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Abstract 
 

Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) are both recognized as 
promising techniques, one is for solving the resource insufficient of mobile devices and the 
other is for powering the mobile device. Naturally, by integrating the two techniques, task will 
be capable of being executed by the harvested energy which makes it possible that less 
intrinsic energy consumption for task execution. However, this innovative integration is facing 
several challenges inevitably. In this paper, we aim at prolonging the battery life of mobile 
device for which we need to maximize the harvested energy and minimize the consumed 
energy simultaneously, which is formulated as residual energy maximization (REM) problem 
where the offloading ratio, energy harvesting time, CPU frequency and transmission power of 
mobile device are all considered as key factors. To this end, we jointly optimize the offloading 
ratio, energy harvesting time, CPU frequency and transmission power of mobile device to 
solve the REM problem. Furthermore, we propose an efficient convex optimization and 
sequential unconstrained minimization technique based combining method to solve the 
formulated multi-constrained nonlinear optimization problem. The result shows that our joint 
optimization outperforms the single optimization on REM problem. Besides, the proposed 
algorithm is more efficiency. 
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1. Introduction 

With the explosive development of the mobile device and mobile communication, mobile 
devices are becoming more and more widely used and the novel mobile applications emerge 
continuously. However, the following is the great demand of physical resource of mobile 
devices, which is just the key bottleneck of current mobile device. To tackle the problem, 
researchers proposed the framework of Mobile Cloud Computing (MCC)[1,2], it migrates the 
computation-intensive task to the cloud, leveraging the sufficient resources of data centers to 
finish the computation. Nevertheless, the user experience under the MCC framework largely 
depends on the network, often bringing the high latency. In order to increase the bandwidth 
and decrease the latency, Mobile Edge Computing (MEC) is proposed[3,4]. In the MEC, 
computation resources are provided within the Radio Access Network (RAN) in close 
proximity to the mobile device. Due to the short distance, the MEC paradigm can achieve low 
latency, high bandwidth and computing agility[5]. 

Unfortunately, although the MCC and MEC bring the powerful computation resources for 
the mobile devices, it still faces the problem of insufficient battery energy. Prolonging the 
battery lives is a big challenge since the advent of smart mobile devices, but still has no 
breakthrough. Recently, the development of radio frequency (RF) based wireless power 
transfer (WPT) technology bring a new solution to solve the problem of insufficient battery 
energy[6]. WPT uses dedicated RF energy transmitter, which can continuously power the 
battery of remote energy-harvesting (EH) devices[7]. 

In this paper, we integrate EH into MEC, where the mobile device is able to harvest energy 
and execute the computation-intensive task on the edge server and local device parallelly 
during each time block. In the proposed integrated system, we focus on jointly optimizing the 
communication and computation resources for the partial computation offloading system. 
Considering the special situation of this paper, we not only jointly optimize the transmission 
power for communication and the CPU frequency for computation, but also optimize the 
offloading ratio and the energy harvesting time for each mobile device. Unlike previous 
researches that pay more attention to the interest of operators, this paper mainly focus on the 
user interest, especially for prolonging battery life of mobile device. For this purpose, by the 
proposed jointly optimizing scheme, we aim at solving the residual energy maximization 
(REM) and the energy consumption minimization (ECM) problems at the same time. Finally, 
we formulate the two problems as a nonlinear programming problem with inequality 
constraints and design a convex optimization and sequential unconstrained minimization 
technique based combining method to solve it. The simulation results show that the proposed 
jointly optimizing scheme outperforms the previous ones in the partial computation offloading 
system, further, proposed algorithm is proven to be more efficiency. 

This paper is organized as follows: The related work is introduced in section II. In section 
III, we introduce the WPT and MEC integrated system model. Section IV presents the problem 
formulation and analysis. Section V gives the algorithm for solving the formulated problem. 
Sections VI shows the simulation results and  Section IV gives the conclusion. 

2. Related Work 
As the fundamental policy of MEC and MCC, computation offloading has attracted more and 
more attention in recent years. Computation offloading is able to provide enough physical 
resources and save energy for the mobile devices. [8] verified that offloading operation to the 
cloud can potentially save energy and extend battery lifetimes for mobile users, and [9,10,11] 
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proposed different computation offloading frameworks. Besides, there are two basic 
computation task offloading models in MEC, i.e. binary and partial computation offloading, 
where binary offloading requires a task to be executed as a whole either locally at the mobile 
device or remotely at the edge server and partial offloading allows a task to be partitioned into 
two parts with one executed locally and the other offloaded for edge execution[12]. 

However, the efficiency of computation offloading largely depends on the quality of 
communication because data transmission is necessary. This calls for incorporating the 
characteristics of communication and computation, jointly optimizing communication and 
computation resources[13,14,15,16,17]. In [13], a method jointly optimizing 
mobile-transmission power and CPU cycles assigned to each application is proposed to 
minimize the power consumption at the mobile side, under an average latency constraint. By 
KKT condition, they get the one-to-one relationship between the transmit power and the 
percentage of CPU cycles assigned to each user. In [14], the author considered a single-user 
scenario, they focus on partial computation offloading by jointly optimizing the CPU cycle 
frequency, transmission power and offloading ratio. They proposed two algorithms to handle 
the energy consumption minimization problem and latency minimization problem 
respectively. In [15], the radio resource and computational resource allocation were jointly 
optimized to minimize the weighted sum energy consumption in a MIMO system and then 
proposed a successive convex approximation based iterative algorithm to solve the problem. 
In [16], the author jointly optimized the offloading selection, radio resource allocation and 
computational resource allocation coordinately to minimize the energy consumption of mobile 
device. They following proposed two methods to solve the formulated Mixed Integer 
Nonlinear Programming problem. [17] developed an online joint radio and computational 
resource management algorithm for multi-user MEC systems, they aimed at minimizing the 
long-term average weighted sum power consumption of the mobile device and MEC server, 
under the task buffer stability constraint. 

By jointly optimizing the computation and communication resources allocation, the above 
researches outperform the conventional single optimization method. However, all the 
researches only focus on saving energy, but ignoring the new technology WPT which can 
power the mobile device. Some researches have started to integrate energy harvest into 
offloading process[18,19,20,21,22]. Powering mobile devices in MEC systems with wireless 
energy harvesting was earlier proposed in [18]. They considered the wireless powered 
single-user MEC system with binary offloading, where the authors aimed at maximizing the 
probability of successful computation, by deciding whether a task should be fully offloaded or 
not, subject to the computation latency constraint. In [19], the author considered a more 
general case with more than one user, and allowing for more flexible partial offloading to 
improve the system performance in terms of the energy efficiency. Specifically, authors in this 
paper developed an optimal resource allocation scheme that jointly optimizing the energy 
transmit beamformer, the CPU frequency, the numbers of offloaded bits as well as the time 
allocation among users to  minimize the AP's total energy consumption under the user's 
individual computation latency constraints. In [20], the author also investigated MEC system 
with EH mobile device, but they aimed at minimizing the execution cost, which consists of 
execution delay and task failure. To solve the problem, they proposed a low-complexity online 
algorithm based on Lyapunov optimization. However, these two works only considered the 
smaller scale system with one mobile device. [21] considered a multi-user MEC network 
powered by WPT, where the wireless devices follow binary offloading policy, aiming at 
maximizing the sum computation rate of all the wireless devices in the network. To this end, 
they proposed a decoupled optimization method and an ADMM based decomposition 
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technique to solve the problem. [22] proposed a novel best cooperative mechanism (BCM) for 
wireless energy harvesting and spectrum sharing in 5G networks. They follwing formulated an 
optimization problem based on BCM with the objective to maximize the throughput of users.  

There are not many related works on MEC integrated EH system currently, and these works 
achieve different purpose by considering diverse system model, optimization parameters and 
methods.  To our best knowledge, there is no work with the goal of maximizing the residual 
energy of mobile devices in such MEC and EH integrated system, which is able to guarantee 
the higher energy harvest efficiency and lower energy consumption at the same time. 
Accordingly, this paper with the goal of maximizing the residual energy of system by jointly 
optimizing the parameters during the process of computation, computation and energy harvest. 

3. System Model 
This paper considers a MEC and EH integrated system with multi-user, supposing that there 
are one AP with multi-antenna and N  mobile devices with single-antenna. AP is directly 
connected to edge servers, it can not only receive the task data and transmit them to edge 
servers, but also be able to power the mobile device by the WPT. The mobile device is not 
only able to offloading and execute tasks as common ones,  but also to harvest energy coming 
from AP. However, the mobile device can't harvest energy and offloading simultaneously 
because of the single-antenna [18]. The system architecture is as Fig. 1. 
 

 
Fig. 1. System architecture 

 
The integrated system is based on a block-based time-division-multiple-access(TDMA) 

model, the length of each time block is T  in which the channel remains static, but varies 
among different time block. For each task, it can be divided into two parts, one for local 
execution and the other for offloading. For offloading part, the users firstly harvest the energy 
at beginning of each time-block and then offloading the task to the edge server within the left 
time. However, for the local execution part, the execution can be started at the beginning and is 
able to use up the whole time block.  Supposing that the time requirement for task execution is 
equal to T . The time division for different execution model is as Fig. 2. 

Assuming that the AP has perfect knowledge of the channels from AP to users and the 
computation requirement for each task, and thus be able to coordinate the task partition, 
computation offloading and local computing by jointly allocating both communication and 
computation resources. 
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Fig. 2. Time division for different execution model 

3.1 Task Model 

Supposing that each mobile device has a computation-intensive task iU  , denoted by the 
following:   

( , , ) 1, 2,3,...,i i i iU I X T i N= =                                                   (1) 
where iT  and iI  denotes the task time constraints and computation input bits of the task iU , 
respectively. Supposing that the time constraints for each task are identical and equals to the 
length of time block, that is, , 1, 2,3,...,iT T i N= = . iX  denotes the cycles required to 
process one bit input, which is depending on the task characteristic, e.g. computation 
complexity and can be obtained through off-line measurement [23]. By the definition above, 
the number of cycles required for the iU  is denoted by i iI X .  Besides, allowing for the tasks 
are partition allowable, executing on the mobile device and edge server simultaneously, we 
define (0 1)i iλ λ≤ ≤  as the ratio of edge execution amount of bits to the total input data bits 
for the -i th  task and surely 1- iλ  as the ratio of local execution. To simplify the analysis, we 
assume that the task can be partitioned into two parts of any size [24], despite that only several 
partitions are reasonable in practice because of the interdependence. Accordingly, the optimal 
solution of this paper should be preprocessed before using in practice environment. The 
processing method is also given in this paper. In addition, the task model ignores the 
denotation of output data, because they are usually much smaller compared with the input 
data. 

3.2 Local Execution Model 

From the definition of task model, the -i th  task need (1 )i i iI Xλ−  cycles for local execution 
in total. Supposing that the CPU frequency of -i th  mobile device is denoted by ,m if , which 
can be adjusted by the DVFS [25] technique to satisfy the time constraints at the expense of 
energy consumption growing [26]. However, the frequency can't exceed the limit of the 
maximum CPU frequency, denoted by max

,m if , which is dependent on chip architecture. The 
constraint is given by: 

max
, ,0  1, 2,3,...,m i m if f i N< ≤ =                                                 (2) 

With the frequency ,m if , the local computing time of task iU   are as follows:           

,

(1 )  1, 2,3,...loc i i i
i

m i

I XT i N
f
λ−

= =                                             (3) 
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Because the local computing part of each task has to be finished within T , and hence the 
constraint of execution time is given by: 
      1, 2,3,...loc

iT T i N≤ =                                                    (4) 

We model that the energy consumption per cycle is 2
,

c
m ifκ , where cκ  is the effective 

switched capacitance that depends on the chip architecture, and thus the total energy 
consumption for local execution part of iU  are as follows: 

2
, (1- )  1, 2,3,...loc c

i m i i i iE f I X i Nκ λ≤ =                                            (5) 

where we set 28=10c eκ −  according to the practical measurement. 

3.3 Mobile-Edge Execution Model 

The partition size for mobile-edge execution is i iIλ  bits for the -i th  task, which should be 
transmitted to the edge server. Assuming that a high-speed multi core CPU is available at the 
edge server, hence execution time on the edge server is ignored. We further assume the 
transmission time for feedback is negligible because of the smaller size of computation output. 
Accordingly, the energy and time consumption on edge server execution is dependent on 
communication, in other words, the process that offloading data to edge server. The achievable 
rate for offloading depends on transmission power and channel state information which will 
retain static within one time block. According to the Shannon-hartely formula, the achievable 
rate for the -i th mobile device is as follows: 

, ,
2= log(1 )  1, 2,3,...m i m i

i
i

p h
S B i N

dσ
+ =                                            (6) 

where B  and 2σ  denote the system bandwidth and noise power at the receiver, respectively. 

,m ip  denotes the transmit power of -i th  mobile device, ,m ih is the channel power gain from 

mobile device i   to the AP, id  is the distance between mobile device i  and AP. Consequently, 
the time consumption on mobile-edge execution that equals the transmission time for the input 
and can be given by: 

 1, 2,3,...,edge i i
i

i

IT i N
S
λ

= =                                                  (7) 

and also the energy consumption of mobile device -i th  for mobile-edge execution is all for 
offloading, which can accordingly be given by: 

,=  1, 2,3,...,edge i i
i m i

i

IE p i N
S
λ

=                                             (8) 

The computation ability of edge servers can't be unlimited, and hence we define F as the 
maximal computation ability of the edge server, which in this paper means the maximal 
number of available CPU cycles in one time block. Then, the total cycles executed on the edge 
server is constrained by: 

1

N

i i i
i

I X Fλ
=

≤∑                                                  (9) 
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3.4 Energy Harvest Model  
The multi-antenna AP uses beamforming to transfer power to the mobile device at the 
beginning of each time block by WPT. Allowing for the technical limitations that charge 
efficiency is quite low, we assume that the mobile devices have enough battery capacity to 
store harvested energy, and thus the energy harvested by -i th  mobile device during the 
harvest period is as follows: 

ch arge
,   1, 2,3,...,i a a i iE vp h t i N= =                                        (10) 

where ,a ih  is the scalar channel power gain of the downlink channel from AP to -i th  mobile 

device, ap  denotes the AP transmission power, and constant 0 1v< <  represents the energy 
conversion efficiency. During each time block, the mobile device firstly harvests energy and 
then offloads the task within rest time of this block to satisfy the time constraints. By it  
denotes the harvest time and thus maximum available time for offloading is iT t− . Then, the 
energy harvesting time and offloading time have to satisfy the following constraint: 

  1, 2,3,...,edge
i iT t T i N+ ≤ =                                        (11) 

It is assumed that the mobile device masters the accurately estimated of ap  and ,a ih  which 
are used for coordinate the offloading execution and local execution. Besides, the conversion 
efficiency of each device is assumed to be same. 

4. Problem Formulation 
 
The goal of this paper is to maximize the residual energy of all the mobile devices within the 
AP control area, which requires to maximize the harvested energy and minimize the consumed 
energy at the same time. The amount of harvested energy is directly proportional to the harvest 
time it , larger it  will surely harvest more energy but will also minimize the maximum 
available time for task offloading, which brings high energy consumption and the risk of 
violating time constraints. With each given it , we should coordinate the offloading ratio of 
input bits that executed on the edge server, the CPU frequency for local execution and 
transmission power for edge execution to minimize the energy consumption. Accordingly, in 
order to maximize the residual energy, we need to jointly optimize the harvest time, offloading 
ratio, CPU frequency and transmission power to find an optimal combination. In this section, 
we give the formulation of the described residual energy maximization (REM) problem.  

4.1 Residual Energy Maximization Problem 
Based on the given model, the residual energy of each mobile device denoted by the function  

, ,( , , , )res
i m i m i i iE f p tλ  can be given by: 

                  arg
, ,( , , , ) ( )res ch e loc edge

i m i m i i i i i iE f p t E E Eλ = − +                                        (12) 

where the argch e
iE , loc

iE  , edge
iE  is given by (5),(8),(10) respectively. And the detail function 

expression with the optimization variable can be given by: 
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2
, , , , ,

, ,
2

( , , , ) ( (1 ) )
log(1 )

res ci i
i m i m i i i a a i i m i m i i i i

m i m i

i

IE f p t vp h t p f I Xp h
B

d

λλ κ λ

σ

= − + −
+

             (13) 

Thus, the REM problem can be formulated as follows:   

 

, ,, , , 1

, ,
2

,

max
m,i ,

P1    max ( , , , )

s.t.     1: ,   1, 2,3,...,
log(1 )

(1 )         2: ,  1, 2,3,...,

         3: 0< ,  1, 2,3,...,

         4: 

N
res
i m i m i i ip f t i

i i
i

m i m i

i

i i i

m i

m i

E f p t

IC t T i Np h
B

d
I XC T i N

f

C f f i N

C

λ
λ

λ

σ
λ

=

+ ≤ =
+

−
≤ =

≤ =

∑

1

,

         5: 0 1,  1, 2,3,...,
         6: 0,  1, 2,3,...,
         7: 0,  1, 2,3,...,

N

i i i
i

i

i

m i

I X F

C i N
C t i N
C p i N

λ

λ
=

≤

≤ ≤ =
≥ =
≥ =

∑

                        (14) 

To be more clearly, we set 2
, /i m i ia h dσ= , ,i a a ib vp h= , then, the complete expression of  

, ,( , , , )res
i m i m i i iE f p tλ  can be given by: 

 2
, , , ,

,

( , , , )= ( (1 ) )
log(1 )

res ci i
i m i m i i i i i m i m i i i i

i m i

IE f p t b t p f I X
B a p

λλ κ λ− + −
+

         (15) 

In P1, where the C1,C2 represent the time constraint for edge execution and local execution 
respectively, where the offloading has to be finished within iT t−  and local execution can use 
up the whole time block T , C3 is the CPU frequency constraint of each mobile device, C4 is 
the computation ability constraint for the edge server, C5,C6 and C7 give the scope of 
optimization variables to be solved. 

The optimal solution of problem P1 contains four solution vectors, where 1 2=[ , ,..., ]Nλ λ λ λ   
consists of the ratio for offloading of each mobile device, 1 2[ , ,..., ]Nt t t t=  consists of the 
energy-harvest time of each mobile device, ,1 ,2 ,[ , ,..., ]m m m Nf f f f=  is made up with the CPU 

frequency of each mobile device and ,1 ,2 ,[ , ,..., ]m m m Np p p p=  is the vector constructed by 
the transmission power of each mobile device. 

4.2 Problem Analysis 
P1 is difficult to solve since that we have to obtain four unknown vectors jointly, what's more, 
P1 is a non-convex problem. However, through the analysis of problem P1, we can firstly 
transform the primary problem to a smaller dimensional one. Before giving the transform 
process, we first give the Lemma 1 which is the basis of the transformation. 



5622                                                                 Liu et al.: Joint Optimization for Residual Energy Maximization  in Wireless Powe
red Mobile-Edge Computing Systems 

Lemma 1 we always have 
,

inf ( , ) inf ( ),   where  ( ) inf ( , )
x y x y

f x y f x f x f x y= =  . 

Proof: See [27]. 
 
Lemma 1 shows us that the objective function can be minimized by first minimizing over 
some of variables, and then minimizing over the other ones. For this reason, we are able to 
firstly find the optimal f  and p . 
According to Equation (3), it is evidently that the energy consumption of local computation 
increases monotonically with the increase of ,m if , the smaller the ,m if  is, the less energy 

consumed. However, the small ,m if  will lead to the violation of constraint C2, in other words, 

local execution can't be finished within T . Therefore, the optimal value of ,m if , by *
,m if  is got 

when using the maximum available time for computation, that is T , and thus can be given in 
closed-form by: 

*
,

(1 )i i i
m i

I Xf
T
λ−

=                                                      (16) 

by substituting the *
,m if  into P1, we can simplify the original problem P1 to P2: 

,, , 1

max
,

P2    max ( , , )

(1 ). .    8: 

         1, 4, 5, 6, 7

N
res
i m i i ip t i

i i i
m i

E p t

I Xs t C f
T

C C C C C

λ
λ

λ
=

−
≤

∑

                                                     (17) 

 

where 2
, ,

,

(1 )( , , ) ( ( ) (1 ) )
log(1 )

res ci i i i i
i m i i i i i m i i i i

i m i

I I XE p t b t p I X
B a p T

λ λλ κ λ−
= − + −

+
, C3 

is transformed to C8 and C2 can be eliminated.  
Next, we aim at finding the optimal ,m ip to minimize the energy consuming. To this end, we 

introduce the function (1 )( )
log(1 )

i i

i

Ig x x
B a x

λ−
=

+
 to denote the relation between ,m ip  and consumed 

energy. It's easy to prove that the function ( )g x  is monotone increasing, when [0, ]x∈ +∞  
and 0ia > . Therefore, the smaller ,m ip  is better for consuming less energy ,( )m ig p . 
However, the smaller  transmission power will prolong the offloading time, violating the 
constraint C1, and hence the optimal transmission power *

,m ip   can be got when use up the 

available offloading time iT t− . The optimal  *
,m ip  can be given by:   

     
( )

*
,

2 1
i i

i

I
B T t

m i
i

p
a

λ
− −

=                                                        (18)  

by substituting the *
,m ip  into P2, we can get the further simplfied problem P3: 
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, 1
P3    max ( , )

. .    9: 0
         4, 5, 8

N
res
i i it i

i

E t

s t C t T
C C C

λ
λ

=

≤ ≤

∑
    (19) 

 

where
( ) 3

3
2

(1 )2( , ) (( ) ( ) )

i i

i

I
B T t

res c i
i i i i i i i i

i

E t b t T t I X
a T

λ

λλ κ
− −

= − − + . Based on (18), the 

constraint C1 is eliminated, and accordingly the constraint C6 is transformed to C9, the 
constraint C7 can be eliminited. 

By the two steps of substitution, the problem P1 is transformed to P3, which has the simpler 
mathematical formulation. Next, we will solve P3 to get the optimal combination of offloading 
ratio and energy harvest time, further getting the corresponding optimal transmission power 
and computation frequency of mobile device. 

5. Problem Solution 
This section will give the detail algorithm to solve P3 which is based on convex optimization 
and equential unconstrained minimization technique. To be convenient, we firstly do a 
simplified variable substitution in P3. We define i iw T t= −   in P3, and accordingly have 

i it T w= − . By substituting them into P3, the detail mathematical formulation is transformed 
to P4 as follows: 
 

 

3
3

2, 1

max
,

1

(1 )2 1P4    max ( ( ) ( ( ) ))

(1 ). .    3 :   ,   1, 2,3,...,

         4 :  

         5 :  0 1,  1, 2,3,....,
        10 :  0 ,   1, 2

i i

i

I
BwN

c i
i i i i iw i i

i i i
m i

N

i i i
i

i

i

b T w w I X
a T

I Xs t C f i N
T

C I X F

C i N
C w T i

λ

λ

λκ

λ

λ

λ

=

=

−−
− − +

−
≤ =

≤

≤ ≤ =
≤ ≤ =

∑

∑

,3,..., N

               (20) 

  
To prove the convexity of P4, we first give the following Lemma 2: 

Lemma 2 If : nf R R→ , then the perspective of f  is the function 1: ng R R+ →  defined 
by: ( , ) ( / ) dom g={( ,t)| / dom , 0}g x t tf x t x x t f t= ∈ >， . If f  is a convex function, then 
so is its perspective function g . Similarly, if f  is concave, then so is g . 

Based on Lemma 2, we defined the convex function ( ) (2 1)
x
cf x d= ⋅ − , where d   and c  

are the positive constant, and hence the second part of P4 can be denoted by ( / )i i iw f wλ , 
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where the constant / ic B I=  and 1/ id a= ,  is also convex. Besides, the third part of P4 is a 
one-dimensional optimization problem and can be easily proved convex in the constraint 
domain. Therefore, the objective function is concave and all the constraints are convex, 
constituting a convex optimization problem which can be optimally solved by standard convex 
optimization techniques. 

Nevertheless, to gain engineering insights, speeding up the solving process and improving 
the accuracy. We firstly derive the property of optimal solution in a semi-closed form, seeking 
for the relationship among variables by leveraging the Lagrange method and KKT conditions, 
and next leveraging the property to reformulate the primary objective function to a simple 
polynomial form, which can be solved more easily and faster. Finally, we adopt SUMT and 
BFGS combining method to solve the simplified problem, and the other optimization variables 
can be further obtained based on the solution. 

For facilitating the next analysis, we defined another function based on above defined 
/( ) 1/ (2 1)ixI B

if x a= ⋅ −   as follows: 
'( ) ( ) ( ),   x>0h x f x xf x= −                                                      (21) 

where ' ( )f x  is the first-order derivative of ( )f x , and have the following lemma: 
Lemma 3 ( )h x  is a monotonic decreasing function of 0x ≥  with (0) 0h = . Given 0G < , 
there exists a unique positive solution for equation ( )=h x G , given by:  
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The detailed processing to solve the problem P4 and further the primary problem P1 can be 

described as follows: 
1) Finding property of optimal solution by Lagrangian method and KKT condition: 

Lagrangian function is usually constructed by adding all the constraints to the objective 
function to transform the constrained problem to unconstrained one. However, we only 
consider the parts of the constraints, C3, C4 in this constructing process to find the property of 
optimal solution. Let 0α > and 1 2 3=[ , , ,..., ] 0Nβ β β β β   denote the Lagrange multipliers 
associated with constraints C4 and C3 in problem P4, respectively. The partial Lagrange 
function of problem 
P4 is defined as: 
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Assuming that * *( , )tλ   denote the optimal solution for P(4) and *α , *β  denote the 

optimal Lagrange multipliers. By applying the Karush-Kuhn-Tucker (KKT) conditions, the 
optimal solution has the following necessary and sufficient conditions: 
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 Based on the KKT condition (23) and Lemma 3, it can be obviously derived that the 
optimal solution has the following property: 
 

  
*

0*

1= [ ( ) 1]
ln 2

i i i

i i
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w I e
λ − +

+
−

      (24) 

where 0 ( )W x  is principal branch of the Lambert W function defined as the solution for 
0 ( )

0 ( ) W xW x e x=  [28], and the e  is the base of the natural logarithm. Furthermore, we have 
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2) Reformulating problem by leveraging the property of optimal solution: Since P4 is 
proved to be convex optimization problem, and the property of optimal solution is obtained by 
the KKT condition. Therefore, the optimal solution of P4 will surely possess the property. By 
leveraging the property (24), the objective function of P4 can be transformed into a 
polynomial form with only one unknown vector, and the constraints can also be reduced 
correspondingly. Substituting (24) into P4 and getting the following problem P5: 
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                       (25) 
where constraint C11 is derived by substituting *

iw  into C10 to transform them into constraints 
only on iλ  and following get the intersection of C3,C5 and C10.   In problem P5, the objective 
function is polynomial form and the two constraints are both simple linear form. Therefore, P5 
is a general non-linear constrained optimization problem and several algorithms can be 
applied to solve it.  

3) Solving the simplified problem by SUMT and BFGS: sequential unconstrained 
minimization technique (SUMT) is used to reformulate the constrained problem to the 
unconstrained one and then solving the unconstrained optimization problem. We adopt barrier 
method, one of the SUMT based method, to solve P5. To leveraging the method, we defined 
the penalty function considering the constraints in P5 as follows: 
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Additionally, given the termination limits ε , the initial candidate point (0)λ , the initial 
penalty factor 0µ , reduction coefficient of penalty factor c  and the iteration counter k . We 
can get the unconstrained problem: 

 min( ( ) ( ))kF Mλ µ λ+                                                       (27) 
where ( )F λ  is defined as: 
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We select BFGS [29] method to solve the unconstrained problem (27) in each iteration, the 
optimal solution denoted by 

*( )kλ . 
   The penalty factor will be update by iteration until the termination condition ( )k Mµ λ ε<   

or the iteration time k  is larger than 50 is satisfied, the current 
*( )kλ  is the optimal solution. 

The pseudo code of the methods is as follows: 
 

 
 
4) Obtaining other optimization variable: based on the optimal offloading ratio for 

offloading, we can get the optimal harvesting time by (24), furthermore, the transmission 
power and CPU frequency can be obtained by (18) and (16), respectively, and thus the primary 
problem P1 is solved. 

Remark 1: It is likely that no solution is able to satisfy all the constraints. When it occurs, we 
simply give the fixed offloading ratio and harvesting time. Although this simple method will 
bring higher energy consumption, it still can be accepted because the failure doesn't happen 
very often.  

Remark 2: In real environment, the task can't be partitioned as arbitrary ratio. Here, we 
provide a quantization method to apply the optimal offloading ratio λ . Assuming that the 
-i th  mobile device has the possible partition set 1 2={ , ,..., }mω ω ωΩ . For the set i iω λ≥ , we 

find the minimum value denoted by r minω , and for the set i iω λ≥ , also find the minimum 
value denoted by minlω . r minω  and minlω  are both feasible ratio close to the optimal ratio iλ  , 
and we choose the one that makes the residual energy maximization as the real offloading 
ratio.  
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6. Simulation Results 
 

In this section, we present simulations to verify the advantages of proposed optimization 
scheme that jointly optimizing offloading ratio, harvesting time, CPU frequency and 
transmission power, and evaluate the performance of proposed solving algorithm. All the 
simulation programs are coded with Python programing language and use the PyOpt [30], a 
Python-based package for solving nonlinear constrained optimization problems. Besides, the 
simulations are running on a common PC with 3.2GHZ CPU and 6GB memory, Ubuntu 14.04 
OS. 

We first give the universal parameter settings for simulations. For local execution model, 
we set 2810c eκ −=  and the maximum CPU frequency follow the uniform distribution with 

, [0.5,1]m if GHz∈ . For mobile-edge execution model, we set noise power 2 9=10eσ − , system 
bandwidth 1B MHz= , the distance between mobile device and AP follows the uniform 
distribution with [10,20]id m∈ . And the channel power gain from mobile device to AP is 

modeled as  3
, 10m i i ih d αφ− −=  , where iφ  represents the short-term fading which is assumed to 

be an exponentially distributed random variable with unit mean, α denotes the path-loss 
exponent and here set =2α . For energy harvest model, set 0.8v = , 200ap W= , and the 
channel power gain ,a ih  from mobile device to AP is equal to ,m ih . For task model, the input 
size in bit and the cycles required for one-bit computation follow the uniform distribution with 

[200,500]iI KB∈  and [500,800]iX ∈  cycles/bit, respectively. Besides, set the time-block 
2T s= . 

The settings are used in simulations in following subsections unless specified otherwise. To 
avoid the occasionality, the simulations are repeated 100 times for each variable value and 
average the result, but the other unfixed parameters are randomly selected according to the 
above settings every time to simulate the real environment. 

The simulations in this section are to verify the advantage of proposed joint optimization 
scheme of offloading ratio, harvesting time, CPU frequency and transmission power, called 
JOS for short. For this purpose, we provide following two base methods for comparison: 

1) The harvest time is fixed, half of the time block is used for energy harvest and the other 
half for task execution, called FHT. 

2) The offloading ratio of task is fixed, half of the input bits executed on edge server and the 
other half executed on local device called FPR. 

The first simulation shows the residual energy(J) versus the task input size(KB). By 
changing the task input size, we observe the changes of residual energy when dealt by the three 
methods respectively. Supposing that the number of mobile device 10k = , and the task size 
on all mobile devices are identical which varying from 100KB  to 1000KB . For each input 
size, we conduct 100 simulations, where id , iX , ,m ih .etc are selected randomly according to 
the above assumption every time. The results are shown in the Fig. 3. 
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Fig. 3. Residual Energy vs Task Size 

 
From the result in Fig. 3, we have the observation that the residual energy decreases with 

the task size increasing no matter which optimization is adopted, but proposed joint 
optimization scheme JOS is still superior to benchmarks. Specifically, the curve of JOS not 
only has the largest residual energy but also has the slowest decline rate when the task size is 
larger, indicating that JOS has the ability to adjust to larger tasks. This is due to that the JOS 
jointly optimize the offloading ratio and harvesting time to find the best combination, however, 
FHT and FPR are only able to find the best solution against the fixed harvesting time and 
offloading ratio, respectively. It is also noticed that the three schemes almost have the equal 
residual energy when task size is 700KB , because of that the optimal offloading ratio and 
harvesting time happen to be equal with the pre-set value in FHT and FPR. 

The second simulation shows the residual energy versus the transmission power of AP, 
observing the changes of residual energy with the transmission power increasing when dealt 
by the three methods. Supposing that the transmission   the iI , iX , ,m ih .etc are selected 
randomly accordingly to the above assumption. The results are show in the Fig. 4. 
 

 
Fig. 4. Residual Energy vs AP Transmission Power 

 
From Fig. 4, we obtain the observation that the JOS curve still have the largest residual 

energy with the AP transmission power varied from 160W  to 250W , indicating that 
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proposed joint optimization scheme has the higher energy utilization rate, harvesting more 
energy and consuming less energy. This is because the JOS has the most suitable combination 
of offloading ratio and harvesting time. By comparison, the FHT has the fixed harvesting time 
which decides the energy amount harvested from AP, the only thing the optimization process 
can do is to find the best offloading ratio to finish tasks with as less as possible energy 
consuming in the premise of satisfying the time constraints. Similarly, the FPR has the fixed 
offloading ratio, which will consume much energy when the ratio is not reasonable. Besides, 
we have the observation that three curves are not intersected from each other and JOS curve is 
smoother, approximating to a linear relation. This is due to the AP transmission power only 
influences the amount of harvested energy, but the optimal solution is almost equal 
corresponding to each power, which leads to the harvested energy increases monotonically 
and consumed energy remains unchanged. It is also noticed that the FHT curve have more 
residual energy than the FPR from beginning to end, indicating that the given fixed harvesting 
time 1/ 2T  is closer to the optimal value, while the given offloading ratio has bigger 
difference from optimal value. 

The third simulation shows the length of time-block T  versus failure ratio which is defined 
that the task can't be completed within T . Supposing that the time block varies from 1.5s   to 
2.4s . With the T  increasing, the changes of failure rate are shown in Fig. 5. 
 

 
Fig. 5. Failure Ratio vs Time Block 

 
We have several observations from Fig. 5. First, the failure ratio is quite high when the time 

block is smaller, but proposed JOS have relatively lower failure ratio, because JOS has the 
ability to find the optimal combination of offloading ratio and harvesting time to find the most 
suitable combination for given time constraint, but the benchmarks can only optimize one of 
them. Second, with the increasing of time block, all the three curves decrease rapidly, 
especially the JOS and FPR, and the FPR curve almost has the equal failure ratio with JOS, but 
still little higher, indicating that the FPR is usually able to find the suitable time division to 
make sure tasks finished for given offloading ratio. Besides, from the the magnified part of  
Fig. 5, we can observe that FPR isn't stable, still having failure task even if the time block is 
large enough, but JOS is able to make sure the completion. This is due to that it's possible that 
FPR can't find the reasonable time division in some cases for given offloading ratio, but JOS 
avoids the cases by joint optimization. 
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6.2 Performance of Algorithm 
The simulations in this section are to verify the performance of proposed algorithm on solving 
the REM problem, including computation time and the effect of optimal solution. To this end, 
we select the following two methods as the benchmarks. 

1) Augmented Lagrangian methods with general lower-level constraints (ALGENCAN): It 
solves the general non-linear constrained optimization problem without resorting to the use of 
matrix manipulations [31]. We adopt ALGENCAN method to solve P4 directly, which isn't 
simplified by the KKT conditions. 

2) Sequential Least Squares Programming(SLSQP): It is a sequential least squares 
programming algorithm which uses the Han-Powell quasi-Newton method with a BFGS 
update of the BCmatrix and an L1-test function in the step-length algorithm [32]. We adopt 
SLSQP method to solve the simplified problem P5. 

In this simulation, we test the time consumption of three methods on solving the REM 
problem, observing the changes of computation time and the effect of optimal solution on 
maximize the residual energy with the number of user increasing. Proposed convex 
optimization and SUMT combination method is short for COSUMT in below simulation. The 
results are shown in Fig. 6: 
 

 
Fig. 6. Performance vs User Number 

 
The Fig. 6 shows the performance of three methods on residual energy and computation 

time simultaneously. We can observe from the above section that the residual energy increase 
with the user number increasing, and our proposed COSUMT method has much better 
objective value than the SLSQP method and closer to the ALGENCAN method. However, 
from the below section we can see that our proposed COSUMT method has closer 
computation time to SLSQP, but much shorter than ALGENCAN method, which is even 
thousands of times longer than COSUMT and hence shown at the right y axis. This is because 
our proposed method has simplified the original problem by convex optimization theory, 
simplifying the primary problem in negligible time. This figure proves that proposed 
COSUMT algorithm is able to get an approximate optimal solution with less time cost. 
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7. Conclusion 
 

In this paper, we propose a MEC and EH integrated system with partial offloading task. 
Mobile devices under the system are able to harvest the energy and then execute tasks on edge 
server and local device simultaneously. By jointly optimizing the offloading ratio, energy 
harvesting time, the CPU frequency and transmission power of mobile device, we aim at 
solving the REM and ECM problem at the same time to prolong the battery life. For solving 
the problem, we leverage the combination of convex optimization and SUMT method, which 
aiming at obtaining lower time overhead and higher accuracy. Simulation result shows that, 
our jointly optimizing scheme outperforms the conventional single optimization, and proposed 
algorithm proved to be more efficiency. MEC and EH integrated system will be the hotpot 
research point because of its practicability, but the related researches are still at the initial stage. 
Our work provided a new idea on for related researches. Next, we will explore the optimal 
framework of EH and MEC integrated system, and leverage more efficient algorithm to build 
a energy-efficient MEC system. 
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