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Abstract 
 

In this paper, for a spectrum sensing purpose, we heuristically established a test statistic (TS) 
from a sample covariance matrix (SCM) for multiple antennas based cognitive radio. The TS 
is formulated as a scaled-energy which is calculated as a sum of scaled diagonal entries of a 
SCM; each of the diagonal entries of a SCM scaled by corresponding row’s Euclidean norm. 
On the top of that, by combining theoretical results together with simulation observations, we 
have approximated a decision threshold of the TS which does not need prior knowledge of 
noise power and primary user signal. Furthermore, simulation results – which are obtained in a 
fading environment and in a spatially correlating channel model – show that the proposed 
method stands effect of noise power mismatch (non-uniform noise power) and has significant 
performance improvement compared with state-of-the-art test statistics.  
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1. Introduction 

Cognitive radio [1] is a promising technology that will improve network utilization by 
opportunistically accessing licensed primary users signals [2]. It does this by looking for 
temporally or spectrally or spatially vacant channels [3].  The method for detecting whether a 
particular channel is occupied by primary user signals or not is called spectrum sensing (SS) 
[4]. 

Through SS, either cognitive radios avoid interference to primary users’ (PU) signals or 
use a vacant channel for communication purpose. Hence, SS needs high probability of 
detection (to avoid interference to PU signals) and low probability of false alarm (for cognitive 
radio communication). This is the target of SS algorithms. To attain the mentioned target, 
collaborative or cooperative spectrum sensing (CSS) is devised [5]. 

There are several CSS mechanisms [6].  For example: (1) Fusion center based [7]  (2) 
Ad-hoc network based [8]  (3) Multiple antennas based [9]. The fusion center and ad-hoc 
network oriented CSS have drawbacks of: (i) Susceptibility to imperfect reporting channel 
[13] (ii) Requiring common control channel. To overcome these drawbacks, works at 
[10]-[14] utilized the third scheme: multiple antennas based CSS. In addition, the usage of 
multiple antennas can enable to devise test statistics that are immune to noise power (variance) 
uncertainty problem [12][17]. 

Research works [14][15] show that performance of a cognitive radio is also affected by 
noise power nature. Here, by nature we mean: whether noise power at output observation of 
antennas are the same (uniform noise power, UNP) or different (non-uniform noise power, 
NNP). Report at [14] indicates that performances of different detection algorithms behave 
differently under the two cases. However, there are algorithms [14][15] which do not show 
performance fluctuation depending on whether noise power is UNP or NNP.  

Motivated by the advantages of using multiple antennas cognitive radio for a SS purpose as 
discussed in the above two paragraphs, in this manuscript, by relying on a sample covariance 
matrix (SCM), we heuristically formulated a test statistic (TS). Accordingly, the contributions 
of this manuscript can be stated as: 

i. Without imposing of high computational complexity, we have formulated a 
detection algorithm for multiple antennas cognitive radio as a sum of 
scaled-energy which are established by scaling each of the diagonal entries of a 
SCM by its corresponding row’s Euclidean norm. And the performance of the TS 
formulated is superior compared with state-of-the-art detectors. On the top of 
that, since the method only considers a sum of scaled diagonal entries, both 
theoretical and simulation results indicate that it has less computational time. 

ii. Also, the performance of the proposed method is noise power nature (UNP or 
NNP) invariant. In addition to simulation-wise verification, we have 
theoretically shown this under the signal-free state using an asymptotic analysis. 

iii. Moreover, by combining theoretical results with simulation observations, we 
have approximated a decision threshold of the proposed method. And the 
decision threshold does not need knowledge of noise power.  

Finally, the rest of the paper is organized as follows: section-2 briefly gives related works; 
section-3 formulates the problem of spectrum sensing using multiple antennas cognitive radio 
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with their underlying basic assumptions; section-4 discusses the proposed method; section-5 
provides simulation results and analysis; and section-6 concludes the paper. 

2. Related Works 
The works at [10]-[16] established test statistics by relying on a SCM. This is because of 

the fact that the SCM contains correlation information when the primary user signals present.  
The correlation of a SCM leads to spreading of eigenspectrum when primary user signals 

exist. Using this advantage, [10]-[12] proposed eigenvalues dependent test statistics. The 
works at [10] utilized a ratio of the minimum to the maximum eigenvalues.  Furthermore, it is 
assumed to operate in an environment with a single primary user source (rank-1 signal); when 
numbers of primary user sources are greater than one (rank-P signals [14]), its performance 
degrades significantly. The works of [11][12] can alleviate the problem of dependency of [10] 
on a rank of signals. Specifically,  [11] (Eigenvalue-to-Moment Ratio, EMR ) used a ratio of 
the Frobenius norm of a SCM to a square of a trace of a SCM as a particular case. And the 
work at [13] is based on a Separating Function Estimation Test (SFET) framework to establish 
test statistics from higher order moments of eigenvalues. Despite the fact that the 
performances of [10]-[12] are immune to noise variance uncertainty problem [17] when it is 
the UNP case, their performance decline in the NNP case and we will verify this for [11][12]  
under the section-5 (results and analysis); for [10], it is already reported in [13].  

On the other hand, the authors at [13]-[16] applied non-eigenvalues approach. Their test 
statistics are directly derived from a SCM. Particularly, [13] (Volume Detector, VD) uses the 
determinant of a SCM by first dividing each entry of a SCM with their corresponding row’s 
Euclidean norm. Whereas, [14]  (Hadamard Ratio Test) uses a ratio of the determinant of a 
SCM to a product of diagonal entries of a SCM. As reported in [13], the methods [13][14] are 
robust detection algorithms: their performances remain the same irrespective of whether noise 
power is UNP or NNP. However, as we will verify through simulation, since both [13] and 
[14] require computation of determinant, their TS impose high computational time when 
numbers of antennas get large. Also, they do not have theoretical decision thresholds which 
make their decision thresholds dependent on a Monte Carlo method. On the other hand, the 
work at [15] and [16] employee a weighted sum of a sample correlation matrix and the 
maximum eigenvalue after Cholesky Factorization, respectively. In contrast to [13][14], 
[15][16] need prior knowledge of noise power that make them impractical.    

3.  System Model and Basic Assumptions 
In this paper, bold uppercase, and bold lowercase letters denote matrices and row vectors, 

respectively, while lightface letters denote scalars. Moreover, baC × stands for the complex 
number with dimension of ,ba× where a  and b  are real numbers; H(.)  stands for the 
complex conjugate transpose; [].Ε  stands for the expectation operator; [].V  stands for the 
variance operator; tr(.)  stands for the trace of a matrix; 2. F  stands for square of the Frobenius 
norm of a matrix. 

3.1 Signal Representation  
As depicted in Fig. 1, assume that a cognitive radio (CR) with a number of antennas 

2≥M  is employed for sensing signals originating from L  independent primary user sources; 
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where each of the transmitters is a single antenna based [13]. We further assume that 
N samples of signals are gathered at each antenna’s output observation. Output observation of 
signals received can be represented as 
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where 1H  and 0H  stand for primary user (PU) signals presence and absence hypotheses, 
respectively; NMC ×∈X  represents the following compact form  
 

[ ]HMxxxxX         321 =                                                 (1a) 
 

so that 1x , 2x , 3x , , Mx 1×∈ NC  are column vectors containing output observation of signals 
at each antenna; NLC ×∈S is the compact form representation of PU signals as 
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where 1s , 2s , 3s , , Ls 1×∈ NC  are column vectors containing signals originating from each of 
the PU sources; and NMC ×∈W  is the compact matrix form representation for the additive 
white Gaussian noise (AWGN) as 
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where 1w , 2w , 3w , , Mw 1×∈ NC   are column vectors containing AWGN at each output 
observation of antennas with an assumption that all the entries of mw , for all 

,,,2,1 Mm = are from the zero-mean circularly symmetric complex normal distribution 
);,0( 2

mσCN  where 2
mσ  is the unknown noise variance (power).  And, the channel state matrix 
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where each of the columns of (1d) are from the complex normal distribution with zero-mean 
and covariance matrix Σ  [18]  such that the entries of Σ  are given as   
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for all ;,,2,1, Mmk =  ( ).0J  is the zero-order modified Bessel function; j  stands for the 
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Fig. 1. System diagram: the h11, h21, …, hML denote the fading channel between each 
antenna & PU source, and the s1, s2, …, sL denote signals from each of the PU sources. 

 
imaginary number ;1−  K  controls width of angle of arrival (AoA) which ranges from 
isotropic scattering when 0=K  to extremely non-isotropic scattering when ;∞=K  

[ ]ππµ ,−∈  represents mean direction of AoA; kmd  stands for normalized distance between 
the thk  and the thm antennas. Modeling H  in this manner is called space-time channel 
correlation model [18] and it resembles a real system as mentioned in [13]. 

Using (1a)-(1e), each of the column vectors 1×∈ N
m Cx  that makes the compact form 

,X which is given at (1a), is then:  
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for all Mm  ,,3,2,1 = . 

3.2 Problem Formulation 
Assuming that the signal representation at (1) has both the in-phase and the quadrature output 
observations, we have adopted a tactic used in [13] as 
 

[ ]HMyyyyY         321 =                                                  (2) 
 

so that NMC 2×∈Y  and 1y , 2y , 3y ,  , My 12 ×∈ NC  are column vectors. For each of the 
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from the quadrature output observations of the corresponding 1x , 2x , 3x , , Mx  as given at 
(1f). 

By using definition, a sample covariance matrix of Y can be given as 
 

,
2
1 H
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YYR =                                                                 (3) 

 
where MMC ×∈R  and  each of its entry is 
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for all .,,2,1, Mmk =  The diagonal entries of R  provide average energy information, while 
the off-diagonal entries give similarities information. Furthermore, when a number of samples 
of a signal are very large, the average magnitude of each entry of R  is larger under the 
state 1H  than under the state .0H  Statistically, these can be stated as: ][ 1HrkmΕ >  

][ 0HrkmΕ . This is due to the fact that the output observations of received signals correlate 
under the state 1H , whereas they do not correlate when the state is .0H  And, in this paper, 
with utilizing this property of R , we will consider the problem of spectrum sensing for 
multiple antennas based cognitive radio by relying on R . In addition, we will see the problem 
of noise power non-uniformity or uncalibrated receivers effect (see paragraph-4 of the 
section-1).  
    

4.  The Proposed Method: Scaled-Energy Based Spectrum Sensing 

4.1 Test Statistic from Scaled-Energy 
In this subsection, we heuristically formulate a test statistic from the SCM. We form it as a 
sum of scaled-energy. By adopting a method used in [13], each of the entries of R , which is 
given at (4),  can be scaled as 
 

k

km
km

r
r

τ
=ˆ ,                                                                      (5) 

 
where 
 

2
1

1








= ∑

=

M

t

H
ktktk rrτ                                                           (6) 

 
is the corresponding row’s Euclidean norm for all .,,2,1, Mmk =  Using (5)(6), let us define 

kδ  as a scaled energy of the output observed  signal at the thk antenna as 



5388                                        Michael et al.: Scaled-Energy Based Spectrum Sensing for Multiple Antennas Cognitive Radio 

 

,ˆ
k

kk
kkk

rr
τ

δ ==                                                                (7) 

where  ,,,2,1 Mk =  and kkr  is the energy of the output observed signal at thk  antenna and it 
can be evaluated using (4); and kτ  is as per given at (6). Due to the uncorrelation of the 
off-diagonal entries under the state ,0H  when there is a large number of samples N , the 
value of 0Hkδ  approaches to one (we will show this later under the subsection 4.2). In 
contrast, when the PU signals present or under the state ,1H  since the output observed signals 
at each antenna correlates among themselves, the value of 1Hkδ  goes to zero; provide that 
there is a large number of samples and antennas. Consequently, it is easy to implicitly notice 
that ][ 0HkδΕ >  ].[ 1HkδΕ  This condition serves as a basis to formulate a test statistic that 
can discriminate between the binary hypotheses 0H  and .1H  

Using (7), we define a test statistic – let us denote it with SET  – as a sum of scaled-energy 
(SE) as  

.
1
∑
=

=
M

k
kSET δ                                                                 (8) 

 
With the same reasoning used above, for a large sample size, we can infer that ][ 0HTSEΕ >  

].[ 1HTSEΕ  Consequently, a decision rule becomes  
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where SEγ  is a decision threshold that can be determined depending on a desired false alarm 
probability FP . We provide an approximate for SEγ  in the section-5. But, before that we will 
see asymptotic properties of the test statistic SET  under the state .0H  And, the summary of the 
proposed method is given below in Table 1. 
 

Table 1. Summary of the proposed detection algorithm. 
 
 

 
 
 
 
 
 

4.2 Asymptotic Properties of the Test Statistic Under 0H  

We provide the asymptotic properties of the test statistic under the state 0H  for a  reason: a 

Step1:     As per (2), find the compact form of .Y  

Step2:     Using (3), compute the SCM .R  

Step3:     Using (7), for all ,,,2,1 Mk =  scale the diagonal entries of .R     

Step4:     Decide in favor of 1H if SESET γ< ; otherwise, decide as .0H          
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decision threshold is usually easy to determine under the state 0H  [11]. In order to do this, 
first we will see asymptotic properties of the diagonal and off-diagonal entries of R  (see (4)), 
and then extend these properties to study asymptotic properties of .0HTSE  

 
Lemma-1: Under the state 0H  and a large number of samples N  – for all Mmk ,,2,1, =  
and mk ≠  – each of the off-diagonal entries of R  asymptotically follows a normal 
distribution as      
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where 2

kσ  and 2
mσ  are noise variance at the output observations of the thk and thm  antennas, 

respectively. 
 
Proof: Using  (4) and the central limit theorem together with the assumptions put in the 
section-3, Lemma-1 can be easily proofed as 
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Lemma-2: Under the state 0H  and a large number of samples N  – for all Mk ,,2,1 =  – 
each of the diagonal entries of R  asymptotically follows a normal distribution as            
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where 2
kσ  is noise variance at the output observation of the thk  antenna.  

 
Proof:  Using  (4) and the central limit theorem together with assumptions given in the 
section-3, Lemma-2 can be proofed as            
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and          
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From the Lemma-1 and the Lemma-2, we can conclude the followings: 

i. under the state 0H , the entries of 0HR  are dependent on the noise power, 
ii. due to the signals’ non-correlation, when N  is very large, each of the 

off-diagonal entries of 0HR  goes to zero (Lemma-1) and  
iii. each of the diagonal entries of 0HR  goes to noise power (Lemma-2). 

However, as subsequently will be shown at Lemma-3, the scaling parameter τ enables 
non-dependency of the diagonal values of 0HR  on the noise power.  

 
Lemma-3: Under the state 0H  and a large number of samples ,N  regardless of the noise 
power, the expected value of the scaled energy 0Hkδ  at the output observation of  the thk  
antenna, which is given at (7), asymptotically approaches one from the left as            
 

[ ] 10 →Ε Hkδ .                                                                 (12)  
 

Proof: Lemma-3 can be proofed using the results at the Lemma-1 and Lemma-2. The scaling 
parameter kτ , which is given at (6), for a large number of samples can be approximated as            
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From the Lemma-1, since each of the off-diagonal entries of 0HR  goes to zero for a large 
number of samples, the following can be approximated at (12a):       
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With further using Lemma-2, (12c) above is      
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[ ] ,2

0 kk H στ ≈Ε                                                              (12d)  
 

where 2
kσ  is the noise power at the output observation of the thk  antenna for all 

.,,2,1 Mk =  Using (12d), under a large number of samples and the state ,0H  the scaled 
energy at (7) can be approximated as     
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so that using Lemma-2     
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From the Lemma-3 above, under the state 0H  and large number of samples, we can infer that 
the expected value of the scaled-energy 0Hkδ  is independent of the noise power.  
 
Lemma-4:  Under the state 0H  and a large number of samples, regardless of the noise power, 
the expected value of the test statistic ,0HTSE  which is given at (8), asymptotically 
approaches M  from the left as    
 

[ ] ,0 MHTSE →Ε                                                          (13)  
 

where M  is the number of antennas of the cognitive radio. 
 
Proof: By using the Lemma-3, Lemma-4 can be easily proofed as    
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Lemma-4 tells us that the asymptotic expected value of 0HTSE  under a large number of 
samples is independent of the noise power.  Together with simulation observations, in the 
section-5 (subsection 5.1), we will utilize Lemma-4 in approximating the decision threshold 

SEγ  which is given at (9). 
 

4.3 Computational Complexity 
The computational complexities for the proposed method, EMR, SFET1  and VD are given 

in Table 2. Since all the detectors are based on a SCM, they require )( 2 NMΟ  [12] for a SCM 
computation. Particularly, in our proposed work (SE), there is about )( 2MΟ  for computation 
of the Euclidean norm, division of each entry of a row by its corresponding Euclidean norm 
and summing all the scaled-energy values to get the final test statistic .SET  As a  result, the 
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overall complexity of the proposed method is )()( 22 MNM Ο+Ο . In [13], the computational 
complexity is not provided for the VD test statistic; however, since it involves the computation 
of a determinant, its complexity is supposed to be inferior to the proposed method. 

 
Table 2.  Complexities comparison using the Big-O. 

 
 
 
 
 
 
 
 
 
  

5.  Results and Analysis 
We have used the simulation environment of [13] which assumes that all the L  primary user 

transmitters independently transmit QPSK signals, symbols 







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1 , with equal power 

and probabilities. And the signals are subjected to the fading environment represented in the 
section-2 at (1) with the space-time channel correlation model: the channel state H . The 

parameters that describe H  are set as follows: the angle of arrival (AoA) 
2
πµ = ;  the width of 

AoA 80=K ; the normalized distance between adjacent antennas 5.0=kmd , provide that all 
the antennas are arranged in a linear array fashion and mutually not coupled. In addition, each 

column of H  is normalized so that signal-to-noise ratio (SNR) is defined as 
Mtr
LtrSNR

w

s

)(
)(

R
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= , 

where [ ]H
s SSR Ε=  and [ ]H

w WWR Ε= [13]. 
For the purpose of comparing with our work Scaled-Energy (SE), we selected 

state-of-the-art detectors: Volume Detector (VD [13]), Eigenvalue-Moment-Ratio (EMR [11]), 
and Separating Function Estimation Test (SFET1 [12]). It is important to notice that, in [12], 
they proposed two test statistics: SFET1 and SFET2. Since the performance of SFET1 is 
slightly superior to SFET2, we selected SFET1. 

Unless otherwise mentioned, performances are considered over 50,000 independent Monte 
Carlo trials. And during each trial, the value of H  is fixed constant. Furthermore, the 
evaluation is considered in the two cases: (1) Uniform noise power (UNP) and (2) 
Non-uniform noise power (NNP);  (see paragraph-4 of  the section-1). 

5.1 Decision Threshold 

 5.1.1 Approximation 
In this subsection, under the state 0H , we approximate the decision threshold of the 

proposed method using simulation observations together with the Lemma-4. To do this, first 
additive white Gaussian noise, see (1c), is generated at each of the antenna’s inphase and 

Detectors Complexities 

SE (Proposed): )()( 22 MNM Ο+Ο  

EMR [11]: )()( 22 MNM Ο+Ο  

SFET1 [12]: )()( 373.22 MNM Ο+Ο  

VD [13]: --- 
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quadrature output observations. Using the generated noise, for a total number of independent 
trials of 4105× , we have computed 0HTSE . The obtained value of 0HTSE  at each trial is 
recorded in order to plot its histogram as displayed in Fig. 2, Fig. 3 and Fig. 4. As it can be 
clearly seen when number antennas and number of samples increase, the shape of the 
histograms approximate the normal distribution. And it is important to notice that the 
‘Frequency’ label along the y-axis of the histograms refers to the number of counts or 
observations. 
 

 
Fig. 2. Histograms obtained by making the number of bins 50 and number of trials 50,000 for M=4. 

 

Fig. 3. Histograms obtained by making the number of bins 50 and number of trials 50,000 for  M=6. 

  Fig. 4. Histograms obtained by making the number of bins 50 and number of trials 50,000 for M=10. 
 
 
Lemma-4 tells us that the expected value of the test statistic 0HTSE  asymptotically approaches 
M  from the left. Based on the Lemma-4, let us write the simulation obtained sample mean 
value of  0HTSE   as   
 

εµ −= MHsim 0 ,                                                        (14)  
 

for some very small random positive real number ε  that tends to zero as the number of sample 
increases. From (14), the value of  ε  can be evaluated as .0HM simµε −=  The values of  

0Hsimµ  – which are evaluated from the data used to plot the histograms in Fig. 2, Fig. 3 and 
Fig. 4 – are given in Table 3. As it is clear to see from the table, the value of ε  tends to zero as 
the number of sample increases. This simulation observation strongly supports Lemma-4 
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which states that under a large number of samples, the expected value of 0HTSE  
asymptotically tends to .M  With this, for practical purposes, we can approximate the 
simulation obtained mean value of the 0HTSE  as 
 

.0 MHsim ≈µ                                                                (15)  
 

Also,  we have evaluated simulation sample variance 0
2 Hsimσ  of the 0HTSE and displayed its 

value in Table 3. Using the simulation results obtained, we have found that the sample 
variance 0

2 Hsimσ  can be approximated as 
 

,2

2

0
2

N
MHsim =σ                                                            (16)  

 
and for comparison purposes, the value of 0

2 Hsimσ  is provided along with its approximate 

2

2

N
M  in Table 3. 

 
Table 3. Statistical values of the histograms obtained  from simulation. 

Histograms together with the (M,N) 
considered 

0Hsimµ  .0HM simµε −=  0
2 Hsimσ  

2

2

N
M  

 
Histogram-1 

(Fig. 2) 

)30,4(),( =NM  3.9201 0.0799 0.0120 0.0178 
)100,4(),( =NM  3.9763 0.0237 0.0011 0.0016 
)500,4(),( =NM  3.9972 0.0028 6.1 10-5 6.40 10-5 

)10,4(),( 4=NM  3.9997 0.0003 1.43 10-7 1.60 10-7 

 
Histogram-2 

(Fig. 3) 

)30,6(),( =NM  5.7104 0.2896 0.0330 0.0400 
)100,6(),( =NM  5.9402 0.0598 0.0029 0.0036 
)500,6(),( =NM  5.9811 0.0189 1.17 10-4 1.44 10-4 

)10,6(),( 4=NM  5.9993 0.0007 3.26 10-7 3.60 10-7 

 
Histogram-3 

(Fig. 4  

)30,10(),( =NM  9.2506 0.7494 0.1063 0.1111 
)100,10(),( =NM  9.7850 0.2150 0.0084 0.0100 

)500,10(),( =NM  9.9583 0.0417 3.38 10-4 4.00 10-4 

)10,10(),( 4=NM  9.9977 0.0023 0.75 10-6 1.00 10-6 

 
 
Using the results at (15)(16), and the shape of the histograms which are approximately 
bell-shaped together with the decision rule given at (9), the decision threshold SEγ  of the 
proposed method at a desired false alarm probability of FP  is approximated as 
 

( )FSE PQ
N
MM −−≈ − 11γ                                               (17)  
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where 1−Q  is an inverse of the Q -function. 
 

 5.1.2 Relative Error of a Decision Threshold 

The accuracy of theoretically calculated decision thresholds can be evaluated using a metric 
called Relative Error (RE) which is given in [13] as  
 

,100×
−

=
sim

theosimRE
γ

γγ
                                                  (18)  

 
where simγ  is simulation obtained decision threshold which can be obtained by relying on a 
Monte-Carlo method, and theoγ  is a theoretically approximated decision threshold (in our case, 

SEγ  at (17) replaces theoγ ). 
The values of RE  for some selected number of antennas and samples are provided in 

Table 4.  Compared with the EMR and SFET1, the proposed method (SE) has the smallest 
,RE  whereas SFET1 has the largest RE . The RE  for the VD is not included since it has no 

theoretical decision  threshold. 
Remark-1: The Monte-Carlo method based decision thresholds of  the Table 4 are obtained 
under the case uniform noise power (UNP) of 0dB. We have not given RE  values under the 
case non-uniform noise power (NNP). Because, under this case, the performances of EMR and 
SFET1 are noise power dependent as we will show this under the subsection 5.2.  
 
  

Table 4. RE in a percentage of the proposed method (SE), EMR and SFET1
. 

 

5.2 Decision Threshold Sensitivity Factor 
Under this subsection, we see whether a decision threshold is affected by noise power 
mismatch or not. But, first, we define a new parameter that describes a sensitivity of a decision 
threshold as   

Detectors together 
with the (M,N)  When  310−=FP : When 210−=FP : 

considered 
theoγ  simγ  (%)RE  theoγ  simγ  (%)RE  

,4=M  

50=N  
SE 3.7528 3.8031 1.32 3.8139 3.8441 0.20 
EMR 1.1674 1.1857 1.54 1.1458 1.1503 0.39 

SFET1 0.0347 0.0314 10.51 0.0308 0.0272 13.23 

,4=M  

100=N  
 

SE 3.8764 3.8889 0.32 3.9069 3.9178 0.29 
EMR 1.0837 1.0891 0.50 1.0729 1.0767 0.35 

SFET1 0.0253 0.0235 7.66 0.0233 0.0215 8.37 

,6=M  

200=N  
SE 5.9073 5.9072 0.17x10-4 5.9302 5.9261 0.07 
EMR 1.0519 1.0522 0.03 1.0464 1.0475 0.11 

SFET1 0.0063 0.0061 3.28 0.0060 0.0058 3.45 
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,100×
−

=
UNP

NNPUNP

γ
γγ

β                                                (19)  

 
where UNPγ  and NNPγ  are simulations obtained decision thresholds under the UNP and the 
NNP cases, respectively. So, β describes relative percentage deviation of a decision threshold 
under the NNP from that obtained under the UNP case. A small value of β  describes a 
minimal variation of a decision threshold which is preferable. 

The tabular results displayed in Table 5 shows the values of  ,UNPγ  NNPγ  and β  at 
desired false alarm probabilities of 310−=FP  and 210−=FP  by fixing ,50=N 4=M  and 

.1=L  Particularly, the NNPγ  values are obtained when the noise power are 
,1[ 2

1 =σ ,7.12
2 =σ ,7.02

3 −=σ .]22
4 dB−=σ  Under all the circumstances, the proposed method 

(SE) has the lowest β  value, while the SFET1  has the largest β  value. Unlike the EMR and 
the SFET1, for the robust detectors (SE and VD), small values of β means decision thresholds 
are less sensitive to noise power mismatch and makes them practical. In the subsequent parts 
of this subsection, we will see the theoretical reasons for why the performance of the EMR and 
the SFET1 are noise power dependent under the case NNP and why the performances of the 
proposed method (SE) and VD are noise power invariant.  
 

Table 5.  The β  values when UNP of 0dB and NNP of [1, 1.7,-0.7,-2]dB at 50=N  and .1=L  
    

 
For a large number of samples, due to the non-correlation of signals, the SCM 0HR  is a 

diagonal matrix with each diagonal entries approximately representing noise power at each 
antenna’s output observation. This is because as ,∞→N  the SCM converges to a statistical 
mean value [19] which can be represented as    
 

[ ], lim 00 HRHR
N

Ε≅
∞→

                                                     (20)  

and refer to the Lemma-1 and Lemma -2 for an asymptotic distribution of each of the 
off-diagonal and the diagonal entries, respectively. Next, we will see the asymptotic properties 
of the test statistics of the EMR, the SFET1 and the VD under the state 0H  with an assumption 
of a large number of samples. As mentioned previously, doing this will enable us to 

When 310−=FP : When 210−=FP : 

Detectors UNPγ  NNPγ  (%)β  UNPγ  NNPγ  (%)β  

SE 3.8031 3.7677 0.93 3.8441 3.8213 0.59 

VD -0.4322 -0.4620 6.89 -0.3322 -0.3601 8.40 

EMR 1.1385 1.3285 16.69 1.1058 1.2702 13.44 

SFET1 0.0314 0.0584 85.99 0.0272 0.0480 76.47 
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understand reasons why the performances of the EMR and the SFET1 are different under UNP 
and NNP cases while why that of the proposed and VD are unaffected by noise power: 
 

i. The test statistic of the EMR [11] can be re-expressed as   
 

,
1

0

2

1
EMR

H

H

EMR D
DT γ

<
≥

=                                                        (21)  

where ,1 2
1 FM

D R=
2

2 )(1






= Rtr

M
D  and EMRγ  is a decision threshold for the test statistic 

.EMRT  When noise power is the UNP case, 01 HD  and 02 HD   tend to 

 
4

01lim σ≅
∞→

HD
N

                                                         (21a)  

 
 and 
 

4
02lim σ≅

∞→
HD

N
                                                        (21b)  

respectively; where 4σ  denotes uniform noise power at each antenna’s output observation. As 
given at (21a) and (21b), for the UNP case, both the numerator (i.e. 01 HD ) and the 
denominator (i.e. 02 HD ) asymptotically approach the same value. As a result, regardless of 
the noise power, their ratio goes to a unity value.  In the contrast, when noise power is the NNP 
case, the 01 HD  and 02 HD  tend to 
 

∑
=
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≅

M

k
kN M
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4
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respectively; where 2
kσ  denotes non-uniform noise power at each antenna’s output 

observations for .,,2,1 Mk =  The results at (21c) and (21d) imply that the ratio of the 
asymptotic values of 01 HD  and 02 HD  does not approach a specifically defined value; it 
is noise power variant. This indicates that under the UNP and the NNP cases, the asymptotic 
values of the test statistic 0HTEMR  are different which indirectly results in different 
performances under the two cases. 

 
ii. In [12], the test statistic of the SFET1 can be re-expressed as 
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,
1

1

0

1
4

3
SFET

H

H

SFET D
D

T γ
<
≥

=                                                     (22)  

where ),( 4
3 RtrD =  ,)( 4

4 RtrD =  and 
1SFETγ  is the decision threshold for test statistic 

.
1SFETT  When noise power is the UNP case, the 03 HD  and 04 HD  tend to 
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03lim σ≅
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                                                         (22a)  

 
and 
 

8
04lim σ≅
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HD

N
                                                        (22b)  

respectively; where 2σ  denotes uniform noise power at each antenna’s output            
observation. On the other hand, when noise power is the NNP case, the 03 HD  and 04 HD          
asymptotically go to 
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respectively; where 2
kσ  denotes non-uniform noise power at each antenna’s output 

observations for .,,2,1 Mk =  Under the UNP case,  the ratio of the asymptotic values of  

03 HD  (22a) and 04 HD  (22b) goes to a unity value, while under the NNP case,  the ratio of 
(22c) to (22d) is  noise power variant.  Consequently, the performances of the test statistic 

1SFETT  are different under the UNP and the NNP cases.   

iii. The VD’s test statistic is given in [13] as 
 

( ) ,)ˆdet(log
0

1

VD

H

H

VDT γ
<
≥

= R                                                     (23)  

where the entries of  R̂  are as per (5), and VDγ  is the decision threshold for the test statistic  
.VDT  Regardless of the noise power, the test statistic 0HTVD  asymptotically goes to 
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.0lim 0 ≅∞→
HTVDN

                                                         (23a)  

 
The result at (29a) is a consequence of the Lemma-3 and using the property that determinant  
of a diagonal matrix is simply the product of the diagonal entries. This indicates that 0HTVD  is  
noise power invariant. 
 

iv. For the proposed method, the asymptotic property is given at the Lemma-4 which  
shows that regardless of the noise power, asymptotically, the test statistic 0HTSE  approaches 
M  (i.e. the number of antennas). 
 

5.3 ROC and Detection Probability 
The figures in Fig. 5 and Fig. 6 illustrate Receiver Operating Characteristics (ROC) for 

.5dBSNR −=  The ROC curves of Fig. 5 is obtained at a relatively large number of samples 
( 50=N  when 1=L ),  while that of Fig. 6 is obtained at a relatively small number of samples 
(in a sample starving environment of 8=N  when 5=L ). On the other hands, the figures Fig. 
7 and Fig. 8 show detection probabilities at a specific false alarm probability of .10 3−=FP  
The (a) sub-figures are obtained in the UNP case while the (b) sub-figures are obtained in the 
NNP case.  

Generally, the EMR and the SFET1 show performance differences under the UNP and the 
NNP cases, whereas the proposed method and VD show robustness: their performance do not 
fluctuate with the noise power mismatch. For example, from the Fig. 6, under the UNP case 
and ,5dBSNR −=  both the EMR and SFET1 have detection probability of about 0.88. 
However, under the similar circumstance, but the NNP of [1, 1.7, -0.7, -2]dB, their 
performances declined to around 0.17. The theoretical reasons for the dissimilarity of the 
detection probability under the UNP and the NNP cases can be similarly justified using the 
reasoning techniques provided under the subsection 5.2.   

 

  
Fig. 5. ROC curves by fixing L=1, SNR=-5dB, M=4, N=50:  (a) UNP of 0dB (b) NNP of [1, 

1.7,-0.7,-2]dB. 
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Fig. 6. ROC curves by fixing L=5, SNR=-5dB, M=6, N=8:  (a) UNP of 0dB  (b) NNP of 

                                                       [0,-1,1.5, -0.8,2,-1.7]dB. 
 

 
Fig. 7. Detection probabilities by fixing L=1, M=4, N=50:  (a) UNP of 0dB (b) NNP of 

[1,1 .7,-0.7,-2]dB. 
 

 
Fig. 8. Detection probabilities by fixing L=5, M=6, N=8:  (a) UNP of 0dB (b) NNP of  [0,-1,1.5, 

-0.8,2,-1.7]dB. 
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5.4 Computational Time 
The depiction in Fig. 9 shows average computational time by fixing the number of samples 

at 50=N  and varying the number of antennas. We obtained each result by averaging 50,000 
independent Monte Carlo observations using a computer with 6GB RAM, Intel® Core ™ 
i5-4690 CPU with 3.5GHz on a 64-bit window-7 Operating System. 

Generally, under all the conditions considered, and compared with the counterpart 
detectors (i.e. EMR, SFET1 and VD), the proposed method has the smallest computational 
time since it only considers the sum of scaled-energy as given at (8). However, when the 
number of antennas gets very large, the computational time of the EMR and the SE are 
comparable and this is pointed-out using the computational complexities in Table 2: both the 
EMR and the SE have computational complexities of the same order.   

 
Fig. 9. Average computational time by fixing N=50. 

6.  Conclusion 
By relying on the properties of the entries of a sample covariance matrix, we have 

heuristically devised a test statistic (TS) from scaled-energy. By combining theoretical results 
together with simulation observations, we have also approximated a decision threshold for the 
proposed method. Furthermore, the decision threshold does not need knowledge of noise 
power. The proposed method has advantages of low average computational time,  high 
detection probability, and small Relative Error. On the top of that, by devising a new 
parameter which we named it ‘Sensitivity of a Decision Threshold or β ’, we compared 
relative decision threshold deviation under the UNP case from that observed under the NNP 
case. And we observed that the proposed method has negligible β  value, whereas EMR and 
SFET1 have large β .  
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