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Abstract 

 
Content-based image retrieval is an approach used to query images based on their semantics. 
Semantic based retrieval has its application in all fields including medicine, space, 
computing etc. Semantically generated binary hash codes can improve content-based image 
retrieval. These semantic labels / binary hash codes can be generated from unlabeled data 
using convolutional autoencoders. Proposed approach uses semi-supervised deep hashing 
with semantic learning and binary code generation by minimizing the objective function. 
Convolutional autoencoders are basis to extract semantic features due to its property of 
image generation from low level semantic representations. These representations of images 
are more effective than simple feature extraction and can preserve better semantic 
information. Proposed activation and loss functions helped to minimize classification error 
and produce better hash codes. Most widely used datasets have been used for verification of 
this approach that outperforms the existing methods.  
 
 
Keywords: Semi-supervised deep hashing, binary hashing, convolutional auto-encoders, 
deep learning, image semantics 
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1. INTRODUCTION 

Content based image retrieval from multimedia data that includes images and videos is 
based on semantic search. Hashing techniques have been presented in many applications [1]–
[10] such as image retrieval because they can generate binary codes based on contents. 
Dimensionality reduction is the key principle in these techniques that create binary code (low 
dimensional data) from image visual data (high dimensional data). There are some 
supervised and some un-supervised learning techniques in the literature that mentioned 
hashing methods [6], [7], [11], [12] to extract features from raw input image data and 
generate hash codes. Supervised techniques use labeled data to construct hash code that can 
learn better by capturing the semantics of data structure. While unsupervised learning 
methods use unlabeled data to group images with similar semantics and generate binary code. 
Recently some deep hashing techniques have also been proposed by [7], [10], [13], [14]. 
These techniques applied deep learning methods to extract hashing codes. 

Image representations are very important for accurate semantic representation and CNNs 
(Convolutional Neural Networks) works for it. These mid-level representations , known as 
deep features, can also be helpful for classification and object detections [15]–[20]. These 
extracted features showed better performance than handcrafted features as GIST [21] and 
HOG [22]. Problem with these networks is that they need huge dataset with multiple 
categories for training. Pre-trained CNNs are available for further fine-tuning and transfer 
learning. Same pre-trained networks are also capable of providing features that can be used 
to generate binary codes on semantic basis [23].  

Deep features from unlabeled data can be extracted using convolutional autoencoders. 
Such features are good candidates for unsupervised learning [24] as these are generated from 
original images during encoding process and images are recreated using these deep features. 
Autoencoders have fully connected layers with convolutional layers [25]. J. Zhao et al . [26] 
and A. Makhzani et al. [27] proposed deep autoencoders for deep hashing with the objective 
to learn hierarchical representations.  

Images are represented by hand-crafted features in most of the supervised and 
unsupervised hashing methods that cannot truly represent the semantic information. Due to 
real contributions of deep networks for feature extraction in image classification [7], [10], 
[13, p.], [14] has proposed some deep hashing methods. [8] used a method based on two 
steps, hash codes are learnt in first step while second step generate hash function and image 
representations using Convolutional Neural Network Hashing (CNNH). Network in Network 
Hashing (NINH) proposed by [7] overcome the problems of CNNH by using single step 
instead of two. Similar types of hashing methods have been used in [9], [13]. 
Aforementioned methods are supervised one that depend on labels generated by humans that 
is not good approach for real time applications.  

In proposed method deep learning has been used to extract features with deep 
convolutional autoencoders (CAE) and hashing technique to generate different bits’ hash 
codes. In this method CAE is involved to extract features from middle layer of encoding and 
decoding procedures. Activation function of sgn(.)  transfers deep features to binary codes. 
Semi-supervised loss functions are helpful to preserve the semantic similarity and to detect 
multi objects in an image. Extensive experimentation has been performed on different 
benchmark datasets that produced favorable results. In remaining paper, Section II presents 
review of literature with some hashing and features extraction techniques. Section III 
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presents our methodology in detail with activation and loss functions. Section IV contains 
experiments details and Section V concludes this study. 

2. Related Work 
Learning based algorithms are most popular to construct hash codes. Deep networks have 
made considerable progress in recent years to learn hash function. Deep networks are using 
major three categories for learning: supervised, unsupervised and semi-supervised. Our work 
is using semi-supervised method to accomplish image recognition using image contents.  
 

2.1 Learning based Algorithms for Hashing 
Supervised learning is training any machine learning algorithm for input with corresponding 
output that, later on, will be able to identify target for any new input. Different hashing 
approaches that used supervised learning includes binary reconstructive embedding (BRE) 
[28], minimal loss hashing (MLH) [29], supervised discrete hashing (SDH) [30], supervised 
deep hashing (SDH) [31], deep multi-view hashing (DMVH) [32] and many more. 
Unsupervised learning algorithms only use set of inputs for training and find a structure or 
relationship between these inputs that leads to clustering. Some hashing techniques using 
unsupervised learning are heterogeneous deep hashing (HetDH) [33], kernelized local 
sensitive hashing (KLSH) [5], spectral hashing (SH) [6] and iterative quantization (ITQ) [1]. 

Semi-supervised algorithms train from both labeled and unlabeled inputs to learn hash 
functions. Semi-supervised hashing (SSH)[34] used labeled data for semantic similarity. 
Formula used in SSH has two part: first part tries to minimize error for labeled data while 
second part, that is basically unsupervised part, tries to maximize the objective. Semi-
supervised tag hashing (SSTH) [35] performed supervised learning with class labels and 
hash codes while unsupervised learning between input images. 

In [3] Kan et. al. proposed SKHL algorithm for semi-supervised learning that used kernel 
hyperplane hashing function to extract features from unlabeled data. Further these features 
are combined with weakly labeled side information to generate parameterized hashing code 
that is further maximized using Fisher like objective function to learn better hashing 
functions. In most of the methods deep networks are used to extract features and then further 
used to calculate hash using some hashing function but question is “Do these extracted 
features fully represent the original input image?”. To solve this question, we opted 
autoencoders. 

Autoencoders were introduced by Hinton [36] to learn features as a whole vector of 
parameters and conclude that these parameters are way better than hand crafted features and 
current employed neural networks with variations in position, orientation, scale and lighting 
as the parameters can recreate original image. 

2.2 Framework for Generalized Autoencoder: 
To explain a general autoencoder framework we can use NPN autoencoder where n and p are 
positive integers and we consider it 0 < p < n as shown in Fig. 1.  
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Fig. 1. Generalized Autoencoder 

α is a function that generate feature parameters from input with n nodes while β is used as 
reverse process to generate original image. α is known as encoding while β is decoding 
process.  

3. Semi-supervised Convolutional Autoencoders for Deep Hashing 
For a given set of N images X with labels Y, (Xn, Yn) = {(x1, y1), (x2, y2), …………., (xn, 
yn)}. Our goal is to learn a mapping function Z: X  {0,1}Q that can encodes any image x ϵ 
X into Q-bit binary code by preserving semantic similarity. Convolutional autoencoder was 
used by Ranzato et. al. [37] with four hidden units to learn non-invariant features from given 
output. It was unsupervised method that detects sparse features’ structure invariant to small 
distortions.  

In this study we proposed DSH, a combination of convolutional autoencoder with deep 
hashing to convert an image to binary code by preserving semantic similarity and image 
structure at the same time. Proposed method has three main parts: features extractor, hashing 
function, loss function. Feature extraction is accomplished using convolutional autoencoder 
as convolution is most commonly known technique to extract features for image recognition 
and autoencoders ensure that these are the features that can be used to revert back to original 
image and stores semantic information along with image structure. Hashing function works 
as layer in this network and transform an image to Q-bit binary hash code. Lastly loss 
function that ensures the network is preserving the semantic similarity and image structure 
for accurate hashing. This goal can be achieved by minimizing the empirical and embedding 
error with labeled and unlabeled data. These three parts work together as a network and 
perform image representation as a learnt hash binary code.  
 

3.1 Feature extraction using CAE: 
We choose convolutional autoencoder that consists of convolutional and pooling layers. 
Structure of autoencoder is given in Fig. 2.  

3.2 Encoding: 
Five groups of convolutional layers have been used along with max-pooling layer after each 
convolutional layer to encode an image. This structure is similar to [17] that used 64, 128, 
256, 512, 512 filter respectively in convolutional layers. Two fully connected layers have 
been used at the end of encoding.  

N N P α β 
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Fig. 2. Convolutional Autoencoder Model for encoding and features extraction 

3.3 Hashing 
Binary hash codes are learned from the last fully connected layer of encoding part. To 
calculate hash code, we introduced hidden layer as bcoding H with Q units right after FC7. 
Let WH ϵ ℝ𝑑 ×𝑄 be the weights after FC7 layer of encoding function. For any image In with 
feature vector 𝑎𝑛7  ∈  ℝ𝑑  in layer FC7, activations of layer H can be calculated as 𝑎𝑛𝐻 =
 𝜎(𝑎𝑛7𝑊𝐻 + 𝑏𝐻), where 𝑎𝑛𝐻 is a Q-dimensional vector, 𝑏𝐻 is bias term and 𝜎(. ) is logistic 
sigmoid function. Using sgn(.) for binarization will lead to non-smooth and non-convex 
output as its gradient will be zero for all non-zero input and not properly defined for zeros. 
With this type of output deep networks will not be feasible for training as it’ll lead to 
vanishing gradient problem. This problem can be solved by smoothing the original function 
and making it a different and easier to optimize problem. Gradually smoothing will be 
reduced during training that will results in sequence of optimization problems and 
converging to the original optimization problem. We can make a smooth objective function 
motivated by the continuation methods that can converge to the desired objective. Tanh is 
used to make the smooth the objective function as it is similar to sigmoid and nonlinear in 
nature. 

tanh(𝑥) =  𝑒
𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥
=  𝑒

2𝑥−1
𝑒2𝑥+1

= 1 −  2
𝑒2𝑥+1

      (1) 

Equation 1 is strictly increasing and is for range 0 to ∞ but we need function that is with 
range from -∞ to +∞ as given under: 

tanh(𝑥)+1
2

= 1−  1
𝑒2𝑥+1

     (2) 

Bcoding = �𝑡𝑎𝑛ℎ�𝜎(𝑎𝑛7𝑊𝐻 + 𝑏𝐻)� + 1�/2 

= (𝑡𝑎𝑛ℎ(𝑎𝑛𝐻) + 1)/2      (3)  

 

 

 

 

 

 

Fig. 3. Extracted features processed with binary code output 
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3.4 Loss Functions: 
To learn hash functions needed useful information is provided by image labels that is also 
needed to classify images. Using this supervised information will make this method semi-
supervised learning. To preserve semantic binary codes, extracted codes are trained with 
provided images label data that will not only map binary codes with image labels but also 
help to calculate accuracy. Using bcoding layer Q hidden attributes can be derived with each 
either 1 or 0. During training and testing classification is dependent on these hidden 
attributes as input image is associated with these binary valued outputs. Though we can 
calculate classification error using an optimization of a loss function. Using this procedure 
mapping of binary codes with semantically similar images can be ensured. 

We assume a matrix WC ϵ ℝ𝑄 ×𝑀 to estimate mapping between image labels and binary 
hash codes. For any image In, yn is original class label while y’n is predicted class label. 
While calculating WC, one of our objective function that needs to optimize is given as under: 
 

Loss1(W) = arg min∑ 𝐿(𝑦𝑛,𝑦�𝑛) +  𝜆 ‖𝑊‖2𝑀
𝑚=1    (4) 

where L(.) is to minimize classification error that uses softmax outputs and minimizes 
cross-entropy error function. For multi-label classification, yn could have multiple entries as 
1 that shows image association with multiple classes. For this purpose, we need to enlarge 
the margin of classification boundary so that multiple labels can be incorporated. To achieve 
this task network is set to give output like: for 𝑦𝑛𝑚 = 1 output will be 𝑦�𝑛𝑚 ≥ 1 and for 
𝑦𝑛𝑚 = 0 output will be 𝑦�𝑛𝑚 ≤ 0 where 𝑦𝑛𝑚 is particular label for nth image and mth output 
node. Thus the loss function will become 
 

𝐿(𝑦𝑛𝑚 ,𝑦�𝑛𝑚) =  �
0                             𝑦𝑛𝑚 = 1 ∧  𝑦�𝑛𝑚  ≥ 1
0                             𝑦𝑛𝑚 = 0 ∧  𝑦�𝑛𝑚  ≤ 0
1
2

|𝑦𝑛𝑚 −  𝑦�𝑛𝑚|                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
�   (5) 

Activations of each bcoding node should be approximate to {0, 1}. Though sigmoid 
function in last FC7 layer of convolutional autoencoder has given outputs between 0 and 1 
but requires some constraint that can make these codes further approach to 0 or 1. Second 
part of loss function add constraint of maximizing the sum of squared errors with bcoding 
activations, that is, ∑ ‖𝑎𝑛𝐻 − 0.5𝑝‖2𝑁

𝑛=1 , where p is Q-dimensional vector having all 1s. This 
process ensures that our network will generate more appropriate binary code requirements. 

Binary hashed codes should also have balance between 0s and 1s. To achieve this goal 
we need to minimize ∑ (𝑚𝑒𝑎𝑛(𝑎𝑛𝐻)− 0.5)2𝑁

𝑛=1 , where mean(.) calculates the average of all 
the values in a vector. This constraint favors equal number of 0s and 1s in binary codes and 
expands the gap between 0s and 1s of binary hash codes.  

Objective function by combining above mentioned equations to construct has codes with 
similarity preserving is given as under: 

arg𝑚𝑖𝑛𝑤  𝑥 � 𝐿(𝑦𝑛,𝑦�𝑛) +  𝜆 ‖𝑊‖2
𝑀

𝑚=1

− 𝑦 �‖𝑎𝑛𝐻 − 0.5𝑝‖2
𝑁

𝑛=1

+ 𝑧 �(𝑚𝑒𝑎𝑛(𝑎𝑛𝐻) − 0.5)2
𝑁

𝑛=1
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where x, y and z is weightage given to each part of the objective function and can be 
selected at random.  

4. Implementation: 
This approach was implemented using open source library KERAS with Tensorflow as a 
backend. System used in this process equipped with ci7 processor 7th generation with 16gb 
ram and NVIDIA 1050 ti GPU. Software toolchain used to implement the model consist of 
IPython development environment using Keras 2.0 on Tensorflow backend and nvidia cuda 
8.0. Training and testing data is manipulated in form of numpy arrays.  

5. Experiments: 
Experiments have been conducted on 4 most widely used datasets including Cifar-10, Mnist, 
Nus-Wide and Mirflicker. Furthermore, results have been compared with state of the art 
methods [1], [6]–[8], [11], [13, p.], [30], [38] that includes unsupervised and hashing 
techniques.  

5.1 Datasets: 
Above mentioned four datasets were divided into training, testing and validation sets. 
Description of these sets including dataset is given as follows: 

CIFAR-10: This dataset has 10 categories having 32x32 color images. Each category has 
6000 images, so in total we have 60000 color images in this dataset. 50000 images were 
selected at random for training while remaining were divided in testing and validation at 
random.  

MNIST: 10 categories of grayscale images having hand written images from 0 to 9 with 
total 70000 images of 28x28 pixels. Training was performed using 60000 images selected at 
random but equal from each class. Remaining 10000 were used for testing and validation 
purposes. 

NUS-Wide: This dataset is available with 81 semantic concepts with 21 most frequent 
and at least 5000 images per concept. Dataset contains 270000 images with each image 
associated with one or multiple labels. Around 90% data was randomly selected for training 
while remaining 10% was used for testing and validation purposes.  

MIRFLICKR: Images from Flickr with multiple label having 38 semantic concepts and 
in total 25000 images. 24000 images were used for training while remaining were used for 
testing and validation selected at random. 

Accuracy of the image retrieval was compared with other techniques on the basis of 
Mean Average Precision, Precision @top100, @top200, @top400, @top600, @top800 and 
j@top1000. Mean average precision (MAP) is the mean of average precision for every query. 
Average precision can be calculated using 𝐴𝑣𝑔.𝑃𝑟𝑒𝑐. =  1

𝑀
 ∑ 𝑘

𝑀𝑘
 ×𝑛

𝑘=1  𝑟𝑒𝑙𝑘  where M is 
number of images relevant to query in database, Mk is number of relevant images in the top k 
returns and relk = 1 if the image ranked at kth position is relevant and 0 otherwise. Precisions 
at certain level of recall is known as Precision Recall Curves. It is calculated for all returned 
results. Average precision of top k returned images for each query is Precision @topk while 
average precision of the top 500 returned images for each query is precision @top500.  
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Table 1 (a). MAP scores with different lengths of hash codes 

MAP CIFAR10 MNIST 
12bit 24bit 32bit 48bit 12bit 24bit 32bit 48bit 

DHS 0.921 0.932 0.930 0.940 0.985 0.990 0.990 0.990 
SSDH 0.801 0.813 0.812 0.814 0.975 0.982 0.982 0.982 
DRSCH 0.721 0.733 0.726 0.747 0.951 0.953 0.955 0.966 
NINH 0.600 0.696 0.689 0.702 0.931 0.949 0.958 0.959 
CNNH 0.496 0.580 0.582 0.583 0.925 0.955 0.964 0.965 
SDH-VGGF 0.363 0.528 0.529 0.542 0.542 0.938 0943 0.944 
ITQ-VGGF 0.219 0.228 0.239 0.247 0.407 0.478 0.487 0.506 
SH-VGGF 0.169 0.161 0.161 0.159 0.301 0.304 0.296 0.287 
LSH-VGGF 0.132 0.124 0.144 0.157 0.176 0.191 0.220 0.305 
SDH 0.255 0.330 0.344 0.360 0.526 0.915 0.921 0.926 
ITQ 0.158 0.163 0.168 0.169 0.404 0.442 0.447 0.460 
SH 0.124 0.125 0.125 0.126 0.290 0.278 0.260 0.254 
LSH 0.116 0.121 0.124 0.131 0.162 0.236 0.222 0.276 

Table 1 (b). MAP scores with different lengths of hash codes 

MAP NUS-WIDE MIRFLICKR 
12bit 24bit 32bit 48bit 12bit 24bit 32bit 48bit 

DHS 0.801 0.802 0.802 0.810 0.850 0.845 0.860 0.890 
SSDH 0.707 0.725 0.731 0.735 0.773 0.779 0.778 0.778 
DRSCH 0.640 0.650 0.655 0.635 0.741 0.741 0.737 0.728 
NINH 0.597 0.627 0.647 0.651 0.693 0.711 0.718 0.709 
CNNH 0.536 0.522 0.533 0.531 0.667 0.688 0.654 0.626 
SDH-VGGF 0.520 0.507 0.591 0.610 0.695 0.704 0.697 0.708 
ITQ-VGGF 0.582 0.581 0.583 0.588 0.648 0.654 0.652 0.652 
SH-VGGF 0.486 0.462 0.455 0.448 0.603 0.595 0.590 0.588 
LSH-VGGF 0.432 0.451 0.464 0.466 0.571 0.574 0.580 0.589 
SDH 0.414 0.465 0.451 0.454 0.595 0.601 0.608 0.605 
ITQ 0.428 0.429 0.430 0.431 0.576 0.579 0.579 0.580 
SH 0.390 0.391 0.389 0.390 0.561 0.562 0.563 0.562 
LSH 0.404 0.384 0.394 0.400 0.557 0.564 0.562 0.569 

 

5.2 Experiment Results and Analysis 
MAP scores are shown in above Table 1 (a) and (b) that clearly elaborate the performance 
of our method in comparison to state of the techniques available in literature. For example, if 
we take 48-bit code for all datasets, SSDH is at 81%, DRSCH is at 74%, NINH is at 70% 
while our algorithm is producing 94% results. There are two main reasons, one is features 
that were extracted using convolutional autoencoder that ensures the reconstruction of 
original image from extracted features. Secondly semi-supervised loss function that 
improves search accuracy along with semantic similarity preservation. Same can be seen in 
the following graphs. 

Training sets were used to train the model from scratch so that a fair comparison could 
be made between hashing and traditional techniques. Parameters extracted after training were 
given to bcoding layer that convert these feature vectors to binary hash code. With larger 
datasets having major portion as a training set leads to better feature extraction that 
ultimately results in good accuracy and better retrieval. Precisions with top retrieved images 
having 48-bit coding length is shown in Table 2 (a) and (b). Same has been drawn in the 
form of graphs that elaborates success of our method in each dataset case.  
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Fig. 4. mAP scores with different lengths of hashing code for four known datasets 

 
 
MNIST is a simple and single labeled dataset that shows good performance in 

comparison to other datasets. Performance has been improved using our method as it has 
been shown in Table II. Classification performance for this single labeled dataset has been 
improved for all given code lengths. This shows that our technique retains good performance 
for lower dimensional features too.  

CIFAR10 is a color image dataset having 10 different categories. Our technique has 
shown good results for this dataset too. Semantics have been retrieved in much details and 
accurately that we can reconstruct original like images from these extracted features. Table 
II has shown performance evaluation of this dataset with different number of retrieved 
images and proves effectiveness by producing better results. 
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Fig. 5. Precision of retrieved images for top 100m 200, 400, 600, 800 and 1000 images 

Table 2 (a). Precision scores at different outputs i.e. 100, 200, 400, 600, 800 and 1000 

Precision CIFAR10 MNIST 
100 200 400 600 800 1000 100 200 400 600 800 1000 

DHS 0.91 0.93 0.92 0.93 0.93 0.93 0.99 0.99 0.99 0.99 1.00 0.99 
SSDH 0.82 0.83 0.83 0.83 0.83 0.83 0.98 0.99 0.99 0.99 0.99 0.99 
DRSCH 0.79 0.79 0.79 0.79 0.79 0.79 0.98 0.98 0.97 0.97 0.97 0.96 
NINH 0.77 0.77 0.77 0.77 0.77 0.77 0.96 0.96 0.96 0.96 0.96 0.96 
CNNH 0.66 0.67 0.67 0.67 0.67 0.67 0.96 0.96 0.96 0.96 0.96 0.96 
SDH-VGGF 0.38 0.51 0.60 0.62 0.67 0.67 0.79 0.90 0.94 0.95 0.95 0.95 
ITQ-VGGF 0.49 0.42 0.40 0.40 0.39 0.39 0.83 0.80 0.77 0.74 0.72 0.71 
SH-VGGF 0.41 0.37 0.33 0.30 0.28 0.27 0.75 0.70 0.63 0.60 0.58 0.56 
LSH-VGGF 0.32 0.29 0.27 0.26 0.25 0.24 0.60 0.55 0.52 0.50 0.49 0.48 
SDH 0.36 0.41 0.43 0.45 0.46 0.46 0.72 0.89 0.91 0.92 0.93 0.93 
ITQ 0.33 0.29 0.27 0.26 0.25 0.24 0.82 0.80 0.77 0.74 0.72 0.71 
SH 0.23 0.20 0.20 0.19 0.18 0.18 0.81 0.73 0.68 0.63 0.59 0.56 
LSH 0.20 0.19 0.18 0.19 0.18 0.17 0.68 0.60 0.55 0.52 0.50 0.49 
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Table 2 (b). Precision scores at different outputs i.e. 100, 200, 400, 600, 800 and 1000 

Precision NUS-WIDE MIRFLICKR 
100 200 400 600 800 1000 100 200 400 600 800 1000 

DHS 0.95 0.96 0.96 0.95 0.96 0.96 0.92 0.93 0.93 0.93 0.93 0.93 
SSDH 0.95 0.95 0.95 0.95 0.94 0.94 0.87 0.87 0.86 0.86 0.85 0.85 
DRSCH 0.78 0.78 0.78 0.77 0.77 0.77 0.82 0.82 0.82 0.82 0.82 0.81 
NINH 0.79 0.79 0.78 0.77 0.77 0.76 0.82 0.82 0.81 0.81 0.80 0.79 
CNNH 0.72 0.71 0.70 0.70 0.70 0.70 0.67 0.67 0.67 0.67 0.67 0.67 
SDH-VGGF 0.94 0.93 0.93 0.93 0.92 0.92 0.84 0.84 0.83 0.82 0.81 0.80 
ITQ-VGGF 0.94 0.93 0.92 0.92 0.91 0.90 0.84 0.81 0.79 0.78 0.77 0.76 
SH-VGGF 0.77 0.74 0.72 0.70 0.69 0.68 0.77 0.74 0.71 0.69 0.66 0.67 
LSH-VGGF 0.65 0.64 0.63 0.62 0.61 0.60 0.69 0.67 0.66 0.65 0.64 0.64 
SDH 0.55 0.54 0.54 0.54 0.54 0.54 0.67 0.66 0.66 0.65 0.65 0.65 
ITQ 0.52 0.52 0.51 0.51 0.50 0.50 0.63 0.63 0.62 0.62 0.62 0.62 
SH 0.48 0.47 0.46 0.45 0.45 0.45 0.60 0.59 0.59 0.58 0.57 0.57 
LSH 0.46 0.46 0.46 0.45 0.45 0.45 0.61 0.60 0.60 0.60 0.60 0.59 

 

This method has also been tested for cross-domain images i.e. images that were not part 
of any dataset. As our aim was to have such a technique that can produce binary code having 
semantic information so that this code can be embed in image as annotation that will 
improve image retrieval procedure. This can be applied on big data as well as in security 
applications.  

6. Conclusions: 
A semi-supervised deep hashing technique has been presented in this paper that not only 
preserve semantic information but also produce binary hash codes based on extracted 
semantic features. This is achieved by using power of convolutional autoencoders which are 
able to recreate original like images from extracted semantic features. Extracted features 
after encoding procedure in CAE, features were presented to bcoding layer. This layer was 
trained using 3 different loss functions that ensures captivity of semantic features and 
calculate loss based on these loss functions. This technique is also scalable for many other 
datasets and databases. proposed technique was compared with state of the art techniques 
and it provides promising results. In future, this tchnique can be applied for live images with 
reduciton in processing time. 
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