𝑃1  was 
established, which is a joint resource allocation problem of CC, RB, and power. In model 𝑃𝑃1, 
the average MOS value of the user is employed as the weight of the resource allocation 
problem to maximize the total rate of all users by satisfying the carrier aggregation capabilities 
of different users and considering user fairness. 

Because the optimal model 𝑃𝑃1 is a nonlinear mixed optimization problem, it is divided 
into two subproblems: the CC and RB allocation problem 𝑃𝑃11  and the power allocation 
problem 𝑃𝑃12. 𝑃𝑃11 is the allocation problem of CC and RB when the power allocation is known, 
and it is NP-hard. It is optimized by using an improved DABC algorithm called the 
DABC-CCRBA algorithm. This algorithm has the advantages of low computational 
complexity and fast convergence compared with existing CC and RB allocation algorithms. 
𝑃𝑃122 is a concave programming problem, and the SPA power allocation algorithm is proposed 
to solve it. In the SPA algorithm, the Lagrangian dual method is used to solve the problem of 
power allocation, where the Lagrangian dual variable is updated by the subgradient method. 

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

av
er

ag
e 

Q
oE

 

SNR /dB 

JRA-WQOE
DABC-CCRBA+EPA
JCRPA
Cross-CC-PF+EPA



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018                                   2249 

By using the above, the resource allocation algorithm JRA-WQOE was proposed. It is a 
cross-layer resource allocation algorithm that combines CC, RB, and power allocation and 
considers user QoE. In JRA-WQOE, 𝑃𝑃1 is divided into two sub-problems 𝑃𝑃11 and 𝑃𝑃12. These 
subproblems are iterated until the algorithm reaches the termination condition. Simulation 
results showed that the proposed JRA-WQOE has the advantages of fast convergence and low 
computational complexity. Compared with the DABC-CCRBA+EPA algorithm, JCRPA 
algorithm, and Cross-CC-PF+EPA algorithm, the proposed JRA-WQOE enhanced the 
average user throughput and fairness. Under the condition of different numbers of users and 
SNRs, the JRA-WQOE algorithm also obtained the highest average user QoE value. Therefore, 
it further improves the average user throughput, fairness, and user satisfaction. 
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	,𝑀𝑂𝑆-𝑤𝑒𝑏.=−,𝑘-1.,ln-(𝑑(,𝑅,𝑆..)).+,𝑘-2.                                   （4）
	This study addresses the joint resource allocation problem of CC, RB, and transmission power. It is assumed that a base station eNB (eNodeB) provides communication services for K users over N CCs in an LTE-A system. Different users can support differe...
	When the m-th RB of the n-th CC is allocated to user 𝑘, user  𝑘 can acquire rate ,𝑟-𝑛,𝑚-𝑘.(𝑡) in time slot 𝑡 . The rate is expressed as
	,𝑟-𝑛,𝑚-𝑘.,𝑡.=,𝐵-𝑅𝐵.,,log-2.-(1+,𝑝-𝑛,𝑚-𝑘.,𝑡.,𝛾-𝑛,𝑚-𝑘.,𝑡.).                      (5)
	where ,𝑝-𝑛,𝑚-𝑘.,𝑡. is the transmission power when the m-th RB of the n-th CC in time slot 𝑡 is allocated to user 𝑘, ,𝐵-𝑅𝐵. is the bandwidth of an RB, and ,𝛾-𝑛,𝑚-𝑘.,𝑡. is the channel state information when the m-th RB of the n-th CC in t...
	,𝛾-𝑛,𝑚-𝑘.,𝑡.=,,,,ℎ-𝑛,𝑚-𝑘.,𝑡..-2.-,,𝑁-0.𝐵-𝑅𝐵..                                 (6)
	where ,ℎ-𝑛,𝑚-𝑘.,𝑡. denotes the channel gain, ,𝑁-0. is the unilateral power spectral density of additive white Gaussian noise.
	,𝜂-𝑛,𝑚-𝑘.,𝑡. denotes the assignment identifier of the RB. When the m-th RB of the n-th CC is allocated to user 𝑘, ,𝜂-𝑛,𝑚-𝑘.,𝑡.=1; otherwise, ,𝜂-𝑛,𝑚-𝑘.,𝑡.=0. ,𝜂-𝑛,𝑚-𝑘.,𝑡. needs to satisfy the constraint in (7):
	,𝑘=1-𝐾-,𝜂-𝑛,𝑚-𝑘.,𝑡..≤1,∀𝑛,∀𝑚                                   (7)
	,𝜒-𝑛-𝑘.,𝑡. represents the assignment identifier of the CC. When the n-th CC is allocated to user 𝑘, ,𝜒-𝑛-𝑘.,𝑡.=1; otherwise, ,𝜒-𝑛-𝑘.,𝑡.=0. ,𝜒-𝑛-𝑘.,𝑡. needs to satisfy the constraint in (8):
	,𝑛=1-𝑁-,𝜒-𝑛-𝑘.,𝑡..≤,𝐶-𝑘.,∀𝑘                                        (8)
	,𝑃-𝑇. denotes the total transmission power. The base station allocates the total transmission power to each RB. Therefore, the actual power consumption of the system is the sum of powers on all RBs. Power ,𝑝-𝑛,𝑚-𝑘.,𝑡. must satisfy the followin...
	,𝑛=1-𝑁-,𝑚=1-𝑀-,𝑘=1-𝐾-,𝜒-𝑛-𝑘.,𝑡....,𝜂-𝑛,𝑚-𝑘.,𝑡.,𝑝-𝑛,𝑚-𝑘.,𝑡.≤,𝑃-𝑇.              (9)
	Let ,𝑅-𝑘.,𝑡. denote the total rate obtained by user 𝑘 in time slot 𝑡, as expressed in (10):
	,𝑅-𝑘.,𝑡.=,𝑛=1-𝑁-,𝑚=1-𝑀-,𝜒-𝑛-𝑘.,𝑡.,𝜂-𝑛,𝑚-𝑘.,𝑡...,𝑟-𝑛,𝑚-𝑘.,𝑡.                      (10)
	Considering user k’s average QoE as the weight factor, it can be defined as in (11):
	,𝑤-𝑘.,𝑡.=,,𝑚𝑜𝑠-𝑘.(𝑛,𝑡)-,𝑘=1-𝐾-,𝑚𝑜𝑠-𝑘.(𝑛,𝑡)..                            (11)
	where ,𝑚𝑜𝑠-𝑘.(𝑛,𝑡) is the instantaneous QoE score for user 𝑘 in time slot  𝑡, and it is calculated using the MOS quantification model described in Section 2.1, where the user rate is substituted into the instantaneous rate.
	In considering the user fairness condition, the optimal mathematical model that considers the user’s QoE and maximizes the system’s total rate is as follows (time slot variable t is omitted for simplicity):
	,𝑃-1.:,,max-,𝑝-𝑛,𝑚-𝑘.,,𝜒-𝑛-𝑘.,,𝜂-𝑛,𝑚-𝑘..-,𝑛=1-𝑁-,𝑚=1-𝑀-,𝑘=1-𝐾-,,𝑤-𝑘.,1-,,𝑅-𝑘.(𝑡)..,𝐵-𝑅𝐵.𝜒-𝑛-𝑘....,𝜂-𝑛,𝑚-𝑘.,,log-2.-(1+,𝑝-𝑛,𝑚-𝑘.,𝛾-𝑛,𝑚-𝑘.)..  (12)
	𝑠.𝑡. ,7.:,𝑘=1-𝐾-,𝜂-𝑛,𝑚-𝑘..≤1,∀𝑛,∀𝑚
	,8.:,𝑛=1-𝑁-,𝜒-𝑛-𝑘..≤,𝐶-𝑘.,∀𝑘
	,9.:,𝑛=1-𝑁-,𝑚=1-𝑀-,𝑘=1-𝐾-,𝜒-𝑛-𝑘....,𝜂-𝑛,𝑚-𝑘.,𝑝-𝑛,𝑚-𝑘.≤,𝑃-𝑇.
	,,13.:𝜒-𝑛-𝑘.∈,0,1.,,𝜂-𝑛,𝑚-𝑘.∈,0,1., ,𝑝-𝑛,𝑚-𝑘.≥0,∀𝑛,∀𝑚,∀𝑘
	where model P1 is defined as a total rate maximization problem based on the weighted average QoE,  ,,𝑅-𝑘.(𝑡). is the average rate of user k from time 0 to t. The time-window smoothing technique is employed, as in (14):
	,,𝑅-𝑘.,𝑡..=,1−,1-,𝑡-𝐶...,,𝑅-𝑘.,𝑡−1..+,1-,𝑡-𝐶..,𝑅-𝑘.(𝑡)                  (14)
	where ,𝑡-𝐶. represents the length of the smoothing time window. Condition (7) indicates that an RB can only be allocated to one user in the same time slot. Condition (8) implies that the number of CCs allocated to users must satisfy the constraints ...
	The physical meaning of the optimization model P1 is the maximization of the total user rate, where the average user QoE is taken as the weight factor for considering user fairness and the satisfaction of CA capabilities under different users’ conditi...
	P1 is a nonlinear mixed optimization problem that is divided into two subproblems: the CC and RB allocation problem and the power allocation problem. The former is addressed when power allocation has been determined. Once the CC and RB allocations are...
	The ABC algorithm is inspired by the food foraging behavior of honey bees. Honey bees are divided into three groups: employed bees, onlooker bees, and scout bees. These bees complete different tasks at each stage according to the division of labor. Th...
	Following initialization, all honey bees search in circles until the iterator reaches the maximum number of iterations or satisfies the given minimal error [32,33].
	At the beginning of the search stage, every employed bee updates the position of the food source by
	where ,𝜙-𝑖,𝑗. is the weight of the length of the random search step in the range [-1,1], 𝑘∈{1,2,…,𝑆𝑁}, 𝑗∈{1,2,…,𝑑}, and  𝑘≠𝑖. In comparing the fitness of the old food source with that of the new one, if the latter is better than the former, ...
	As the classic artificial bee colony algorithm is suitable for the continuous domain optimization problem, it cannot be directly used for discrete variable in the CC and RB optimization problem. To implement the artificial bee colony algorithm in the ...
	𝑠.𝑡. ,7.:,𝑘=1-𝐾-,𝜂-𝑛,𝑚-𝑘..≤1,∀𝑛,∀𝑚
	,8.:,𝑛=1-𝑁-,𝜒-𝑛-𝑘..≤,𝐶-𝑘.,∀𝑘
	,,20.:𝜒-𝑛-𝑘.∈,0,1.,,𝜂-𝑛,𝑚-𝑘.∈,0,1., ∀𝑛,∀𝑚,∀𝑘
	As ,𝑃-11. is an NP-hard problem, we can use an artificial intelligence algorithm to obtain the optimal CC and RB allocation scheme.
	When the power allocation is known, the proof that ,𝑃-11. is an NP-hard problem is as follows:
	Proof:
	First, it is proved that the joint assignment problem ,𝑃-11. of CC and RB can be mapped to a 0-1 multidimensional backpack problem.
	(1) 0-1 multidimensional knapsack problem (0-1MKP): 0-1MKP comprises m items and 𝑛 knapsacks with different capacities ,𝐶𝑎-𝑖., where 𝑖∈{1,2,…,𝑛} and 𝑛 is the number of knapsacks. Each item 𝑗 has profit ,𝑝-𝑗., where 𝑗∈{1,2,…,𝑚} and 𝑚 is th...
	,,max-.-,𝑗=1-𝑚-,𝑝-𝑗...,x-j.                                               (21)
	𝑠.𝑡.,21−1.,𝑗−1-𝑚-,,w-ij.x-j..≤,𝐶𝑎-𝑖.,∀𝑖
	,(21−2)x-j.∈,0,1.,∀𝑗
	(2) Mapping of ,𝑃-11. to 0-1MKP: Assume that the power allocation is known and that each user can only use one RB. K users represents the K knapsacks of 0-1MKP. The CA capability ,𝐶-𝑘. of each user represents the capacity of each knapsack. RB repre...
	At this point, the CC and RB joint distribution problem ,𝑃-11. is mapped to a multidimensional 0-1 knapsack problem.
	Second, as the multidimensional 0-1 knapsack problem is a well-known NP-hard problem, ,𝑃-11. is also an NP-hard problem.
	Finally, it is proved that the joint assignment problem ,𝑃-11. of CC and RB is an NP-hard problem.
	End of proof.
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	To further analyze the performance of the proposed JRA-WQOE algorithm, its average convergence, throughput, fairness, and average user QoE were analyzed through numerical simulations. In the LTE-A network, the downlink performance of CA technology was...
	Table 1. Main parameters of simulation test
	We have conducted 50 simulation experiments on the proposed JRA-WQOE algorithm, and these algorithms can all fast converge in each experiment. Fig. 1 shows the convergence of the JRA-WQOE algorithm when the number of users was 20. It can be seen that ...
	Fig. 1.  Convergence of JRA-WQOE algorithm
	The simulation experiments were designed to compare the performance of the following four resource allocation algorithms: proposed JRA-WQOE. DABC-CCRBA combined with equal power allocation algorithm (DABC-CCRBA + EPA), where the CC and RB allocation a...
	The average throughputs of the four algorithms are shown in Fig. 2. The number of narrow-band users was equal to those of broadband users; numbers 1–10 on the abscissa represent narrow-band users and 11–20 represent broadband users. Compared with the ...
	Fig. 2.  Comparison of average user throughput
	The fairness to users was measured using Jain's fairness index, which is expressed as
	𝐹=,,(,,𝑅,𝑘...)-2.-𝐾,(,,𝑅(𝑘).)-2...                      (37)
	where ,𝑅,𝑘.. represents the average transmission rate of user 𝑘, F value is [1/K, 1], and K is the number of users. When 𝐹=1, it means that all users had the same average transmission rate. The greater the 𝐹 value, the better is the fairness. The...
	Fig. 3 Comparison of user fairness
	Fig. 3 shows that the JRA-WQOE algorithm had the best fairness. With an increase in the number of users, fairness decreased slightly primarily owing to user QoE. The fairness of JCRPA was better than that of DABC-CCRBA + EPA. The cross-CC-PF + EPA is ...
	The average user QoE is expressed by (11). In the resource allocation model, the average user QoE was defined by the weight coefficient ,𝑤-𝑘.(𝑡). We redefined the average user QoE as ,𝑄𝑜𝐸-𝑎𝑣𝑒𝑟𝑎𝑔𝑒., and it is expressed as
	,𝑄𝑜𝐸-𝑎𝑣𝑒𝑟𝑎𝑔𝑒.=,𝑤-𝑘.,𝑡.=,,𝑚𝑜𝑠-𝑘.(𝑛,𝑡)-,𝑘=1-𝐾-,𝑚𝑜𝑠-𝑘.(𝑛,𝑡)..      (38)
	Fig. 4 shows simulation results of average user QoE that were compared in a communication network containing different numbers of users.
	Fig. 4. Comparison of average user QoE based on different numbers of users
	Fig. 4 shows that the JRA-WQOE algorithm improved the average user QoE. With an increase in the number of users, the system had higher ,𝑄𝑜𝐸-𝑎𝑣𝑒𝑟𝑎𝑔𝑒. and the variation was stable. The DABC-CCRBA + EPA algorithm also had a satisfying average u...
	Fig. 5 shows that the average user QoE changed with SNR values when the number of users was 20.
	Fig. 5. Comparison of average user QoE for different SNRs
	Fig. 5 shows that the average user QoE values increased with SNR. When SNR ≤ 10, the average QoE of each algorithm was not satisfied because the system resources could not meet all user needs. The average user QoE of the JRA-WQOE algorithm increased r...

