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Abstract 

 
Slow Feature Discriminant Analysis (SFDA) is a supervised feature extraction method 
inspired by biological mechanism. In this paper, a novel method called Two Dimensional 
Slow Feature Discriminant Analysis via L2,1 norm minimization (2DSFDA-L2,1) is proposed. 
2DSFDA-L2,1 integrates L2,1 norm regularization and 2D statically uncorrelated constraint to 
extract discriminant feature. First, L2,1 norm regularization can promote the projection matrix 
row-sparsity, which makes the feature selection and subspace learning simultaneously. 
Second, uncorrelated features of minimum redundancy are effective for classification. We 
define 2D statistically uncorrelated model that each row (or column) are independent. Third, 
we provide a feasible solution by transforming the proposed L2,1 nonlinear model into a linear 
regression type. Additionally, 2DSFDA-L2,1 is extended to a bilateral projection version called 
BSFDA-L2,1. The advantage of BSFDA-L2,1 is that an image can be represented with much less 
coefficients. Experimental results on three face databases demonstrate that the proposed 
2DSFDA-L2,1/BSFDA-L2,1 can obtain competitive performance. 
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1. Introduction 

Feature extraction has been playing an important role in the domains of image recognition[1], 
image retrieval [2,3,4,5] and image classification[6,7]. The goal of feature extraction is to 
seeks a set of meaningful low-dimensional representations of high dimensional data to 
simplify data analysis problems, such that the intrinsic structures of original high-dimensional 
data are revealed. Principal Component Analysis (PCA) [8] and Linear Discriminant Analysis 
(LDA) [9] are the most well-known classical linear techniques. However, linear feature 
extraction methods fail to discover the nonlinear structure of data. To reveal the underlying 
nonlinear structure, a family of manifold-based learning methods have been developed. The 
represented manifold-based learning methods include locality preserving projections (LPP) 
[10], neighborhood preserving embedding (NPE) [11], linear local tangent space alignment 
(LLTSA) [12] and so on. LPP, NPE and LLTSA emphasize the locality property and are 
suitable for feature extraction on nonlinear manifold. To enhance the performance of 
classification, there emerged several nonlinear manifold learning methods to extract 
discriminant feature [13,14,15]. Yu et al. [13] extended LPP to discriminant locality 
preserving projections (DLPP) method to improve the classification performance. Yan et al. 
[14] provided marginal fisher analysis (MFA) that combines locality and class label 
information to minimize the within-class compactness and  maximize between-class 
separability. Chen et al. [15] proposed the local discriminant embedding (LDE) to maximize 
the margin of between classes.  

Recently, the idea inspired by biological mechanism is used to design some feature 
extraction methods. Wiskott et al. [16] proposed slow feature analysis (SFA) to extract slowly 
varying features and invariance from vectorial temporal signals based on temporal slowness 
principle. SFA has been performed for many applications in the field of computational 
neuroscience [17, 18, 19, 20]. For example SFA was initially developed for learning 
complex-cell receptive fields [19] and place cells in the hippocampus [20]. SFA turns out to be 
useful in pattern recognition and classification. Many researchers have successfully 
introduced the slowness principle into the applications of pattern recognition [21]. Zhang et al. 
[21] proposed a SFA framework to deal with the problem of human action recognition and 
obtained a well performance. However, in real applications, there are also numerous discrete 
data sets. In face recognition, the sample images have no obvious temporal structure as action 
images in video sequence. To deal with the discrete scenario, it is necessary to construct time 
series before implementation of SFA. The quality of constructed time series is key to the 
performance of SFA. In the literature [22], the authors utilized k nearest neighbor (KNN) 
criterion to construct time series and proposed a new framework of SFA to characterize the 
underlying structure of manifold for nonlinear dimensionality reduction. To get more accuracy 
of time series, the authors [23] proposed a supervised slow feature analysis based on 
consensus matrix to construct time series for face recognition. In order to get discriminant 
slow feature, they also proposed slow feature discriminant analysis (SFDA) for digital 
handwrite recognition [24], which minimizes withinclass temporal variation and maximizes 
between-class temporal variation simultaneously. Gu et al. [25] proposed an adaptive criterion 
to generate time series and derived an optimal slow discriminant feature subspace for 
classification.  

 
 



3196                                                           Xingjian Gu et al.: Two Dimensional Slow Feature Discriminant Analysis via L2,1 Norm 
Minimization for Feature Extraction 

 
Further more, previous works[26,27,28] have also demonstrated that reducing the 

correlation of extracted feature should contribute to improve the recognition performance. 
Because statistically correlated features contain redundancy, which will distort the distribution 
of the features. Jin et al. [26] proposed an uncorrelated linear discrimination analysis (ULDA) 
approach which maximizes Fisher criterion and simultaneously eliminates correlation 
between extracted features. To explore uncorrelated local information, Jing et al. [27] 
proposed a feature extraction approach named local uncorrelated discriminant transform 
(LUDT) for face recognition by adding a local uncorrelated constraints and calculated the 
optimal discriminant vectors. The drawback of the above mentioned uncorrelated methods 
(ULDA and LUDT) is that they all take an iterative manner, which will cost a long time to 
complete the iterative process.  

Recently, two dimension based methods have been successfully used in feature 
extraction since it can exploit the spatial information. Yang et al. [29] proposed the two 
dimensional principal component analysis (2DPCA) which is based on 2D image matrix rather 
than 1D vector. 2DPCA and its variants [30, 31] have been widely applied in face recognition. 
Motivated by 2DPCA, two-dimensional linear discriminant analysis (2DLDA) [32] and 
two-dimensional locality preserving projection (2DLPP) [33, 34, 35] was proposed for 
extraction 2D-feature. 2DLPP can approximate the original images more accurately than LPP, 
and the learned subspace has smaller dimensionality. Zhang et al. [36] used 2D images rather 
than 1D vectors as an input feature, and they proposed a two-dimensional neighborhood 
preserving projection (2DNPP) for face recognition. However, these 2D matrix-based 
methods always use the Euclidean distance as a metric to classify data points.  

Because the L2 norm and Frobenius norm (F-norm) of a matrix are sensitive to noise in 
data and they take all the original features (i.e. pixels in image) equally and ignore the 
differences among them, the performance of the methods based on the two norms would be 
degraded. As the L1 norm is robust to noise or outliers in data, many dimensionality reduction 
methods based on the L1 norm have been proposed [37-38]. Zhao et al. [37] proposed a 
L1-norm-based two-dimensional locality preserving projections (2DLPP-L1) method to 
improve the robustness of 2DLPP against outliers and corruptions. Tang et al. [38] proposed a 
two-dimensional discriminant LPP method based on the L1 norm (2D-DLPP-L1). 2D-DLPP-L1 
preserves the spatial topology structures of images effectively. 

In recent years, L2,1-norm has caused wide research interests [39,40,41]. Nie et al. [39] 
proposed an effective and robust feature selection method via joint L2,1 norms minimization, 
which can interpret features play an important role in discriminant analysis. Gu et al. [40] 
proposed a framework to select relevant features and learn transformation matrix 
simultaneously, which imposes L2,1-norm on loss term. Lai et al. [41] proposed a sparse 
version of the 2D local discriminant projection (S2DLDP), which provides an intuitive, 
semantic and interpretable feature subspace for classification.  

The above mentioned 2D methods only operate on image rows while ignoring the 
information behind the image columns. By joining both of rows and columns of image 
information, bilateral projection based 2DPCA (B2DPCA) [42,43] and 2DBPP 
two-dimensional bilinear preserving projections [44] are developed. They seek two projection 
matrices to extract row information and column information simultaneously.  
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In this paper, we propose a novel method called two dimensional slow feature 

discriminant analysis via L2,1 norm minimization for feature extraction (2DSFDA-L2,1). 
2DSFDA-L2,1 integrates the L2,1 norm regularization term and extracts uncorrelated 
discriminant features for classification. Inspired by the works [31, 42, 45], the 2DSFDA-L2,1 is 
further extended to bilateral version BSFDA-L2,1. The main contributions of this paper are 
listed as follow:  

(1) We propose a novel framework of sparse 2D slow feature discriminant analysis, 
which integrates the L2,1 norm regularized term and 2D uncorrelated constraint. The proposed 
methods remove the redundancy of 2D features and learn a row-sparsity projective matrix to 
enhance the discriminant ability.  

(2) As an extension of 2DSFDA-L2,1, BSFDA-L2,1 is developed, where left and right 
projection directions are calculated simultaneously. BSFDA-L2,1 can represent an image with 
much less coefficients than 2DSFDA-L2,1. 

(3) By analyzing the proposed L2,1 norm based model, we transform the nonlinear 
optimization problem into linear optimization problem and provide a feasible manner to get 
the row-sparsity projective matrix.  

The rest of the paper is organized as follows. In section 2, we briefly review SFDA and 
2DLDA. In section 3, we give the motivations of two dimensional sparse slow feature analysis 
(2DSSFDA) and describe it in detail. In section 4 , experiments with three standard face image 
databases are carried out to demonstrate the effectiveness of the proposed method. Finally, the 
conclusions are made in section 5. 

2. Related Work 
In this subsection, we review the details of slow feature discriminant analysis (SFDA) [24] 
used for discrete data that does not have an obvious temporal structure. We have a 
vector-based training sample set { }1 2, , , D n

n R ×= ∈X x x x

 belonging to c classes, where n is 
the number of training sample and D is the dimension of training sample. For each training 
sample ix , SFDA constructs within-class time series i

wt and between-class time series 
i
bt using neighboring information as follows. 

( ){ } 1, , 1, 2, ,i l
w i it l k= =x x 

                                                       (1) 

where ( )l
i k iN∈x x , ( )k iN x  is the k nearest neighbors of ix and ( , )l

i ix x  share the same class 
label. 

( ){ } 2, , 1, 2, ,i l
b i it l k= =x x                                                     (2) 

where ( )l
i k iN∈x x , ( )k iN x  is the k nearest neighbors of ix  and ( , )l

i ix x  have different 
class labels. 
Based on the constructed time series i

wt and i
bt , 1, 2, ,i n=  , the model of SFDA can be 

written as follows: 
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( )( )

( )( )
1 1

1 1

min

n k TT l l
i i i i

i l
n k TT l l

i i i i
i l

= =

= =

− −

− −

∑∑

∑∑
W

W x x x x W

W x x x x W 

                                          (3) 

where D dW R ×∈  is the transform matrix, d is the dimension of low-dimensional feature 
subspace, ( , )l i

i i wt∈x x and ( , )l i
i i bt∈x x . The solution to the optimization of model (3) can be 

solved by generalized eigenvalue problem. 

3. Two-dimensional Slow Feature Discriminant Analysis via L2,1Norm 
Minimization (2DSFDA-L2,1) 

3.1 Motivation 
The motivation for 2DSFDA-L2,1 arises from the following three main considerable aspects. 
First, images often contain much redundant information, and the discriminant information is 
not decided by all the pixels. Selecting useful pixels plays an important role in feature  
extraction. Recent study indicates that introducing the L2,1 norm regularized term to the 
projects matrix can produce row-sparsity matrix and enhance the discriminant ability of 
extracted feature. Second, previous works have demonstrated that statically uncorrelated 
feature is of great importance for classification task. Here, we propose a new uncorrelated 
model in 2D case. Third, we offer a feasible solution by transforming the proposed L2,1 norm 
based nonlinear model into a linear regression model. 

Based on the aforementioned analysis, we propose a novel L2,1 norm based 2D slow 
feature discriminant analysis framework, which appends the sparseness and uncorrelated 
constraint into the 2D slow feature discriminant analysis to enhance the performance of 
classification task. 

3.2 Two-dimensional Slow Feature Discriminant Analysis (2DSFDA) 
Inspired by 2DLDA [32], we first extend SFDA into a 2D version. The goal of 2DSFDA is to 
learn a projective matrix W to minimize the 2D image within-class slowness scatter and 
between-class fastness scatter. Similar to SFDA, for each training image matrix iX , the 

within-class time series i
wt and between-class time series i

bt  of 2DSFDA can be defined as 
follows. 

( ){ } 1, , 1, 2, ,i l
w i it l k= =X X 

                                             (4) 

where ( )l
i k iN∈X X , ( )k iN x  is the k nearest neighbors of iX  and ( , )l

i iX X  share the same 
class label. 

( ){ } 2, , 1, 2, ,i l
b i jt l k= =X X                                           (5) 

where ( )l
i k iN∈X X  , ( )k iN X  is the k nearest neighbors of iX  and ( , )l

i iX X  have the 
different class labels. 
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Thus, the matrix-based within-class temporal variation wJ  and matrix-based 
between-class temporal variation bJ can be defined as follows: 

( ) ( )

( )( )( )
( )( )

1

1

1

2

21 1

1 1

1 1

kn
T l

w i i
i l

kn TT l l
i i i i

i l

kn TT l l
i i i i

i l

J

tr

tr

= =

= =

= =

= −

= − −

 
= − − 

 

∑∑

∑∑

∑∑

W W X X

W X X X X W

W X X X X W

                              (6) 

( ) ( )

( )( )( )
( )( )

2

2

2

2

21 1

1 1

1 1

kn
T l

b i i
i l

kn TT l l
i i i i

i l

kn TT l l
i i i i

i l

J

tr

tr

= =

= =

= =

= −

= − −

 
= − − 

 

∑∑

∑∑

∑∑

W W X X

W X X X X W

W X X X X W



 

 

                                (7) 

where ( , )l i
i i wt∈X X  and ( , )l i

i i bt∈X X . Thus, the objective of 2DSFDA can be written as 
follows: 

( )( )

( )( )

1

2

1 1

1 1

min
 

kn TT l l
i i i i

i l
kn TT l l

i i i i
i l

= =

= =

− −

− −

∑∑

∑∑
W

W X X X X W

W X X X X W 

                                            (8) 

3.3 Two-dimensional statistical uncorrelated constrain 

In order to remove the redundancy for 2D feature matrix 1m d
i R ×∈Y , 1, 2, ,i n=  , we 

consider the following uncorrelated model: 

( ) ( )
1

0, , 1, 2, ,
n Tp p q q

i i
i

p q q d
=

− − = ≠ =∑ y y y y 
                              (9) 

where 1mp
i R∈y and 1mq

i R∈y are considered as two random column vector variables. 
Furthermore, we could normalize the projective matrix W to satisfy: 

( ) ( )
1

1, 1, 2, ,
n Tp p p p

i i
i

p d
=

− − = =∑ y y y y 
                                      (10) 

Thus, the matrix form of Equation (9) can be written as follows: 
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( )
( )

( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

1 1

2 2
1 1 2 2

1

1 1 1 1 1 1

1 1

1 1

1 1

1
  

 

T

i

Tn
d di

i i i
i

Td d
i

n nT T d d
i i i i

i i

n nT Td d d d d d
i i i i

i i

n T

i i
i

TT
i

=

= =

= =

=

 − 
 −  − − −
 
 
 − 
 − − − − 
 

=  
 
 − − − − 
 

= − −

= −

∑

∑ ∑

∑ ∑

∑

y y

y y y y y y y y

y y

y y y y y y y y

y y y y y y y y

Y Y Y Y

W X X X





  






   


  

   


 

 ( )
1

n

i
i

T
t

d

=

−

=
=

∑ X W

W S W
I



              (11) 

where ( ) ( )
1

n T

t i i
i=

= − −∑S X X X X   is the total scatter matrix, d d
dI R ×∈ is an identity matrix, 

1, , d =  Y y y  and 1, , d =  Y y y

 
 . 

3.4 Objective function and Solution 
With the preparation above, the model of 2DSFDA-L2,1 can be written as follows: 

( )( ) 2,1
min

. .

T
w b

T
t d

tr T

s t

−α + λ

=
W

W T W W

W S W I
                                          (12) 

where ( )( )
1

1

kn Tl l
w i i i i

i l=

= − −∑∑T x x x x , ( )( )
2

1

kn Tl l
b i i i i

i l
x

=

= − −∑∑T x X X  , 0α ≥  is a 

tradeoff parameter that balances temporal variation of within-class and between-class and dI  
is the identity matrix. According to our previous work[37], total scatter matrix tS  can be 
written as: 

T
t =S HH                                                                   (13) 

where
1
2= ΛH P  and singular value decomposition of tS  is

1 1
2 2 T

t P= Λ ΛS P .Thus, model [12] 
can be reformulated as: 
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( )( )( )1 1
2,1

min

. . ,

TT
w bW

T T

tr

s t

− −−α + λ

= =

Q H T T H Q W

Q Q I W H Q
                       (14) 

where ( ) ( )( )1 1 TT
w btr − −− αQ H T T H Q  is the difference between within-class temporal 

variation and between-class temporal variation and 
2,1

W is the regular term. 

SinceQ and W are dependent on each other, problem (14) cannot be solved directly. Inspired 
by success in [34,38], we decompose nonlinear model into two sub-problems. 

◆SolvingQ by removing W , the objective function (14) is deducted to 

( )( )( )1 1min

. .

TT
w b

T

tr

s t

− −−α

=
Q

Q H T T H Q

Q Q I
                                 (15) 

Because matrix ( )( )1 1 T

w b
− −−αH T T H  is symmetric, the subproblem (15) can be easily 

solved by strand eigenvalue decomposition. 
◆While the matrix Q  is fixed, the projection matrix W  can be solved using a 

regression model 

( )
2,1

1

min

. .
T

s t − =

W
W

H W Q
                                                     (16) 

When the linear equation ( )1 T− =H W Q  has a single unique solution, and it does not have the 
row sparsity property. We turn to the constrained problem (16) as the following regularized 
problem: 

( )
2

1
2,1

min
T

F

−+ m −
W

W H W Q                                               (17) 

where 0µ >  is regularize parameter. Inspired by Gu[34] and Nie[33], we take an iterative 
algorithm to optimize problem (17). 
In summary, we present the algorithm for optimizing problem (14) in Algorithm 1 The 
convergence of this algorithm was proved in [46]. In our paper, we set a maximum number of 
iterations. 

Algorithm 1 Solving problem for model (14) 
Require: Matrixes wT , bT  and tS ; 

Ensure: 2 2m dR ×∈W  

1:Perform Singular Value Decomposition to 
1 1
2 2 T

t = Λ ΛS P P  and compute 
1
2= ΛH P ; 

2:Solve eigenvalue decomposition problem ( )( )1 1 TT
w b

− −−αQ H T T H Q  and 
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select eigenvector 1 2[ , , , ]d=Q q q q  corresponding to the first smallest 
eigenvalues 1 2, , , dλ λ λ ; 

3:Set 0t = , initialize t =G I  

4: while not convergence  

5:        Calculate ( )
1

1 1 1 1 1
+1

1
2

T

t I
−

− − − − − 
= + µ 

W G H H G H Q  

6:    Calculate the diagonal matrix 1t+G ,where the ith  diagonal element is 

1 2

1
2 i

t+w
 

7: 1t t= + ; 
8: end while 

3.5 Bilateral SFDA via L2,1 Norm Minimization (BSFDA-L2,1) 
2DSFDA-L2,1 adopts a unilateral projection (right multiplication) scheme, which needs more 
coefficients for representing an image than vector-based methods (i.e. SFDA). As an extension 
of 2DSFDA-L2,1, bilateral projections method called Bilateral SFDA via L2,1 Norm 
Minimization (BSFDA-L2,1) is developed, where left and right projection directions are 
calculated simultaneously. BSFDA- L2,1 takes much less coefficients than 2DSFDA-L2,1 to 
represents an image. The goal of BSFDA- L2,1 is to find two projection matrixes 1 1m dU R ×∈  
and 2 2m dV R ×∈  to minimize within-class temporal variation and maximize between-class 
temporal variation simultaneously. Thus, the model of BSFDA-L2,1 can be written as follows: 

( ) ( )

( ) ( )

( ) ( )

1

2

1 22,1 2,1,

1

1

min , ,

. .

w b

n TT T
i i d

i
n TT T

i i d
i

J J

s t
=

=

−α + λ + λ

− − =

− − =

∑

∑

U V
U V U V U V

U X X VV X X U I

V X X UU X X V I

 

 

                                  (18) 

where ( ),wJ U V is the matrix based on within-class temporal variation and ( ),bJ U V  is 

between-class temporal variation. Within-class temporal variation ( ),wJ U V defined as 
follows: 

( ) ( )

( ) ( )( )
( ) ( )( )

1

1

1

2

21 1

1 1

1 1

,
kn

T l
w i i

i l
kn TT l T l

i i i i
i l

kn TT l T l
i i i i

i l

J

tr

tr

= =

= =

= =

= −

= − −

= − −

∑∑

∑∑

∑∑

U V U X X V

U X X VV X X U

V X X UU X X V

                                 (19) 
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and between-class temporal variation ( ),bJ U V  is defined as: 

( ) ( )

( ) ( )( )
( ) ( )( )

2

2

2

2

21 1

1 1

1 1

,
kn

T l
b i i

i l
kn TT l T l

i i i i
i l

kn TT l T l
i i i i

i l

J

tr

tr

= =

= =

= =

= −

= − −

= − −

∑∑

∑∑

∑∑

U V U X X V

U X X VV X X U

V X X UU X X V



 

 

                                 (20) 

We solve the variablesU andV alternatively because there is no closed-form solution for the 
problem 18. The proposed iterative method includes two sub-steps. 

◆Given t=U U , update 1t+V by: 

( ) ( )

( ) ( ) 2

2 2,1

1

min , ,

. .

w t b t

n TT T
i t t i d

i

J J

s t
=

−α + λ

− − =∑
V

U V U V V

V X X U U X X V I 

                                 (21) 

◆ Given 1t+=V V , update 1t+U by: 

( ) ( )

( ) ( ) 1

1 1 1 2,1

1 1
1

min , ,

. .

w t b t

n TT T
i t t i d

i

J J

s t

+ +

+ +
=

−α + λ

− − =∑
U

U V U V U

U X X V V X X U I 

                            (22) 

Similar to the way of solving 2DSFDA-L2,1, we use algorithm 1 to solve problem 3. Thus, the 
process of algorithm for BSFDA-L2,1 is summarized in Algorithm 2. 
 

Algorithm 2 Alternatively iterative method for model (18) 

Ensure:  Two projection matrixes 1 1m dR ×∈U  and 2 2m dR ×∈V  
1: Initialize 0t =  and 0U  as a random matrix 

while not convergence 
3:       Given t=U U ,update 1t+V by: 

( ) ( )

( ) ( ) 2

2 2,1

1

min , ,

. .

w t b t

n TT T
i t t i d

i

J J

s t
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U V U V V

V X X U U X X V I 

 

          Given 1t+=V V , update 1t+U by: 
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+ +
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−α + λ
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4: 1t t= +  
5: end while 

4. Experimental Classification Results and Analysis 
To evaluate the proposed 2DSSFDA-L2,1 and BSFDA-L2,1, we compared it with other feature 
extraction methods including 2D based methods and bilateral methods on three well-known 
face image databases (Extended YaleB, CMU PIE and COIL-20). The 2D based methods 
include 2DPCA[29], 2DLPP[33], 2DLDA[32], S2DLDP[42], 2DNPP[36], N2DNPP[47] and 
2DSFDA. According to the literatures[41,42],the authors take the optimalα to guarantee that 
the power of discriminant arrives maximum using an iterative method. In our experiment, we 

set 
( )( )
( )( )

1 1

1 1

TT
w

TT
b

trace

trace

− −

− −
a =

Q H T H Q

Q H T H Q
 for maximizing the power of discriminant. To indicate the 

effectiveness of bilateral version, we compare BSFDA-L2,1 with two other bilateral 2D 
methods include BLDA and BSFDA.  For BSFDA-L2,1, we also take the same manner to 
determine the value of tradeoff parameter α . After projecting a testing sample into a learned 
subspace, the nearest neighbor (NN) classifier is employed for classification task. 

4.1 Experiment on Extended YaleB face database 
The Extended YaleB Face Database contains 16128 images under 9 poses and 64 illumination 
conditions. In this experiment, we use the same experiment setting in [48]. We choose the 
frontal pose and use all the images under different illumination, thus we get a subset contains 
2431 images of 38 individuals. Before implementing our experiment,  all of the face images 
are resized into the resolution of 96 84× . Fig. 1 shows some sample images. 
 

 
Fig. 1. Sample images in Extended YaleB face database 

 
Specially, we randomly select ( 5,6)l = samples from each individual for training, and the rest 
of samples are used for testing. For each given l , we repeat each experiment 20 times and 
calculate the average recognition accuracy. Fig. 2 shows the recognition accuracy of 2D based 
methods with varying projections. The maximal average recognition accuracy of each 2D 
method and the corresponding number of projections as well as standard deviations are given 
in Table 1. Table 2 lists average recognition accuracy at varying feature number of bilateral 
2D methods. Fig. 4 gives the recognition curves of three bilateral 2D methods at different 
number of features. Fig. 3 shows the maximal recognition curves of eight different methods 
with different number of training samples per class. 
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Fig. 2. Recognition accuracy of 2D based methods with varying projections number on the Extended 

YaleB face database 
 
Table 1. The maximal average recognition accuracy (%) and their corresponding standard deviations, 

optimal number of projections of across 20 runs on Extended YaleB 
Method 2DPCA 2DLPP 2DLDA 2DSFDA S2DLDP 2DNPP N-2DNPP 2DSFDA-L2,1 

l = 5 
21.10 
±1.70 
96×20 

57.87 
±3.17 
96×18 

59.57 
±3.15 
96×12 

47.40 
±4.62 
96×5 

60.56 
±2.25 
96×10 

59.98 
±2.25 
96×11 

60.44 
±2.25 
96×10 

61.33 
±2.56 
96×10 

l = 6 
24.70 
±1.37 
96×20 

62.73 
±4.14 
96×18 

64.30 
±2.22 
96×17 

53.43 
±2.82 
96×10 

64.94 
±1.96 
96×13 

63.53 
±2.25 
96×11 

64.29 
±2.25 
96×12 

65.30 
±2.28 
96×12 

 

 
Fig. 3. Maximal recognition accuracy of 2D based methods with varying training number per class on 

the Extended YaleB face database 
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Fig. 2 and Fig. 3 show the variations of the classification accuracy with different subspace 
dimensionality and different number of training samples. From Fig. 2 and Table 1, we can see 
that our proposed method 2DSFDA-L2,1 obtains better recognition accuracy than other 2D 
based methods including 2DPCA, 2DLPP, 2DLDA, 2DSFDA, 2DNDP and N2DNDP. 
2DSFDA-L2,1 obtains the best classification accuracy on the 10th projection. From Fig. 3, we 
can see that increasing training number of each class will improve the recognition accuracy. 
The reason is that more samples are favor to explore the potential structure of data. The 
experimental results show that 2DSFDA-L2,1can obtain the best classification accuracy 
compared with the other methods.  
 

 
Fig. 4. Recognition accuracy of Bilateral based methods with dimensions 10×10 on the Extended YaleB 

face database 
 
Table 2. Recognition Accuracy (%) of Bilateral 2D based Methods on Extended YaleB face database 

   Right 
Left 

5 8 10 
BLDA BSFDA BSFDA-L2,1 BLDA BSFDA BSFDA-L2,1 BLDA BSFDA BSFDA-L2,1 

5 51.47 53.40 61.83 57.20 58.83 62.57 56.20 59.53 65.93 
8 63.07 59.97 67.70 63.43 62.20 68.40 63.70 63.20 69.73 

10 67.03 60.67 68.67 66.57 63.73 69.43 67.47 63.38 71.87 
 
As shown in Fig. 4 and Table 2, L2,1norm based bilateral method BSFDA-L2,1 also 
outperforms other bilateral methods. The above experimental results demonstrate the 
effectiveness and efficiency of L2,1 norm penalty term. The reason is that using L2,1 norm term 
can take feature selection and subspace learning simultaneously, which can improve subspace 
learning and encourage row-sparsity. In addition, the uncorrelated feature can provide 
substantial complementary information for face recognition. Comparing Table 1 and Table 2, 
the best recognition accuracy of 2DSFDA-L2,1 is 65.30% when the dimension arrives 
96*12=1152 , and the best recognition accuracy of 2DSFDA-L2,1 is 71.87% when the 
dimension arrives 10*10=100 . It demonstrates that the feature extracted by bilateral 
projections is with much less coefficients and better favor for classification. 
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Fig. 5. Graphic of Projection Matrix 

 
In the second experiment, we demonstrate the functionalities of the proposed model 12 by the 
graphics of projective matrix W . Fig. 5 shows the graphic of projective matrix W , we can see 
that W  has the property of row-sparsity. It demonstrates the effectiveness of L2,1 regularized 
term imposed on W , which makes the feature selection and subspace learning simultaneously. 
When W is multiplied on both of sides of tS , we could get the total scatter 

matrix T
L tS W S W= in the subspace. Fig. 6(a) shows the graphic of total matrix tS  in the 

original feature space and Fig. 6(b) shows the graphic of matrix LS  in the learned subspace. 
The non diagonal elements of Fig. 6(a) reflect the correlation between different features. From 
Fig. 6(b), all the "energies" are assembled in the diagonal of the matrix. Values of non 
diagonal elements are close to zero. Thus, the graphic reveals that the extracted features in the 
low-dimensional subspace are highly uncorrelated, which means that the majority of the 
redundant information has been reduced. 

 
(a) The total scatter matrix in the original feature space 
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(b) The total scatter matrix in the subspace 

Fig. 6. Graphic of total scatter matrix in original feature space and extracted feature space 

4.2  Experiment on CMU PIE face database 
The CMU PIE Face Database [39] contains 41,368 images from 68 individual. These images 
of each individual were taken under 13 different poses, 43 different illumination conditions, 
and with 4 different expressions. Same as the experiment setting [44], We choose the five near 
frontal poses (C05, C07, C09, C27, C29) and use all the images under different illuminations 
and expressions, thus we get a subset contains 11,554 images of 68 individuals. Before 
implement our experiment, we crop the face portion of the image into the resolution of 64×64. 
Some sample images are shown in Fig. 7. 

 
Fig. 7. Sample images in PIE database 

 
    First, we test the performance of proposed 2DSFDA-L2,1 and BSFDA-L2,1 compared with 
some other 2D methods. We randomly choose (5,6)l =  images of each person for training 
and the rest images for testing. Each experiment is repeated 20 times to get the average 
recognition accuracy and standard deviations. Table 3 gives the maximal average recognition 
accuracy obtained by different unilateral 2D methods as well as standard deviations and the 
corresponding projection numbers. Fig. 8 shows the average recognition accuracy of different 
unilateral 2D methods with varying projections. The recognition curves of three bilateral 2D 
methods at different number of feature are show in Fig. 9. Table 4 gives the average 
recognition accuracy at different features of bilateral 2D methods. 
    According to the experimental results includeing Fig. 8, Fig. 9, Table 3 and Table 4, we 
can see that the L2,1 norm minimization based methods 2DSFDA-L2,1 and BSFDA- L2,1 
perform better than other 2D based methods in most cases. It also demonstrates that the 
row-sparsity projection performs as a filter and can reduce the negative effect as a result of the 
facial expression and illumination variation. Thus, the row-sparsity projections can obtain 
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good performance when using low dimensional features for classification. Another 
mechanism is that uncorrelated feature is helpful to improve the performance of classification 
task, because removing the correlation between features can enhance the discriminant ability. 
 

 
Fig. 8. Recognition accuracy of 2D based methods with varying number of projections on CMU PIE 

face database 
 
Table 3. The maximal average recognition accuracy (%) and their corresponding standard deviations, 

optimal number of projections of across 20 runs on CMU PIE face database 
Method 2DPCA 2DLPP 2DLDA 2DSFDA S2DLDP 2DNPP N-2DNPP 2DSFDA-L2,1 

l = 5 
53.23 
±3.30 
64×20 

79.77 
±1.99 
64×

20 

81.33 
±2.14 
64×20 

80.77 
±2.39 
64×15 

81.43 
±2.39 
64×15 

80.95 
±2.23 
64×15 

81.59 
±2.34 
64×16 

82.37 
±2.10 
64×12 

l = 6 
57.47 
±2.53 
64×20 

82.77 
±1.64 
64×

17 

84.17 
±1.72 
64×20 

82.93 
±1.26 
64×18 

83.84 
±1.48 
64×13 

82.84 
±1.60 
64×13 

84.34 
±1.75 
64×14 

85.33 
±1.60 
64×10 

 

 
Fig. 9. Recognition accuracy of bilateral 2D based methods with dimensions 10×10 on the CMU PIE 

face database 
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Table 4. Recognition Accuracy (%) of Bilateral 2D based method on CMU PIE face database 

   Right 
Left 

5 8 10 
BLDA BSFDA BSFDA-L2,1 BLDA BSFDA BSFDA-L2,1 BLDA BSFDA BSFDA-L2,1 

5 85.43 82.60 87.43 87.60 84.70 87.93 86.17 83.87 86.67 
8 87.00 82.93 88.00 87.77 84.20 88.57 88.23 84.83 88.57 

10 88.20 84.27 89.57 87.53 84.43 88.87 88.10 85.47 89.07 
  
   In the second experiment, we study the impact of parameter α  to the performance of 
2DSFDA-L2,1. The value of parameterα  is set to be 0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50 and 
100 respectively. We randomly select l (l = 5,6) images from each class for training, while the 
remaining images are used for testing. Fig. 10 shows the performance of 2DSFDA-L2,1 when 
using different values of parameter α  and different numbers of training samples for each class. 
From the experimental results, we find that 2DSFDA-L2,1 can always obtain the best 
recognition rate in most cases. It also demonstrates that our method is robust to the choice of 
parameter α . 
 

 
Fig. 10. Maximal average recognition accuracy of 2DSFDA- L2,1with different parameter α using l (l = 

5,6) training samples per class on CMU PIE face database 
 

4.3  Experiment on COIL-20 database 
The COIL-20 database consists of 1440 images from 20 objects. The those objects were 
placed on a motorized turntable against a black background. Images of each objects were 
taken at pose intervals 5 degrees, corresponding to 72 image per object. All the images are 
cropped and resized to 32× 32 pixels. Some samples are shown in Fig. 11. 

 
Fig. 11. Sample images in COIL20 database 

 
The same setting as previous experiments, for each subject, l(=5,6) images are randomly 
selected used for training and the remaining images are used for testing. To compute average 
recognition accuracy, each experiment is randomly repeated 20 times. The maximum 
recognition accuracy and the corresponding projection number of five unilateral 2D methods 
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are shown in Table 5. Table 6 lists the recognition accuracy at varying features number of 
bilateral 2D based method. Fig. 12 shows the variations of the projections number versus 
recognition accuracy with six different unilateral 2D methods. Fig. 13 shows the recognition 
accuracy versus different number of feature with three different bilateral 2D based methods. 
The experimental results also support that our methods performances better than others. 

 
Fig. 12. Recognition accuracy of 2D based methods with varying number of projections on the COIL20 

database 
 
Table 5. The maximal average recognition accuracy (%) and their corresponding standard deviations, 

optimal number of projections of across 20 runs on COIL20 database 
Method 2DPCA 2DLPP 2DLDA 2DSFDA S2DLDP 2DNPP N-2DNPP 2DSFDA-L2,1 

l = 5 
82.53 
±2.12 
32×2 

89.93 
±2.37 
32×3 

90.27 
±2.23 
32×3 

84.67 
±3.49 
32×5 

90.89 
±1.29 
32×4 

89.79 
±2.13 
32×4 

90.35 
±1.57 
32×5 

91.67 
±2.52 
32×4 

l = 6 
83.92 
±1.94 
32×2 

91.83 
±1.64 
32×3 

93.42 
±1.79 
32×3 

87.67 
±3.88 
32×5 

92.24 
±1.50 
32×11 

92.07 
±1.55 
32×11 

92.67 
±1.85 
32×11 

92.75 
±2.63 
32×17 

 

 
Fig. 13. Recognition accuracy of Bilateral based methods with dimensions 10×10 on the COIL20 

database 
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Table 6. Recognition Accuracy (%) of Bilateral 2D based method on COIL20 database 
Right 
Left 

5 8 10 
BLDA BSFDA BSFDA-L2,1 BLDA BSFDA BSFDA-L2,1 BLDA BSFDA BSFDA-L2,1 

5 85.50 79.92 86.42 85.53 80.40 88.13 86.75 78.83 88.13 
8 87.83 82.00 89.58 88.33 82.33 90.33 90.25 82.50 90.67 
10 87.50 84.33 88.67 87.08 81.83 88.75 89.67 84.00 90.08 

 
In the second, we investigate the convergence of BSFDA-L21responding to the objective 
value of model 18. We randomly choose 6 images per class for training. Fig. 14 show 
convergence curves of BSFDA-L21 in terms of objective value with different dimensions. 
From the experimental results, we can see that BSFDA-L21 always converges very fast, 
usually than 5 iterations. 

 
(a) 32 8 32 8,U R V R× ×∈ ∈                                 (b) 32 10 32 10,U R V R× ×∈ ∈  

Fig. 14. The objective value of BSFDA-L21 of each iteration on COIL20 database 

5. Conclusion 
This paper presents a Two dimensional based sparse slow feature discriminant analysis model 
including 2DSFDA-L2,1 and BSFDA-L2,1 for feature extraction and face recognition. The key 
of our model is to combine the L2,1 norm regression and statistically uncorrelated constraint 
into the 2D slow feature discriminant analysis framework. We presented a feasible solution by 
transforming L2,1 norm based nonlinear model into a linear regression type. The learned 
row-sparsity projection can make feature selection and subspace learning simultaneously. 
Experiments on four benchmark databases demonstrate the effectiveness of our proposed 
methods. Although promising results have been obtained by our algorithms, two future efforts 
are still worth making. The first, we will enhance to interpret "slow feature" from the view of 
Biological mechanism. The second , we will extend our work to large-scale image retrieval by 
using  slow features extraction. 
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