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Abstract 
 

Performance of the interpolation algorithm used in the technique of bi-dimensional empirical 
mode decomposition directly affects its popularization and application, so that the researchers 
pay more attention to the algorithm reasonable, accurate and fast. However, it has been a lack 
of an adaptive interpolation algorithm that is relatively satisfactory for the bi-dimensional 
empirical mode decomposition (BEMD) and is derived from the image characteristics. In view 
of this, this paper proposes an image interpolation algorithm based on the particle swarm and 
fractal. Its procedure includes: to analyze the given image by using the fractal brown function, 
to pick up the feature quantity from the image, and then to operate the adaptive image 
interpolation in terms of the obtained feature quantity. All parameters involved in the 
interpolation process are determined by using the particle swarm optimization algorithm. The 
presented interpolation algorithm can solve those problems of low efficiency and poor 
precision in the interpolation operation of bi-dimensional empirical mode decomposition and 
can also result in accurate and reliable bi-dimensional intrinsic modal functions with higher 
speed in the decomposition of the image. It lays the foundation for the further popularization 
and application of the bi-dimensional empirical mode decomposition algorithm. 
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1. Introduction 

Discrete data interpolation is an important part of the application of bi-dimensional empirical 
mode decomposition (BEMD) to an image processing [1, 2]. At present, the bi-dimensional 
empirical mode decomposition algorithm requires discrete data interpolation estimation. In the 
bi-dimensional empirical mode decomposition algorithm, it is called surface interpolation. 
The purpose of the bi-dimensional empirical mode decomposition is to obtain a 
bi-dimensional intrinsic modal function (BIMF) that is more valuable. Under normal 
circumstances, this decomposition can ensure that the screening process is more optimized; 
The decomposition is mainly used to find the upper and lower envelopes after extracting the 
extreme points. Therefore, the precise envelope is highly important, and the interpolation 
calculation is focused on by many scholars’ research and attention. Authors have proposed a 
number of interpolation methods, such as radial basis interpolation, cubic spline interpolation, 
and cubic interpolation [3-6]. Although these interpolation methods have an effect, they still 
have problems; and they cannot be based on image feature information for adaptive 
interpolation [9-17]. 

The surface interpolation needs to complete the interpolation operation in the 
bi-dimensional space, which causes the interpolation problem to become complicated. 
Furthemore, this interpolation is the basis and premise of image processing in the 
bi-dimensional empirical mode decomposition algorithm. The surface interpolation is also an 
important guarantee for the bi-dimensional inherent modal function of image decomposition. 
Therefore, for the bi-dimensional empirical mode decomposition of the interpolation 
algorithm, many scholars put forward the corresponding solutions, such as the following: In 
2005, at the first university in Paris, Nunes proposed a radial basis method, that can be the 
interpolation fit, but it has low interpolation efficiency and low precision [1]; In 2007, at the 
Chinese Academy of Sciences Institute of Automation Liu Zhongxuan proposed the cubic 
interpolation method, which improved the interpolation accuracy, but still had low 
interpolation efficiency [18]; In 2011, at the Chongqing University Mathematics and Statistics 
College of Deng Lei proposed B-spline interpolation method, although the interpolation 
accuracy has been improved, but did not solve the problem of interpolation efficiency [19]; In 
2015, the University of Regensburg, in Germany Saad et al [20] proposed a fast interpolation 
algorithm based on the Green function, but the interpolation effect was not ideal; In 2016, at 
the China University of Geosciences Institute of Automation Xu proposed the Kriging 
envelope interpolation method, which attempted to solve the interpolation problem and was 
applied to geochemical identification. But the computational efficiency was still low [21]. 

In addition, we can see that the existing interpolation methods can be interpolated in the 
bi-dimensional empirical mode for image processing, but they still have the following 
problems: First, the calculation efficiency is low; Second, the interpolation accuracy is low; 
Third, Image feature for adaptive interpolation. To this end, this paper first uses the fractal 
theory to adaptively extract the feature parameters of the image. Next, for the image 
interpolation, the interpolation parameters are processed through the particle group for 
optimization. Based on the solution of these problems, an interpolation algorithm based on 
fractal-particle swarm optimization is proposed, which can solve the problem of the 
computational efficiency and interpolation precision of the interpolation algorithm, and realize 
the optimal interpolation of the bi-dimensional empirical mode decomposition. 
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2. Fundamentals of Fractal Interpolation 

2.1 Basic overview of fractal theory 
Fractal theory’s developmental time has been relatively short. This theory is an important part 
of complex scientific theory and has affected people's ways of thinking and research methods. 
Fractal theory has presented new results regarding the informal, complex and irregular 
problems that traditional tools cannot describe. It also makes people have a new understanding 
of nature and many other fields, which also fully embodies the fractal theory of the simulation 
of structural capacity [22]. 

2.2 Iterative functions and collage theorem 
The fractal interpolation algorithm has the two basic properties of the Iterated Function 
System (IFS) and the Collage Theorem. Among them, the iterated function system can 
guarantee the constancy of the attractor and use it to control the change of the image. The 
collage theorem can make the fractal dimension of an image based on fractal interpolation 
unchanged[23,24]. 

Definition 1: Let X be a subset of the geometric space R, d be a function of X×X to R, where 
the function d: X×X→R satisfies the following condition: 

1) Uniqueness: When x=y, d(x, y)=0, x, y∈R; 
2) Symmetry: d(x, y)= d(y, x), x, y∈R; 
3) Triangle inequality: d(x, y)+ d(y, z)≥d(x, z), x, y, z∈R; 
Then, d is a measure of X. (x, y) represents a metric space with a metric d. 
Definition 2: Assuming that {xn} is the column of the geometric space X, then it has a 

natural number N for any 0ε > , and when m,n>N, ( , )m nd x x ε< , then the column {xn} is a 
Cauchy sequence. 

The Cauchy sequence has the following two important properties [23, 24]: 
(1) For the Cauchy sequence existing in a metric space, its limit is not necessarily in the 

same metric space; 
(2) Any convergence sequence must be a Cauchy sequence, and any Cauchy sequence must 

be a bounded sequence. 
Theorem 1: If 1{ }n nx ∞

=  is a sequence of metric space (X, d), it converges to a point x,x∈R, 

then 1{ }n nx ∞
=  is a Cauchy sequence. 

Definition 3: If any Cauchy sequence 1{ }n nx ∞
=  in the metric space (X, d) has a limit value x,x

∈R, then this metric space (X, d) has completeness. 
If (X, d) is a complete metric space, then any element x in X is changed to x'(x'∈R) at 

function d：X×X→R. Any subspace of the complete space is complete if and only if it is a 
closed subset. The complete metric space indicates that the elements in the space converge to 
the same point. The difference between them is the convergence mode and convergence speed. 

Here we call the intersection of all closed sets of set A as a closure of A, denoted as A ; for 
all the union of the open sets contained in A, we call the interior of A, denoted as int(A). In 
other words, the closure of A is the minimum closed set of A, and the interior of A is the largest 
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open set contained in A, and the boundary of A is denoted by A∂  as defined below: 

int( )A A A∂ = − . 
Definition 4: If the set A，B( B A B⊂ ⊂ ) in the measurement space (X, d) has a point in 

set A, it can be infinitely close to it in set B, then set B is the thick subset of set A. 
Definition 5: If the set A in the (X, d) metric space is compact, it is assumed that there is a 

finite number of open sets of open sets of any covering A. 
Set A is a tight indication that there is always another point in any small range around any 

point in set A. 
Definition 6: Assuming that the metric space (X, d) is completes the set A, B is a subset of X. 

Thus the distance d from  set A to set B is defined as follows: 
( , ) max{ ( , ); }d A B d x B x A= ∈                                        (1) 

Where d(x,B)=min{d(x,y);y∈B }. 
From definition 6 we can see that this distance formula does not satisfy the exchange law 

requirement, which is d(x,B)=min{d(x,y);y∈B } 
Therefore, the distance defined by definition 6 cannot be used as a measure between set A 

and set B. 
Definition 7: Assuming that the metric space (X, d) is complete, the set A, B is a subset of the 

metric space (X, d), and the Hausdorff distance between sets A and B is denoted as hd(A, B). 
The specific formula is as follows: 

( , ) max{ ( , ), ( , )}
d

h A B d A B d B A=                                             (2) 
It can be seen from formula (2) that this distance formula satisfies the exchange law 

requirement. 
The iteration function refers to the repeated function with their own complex, and the 

compound process is called an iteration. The iterations on the set X are in the form of the 
following. Let X be a set. The function f is a mapping of X→X, the n iterations  of the 
definition function f are denoted as ,  and o represents the compound 
(fog)(x)=f(g(x)) of the function. 

Definition 8: If wn: X→X, n=1,2,…,N is a finite squeezed family defined on the (X, d) metric 
space. n=1,2,…,N will form a set of iterative functions, which are denoted as X: wn, 
n=1,2,…,N. If the compression ratio of wn is cn, n=1,2,…,N, then c=max{cn, n=1,2,…,N} is 
the compression ratio of this iterative function. 

Theorem 2: Suppose that (X, d) is a complete metric space, and w: X→X is a compression 
map on X. Then, W has a unique fixed point xw of W(x)= xw, For any x∈X, the sequence 
{Wn(x): n=1,2,…} converges to xw. 

Theorem 2 shows that the compact family in the complete metric space must have fixed 
points. Theorem 2 is the general application of theorem 1. It is the theoretical basis and 
foundation for the affine stability of fractal images. 

Theorem 3: If X: wn, n=1,2,…,N is the iteration function of the complete metric space (X, d), 
the compression ratio is c, Next, the transform W: F(X)→F(X) is defined as follows: 

 
1

( ) ( )
N

nn
W B w B

=
= ∪                                                        (3) 

Where B∈F(X). Therefore, W is a compression mapping of the (F(X), d) compression ratio 
c. The only fixed point is d(W(B), W(B))≤cd(B, C), B、C∈F(X). It satisfies the following 
formula: 
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1
( ) ( )

N

n
n

A W A w A
=

= = ∪                                                     (4) 

Furthermore, for any A∈F(X), lim ( )n

n
A W B

→∞
= . 

The fixed point or fixed set (set or point A) in Theorem 3 is called the attractor of this 
iterated function system. The attractors of the iterated function system are generally fractal or 
have basic properties of fractal. It is called deterministic fractal.  

Theorem 4: (Collage theorem) Suppose that the metric space (X, d) is complete, and for a 
certain compression factor that is s(0≤1), the iteration function series with the fixed set A is X: 
wn, n=1,2,…,N. This means that the following holds 

       
1

( , ( )) ( ( ))
N

d n
n

h L W L L H Xε
=

≤ ∈，                                             (5) 

In the formula, hd is the Hausdorff measure, and H(X) is the mapping. Thus, the iterative 
function system W is 

1

1
( , ) (1 ) ( , ( )) ( ( ))

N

d d n
n

h L A s h L W L L H X−

=
≤ − ∈，                                 (6) 

As one of the important theorems in fractal geometry - the collage theorem, it illustrates the 
degree of self-similarity between a set and its corresponding invariant set in fractal geometry. 
For an iteration function X: wn, n=1, 2, … , N, its attractor A is approximately equal to a given 
set L. If we find a set of squeezed transformations that satisfy the collage theorem, the given 
set L can be approximated by using the attractor of this set of compression transformations. 

 

2.3 Fractal interpolation function 
Definition 9: If the function f is an interpolation function, it satisfies{(xi,Fi)∈R2:i=1,2,L,N}, 
x1<x2<x3<xN, and f is the continuous function f:[x1,xN]→R. 

Theorem 5: Suppose that 1 2 3 Na x x x x b≤ < < < < ≤ . Thus, the Nth order polynomial 
fN(x) that satisfies the interpolation condition is unique. 

The traditional interpolation algorithm can be divided into various methods according to the 
constructed interpolation function, such as polynomial interpolation, spline interpolation, 
cubic spline interpolation, and B-spline interpolation. The commonly used interpolation 
algorithm can be divided into Newton interpolation according to function, Lagrange 
interpolation and so on. According to Theorem 5, it can be ensured that for the same data, the 
polynomial satisfying the interpolation condition regardless of which interpolation algorithm 
is used is the same polynomial, but the expression form will be different. 

For a planar data set {(xi,yi)∈R2: i=1,2,…,N}, construct an iterative function on R2 such that 
its attractor is a given data set {(xi,yi)∈R2: i=1,2,…,N}. 

Assuming that the data set on R2 is {(xi,yi)∈R2: i=1,2,L,N}, f:[x1,xN]→R is a continuous 
function of the interpolation and the data set, The form of the straight line in the interval 
[xi-1,xi](i=1,2,L,N) is as follows 

       1
1 1

1

( ) ( )i i
i i

i i

y y
f x y x x

x x
−

− −

−

−
= + −

−
                                                (7) 

Where x∈[xi-1,xi]( i=1,2,L,N) 
Let this function f(x) be a piecewise linear function, as shown in Fig. 1. These f(x) changes 

to an iterative function, which is then interpolated, and the functional sequence is iterated over 
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the data. Thus, the function sequence 1 0{ ( ) ( )( )}n n nf x Tf x ∞

+ =
=  will converge to a fixed point, and 

a fractal image. 

(x0,y0)

(x1,y1)

(x2,y2)

(xN-1,yN-1)

x1 x2x0 x3

(xN,yN)

xN-1 xN0
x

y

 
Fig. 1. Piecewise linear function 

 
By interpreting the graph of Fig. 1, it can get a fractal curve. It is the attractor G of IFS{R2: 

W1,W2,…,WN} 
0 1, 2, ,1

n n
n

n n

a ex xW n Ny c y f
      = + =            

，                                (8) 

Let l=xN-x0 such that 

1

1

1 0

1 0

1( )
1( )
1( )
1( )

n n n

n n n

n N n n

n N n n

a x x
l

c y y
l

e x x x x
l

f x y x y
l

−

−

−

−

= −

= −

= −

= −

， 1,2, ,n N= 
                                (9) 

At this time, G is a non-empty compact set on R2 that satisfies the following formula: 

1
( )

N

n
n

G W G
=

=                                                               (10) 

It can be seen from this example that IFS can be used as an interpolation transformation, but 
fractal interpolation is not an ordinary data interpolation, and its interpolated curve must be a 
fractal curve. In other words, any part of the interpolation curve must be a differentiable curve. 

This requirement can be met by analyzing its self-similarity and any iteration of 
1

N

n
n

W
=


. 

Assuming that the functional sequence 1 0{ ( ) ( )( )}n n nf x Tf x ∞
+ ==  converges to a fixed point on 

the map T, Fig. 2 shows the basic principle of the fractal interpolation. In the figure A, B, and C 
are the three points of the interpolation data. If f0(x) is the line segment AC, then f1(x) is the 
segmentation function of the two segments,  f2(x) is the four lines of the contour ADBEC, and 
f3(x) are the eight segments of the second row of the left contour. In addition, ∆ADB, and 
∆BEC have similarity to the original ∆ABC, and a series of double triangles obtained after 
each iteration have similarity to the original triangle. The line ABC is a two-line segment, and 
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its two affine changes 
1W  and 

2W  respectively map the lines AB and BC, and the resulting 
segments are W1(AB)=AD, W2(AB)=DB and W2(BC)=EC. Suppose that W=W1∪W2. Thus,  
lim ( )n

n
W ABC

→∞
 is the outline of the curve in the Fig. 2. 

 
Fig. 2. Basic Schematic Diagram of Fractal Interpolation 

3. Bi-dimensional Empirical Mode Decomposition Interpolation 
Algorithm Based on Fractal Theory 

3.1 One-dimensional Brownian motion 
Brownian motion is a random motion, Brownian motion is a continuous collision of many 
particles. Adjacent particles lead to the particle's movement direction of the continuous change 
of the movement process, and the change trajectory is an irregular curve. The one-dimensional 
Brownian motion can be described by a random process as follows: For any t1 and t2 [23, 24] 

1 2( ) ( )H HL t L t− according to the Gaussian distribution (11) 
2

2 1 2 1( ( ) ( ) )H HE L t L t t t− ∞ −                                           (12) 

For either t0 or γ﹥0, L(t0+t)−L(t0) and 0 0

1
( ( ) ( ))L t t L tγ

γ
+ −  have the same joint distribution 

function. In other words, the increment of L has a self-similar characteristic according to the 
statistical law. 

3.2 Fractal Brown Function 
Formula (12) can be adjusted to the following formula 

2
2 1( ( ) ( )) HVar L t L t t− ∞ ∆                                          (13) 

Where Var is the formula and L(t) is the one-dimensional fractal Brownian function. H 
changes from the original H=1/2 to 0<H<1, which indicates the degree of irregularity of L(t). 

The fractal Brownian motion is a continuous function. Let t∈Rn, and L(t) be a real-valued 
stochastic function with respect to t. If there exists a constant H(0<H<1). 

( ) ( )
Pr ( )H H

H

L t t L t
x F x

t

+ ∆ −
< =

∆

 
 
 

                                  (14) 

If F(x) is independent of ∆t, t, then L(t) is a fractal Brownian motion. T represents a point in 
the Rn space, ∆t represents the offset of the point, t∆  represents the Euclidean distance, F(x) 
represents the Gaussian random distribution function, and the fractal dimension is defined by 
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LH(t) 
1D E H= + −                                                       (15) 

In formula (15), D represents the topological dimension. 
LH(t) has the following properties [23, 24]: 

2 22[ ( ) ( )] ( 1) ( ) H

H H H HE L t t L t E L t L t t+ ∆ − = + − ∆                         (16) 
Under normal circumstances, the average fractal dimension of the graphic can be obtained 

by the following formula: 
3D H= −                                                            (17) 

H represents a fractal self-similar parameter, which has the following characteristics [23, 
24]: 

(1) It is normal Brownian motion when H=1/2; 
(2) D=N+1 when H=0, which represents the ideal fractal Brownian motion; 
(3) D=N when H=1, which is a normal set that can be described by the common set 

language; 
(4) When 0<H<1, If H is smaller, L(t) vibrates more intensely, and the resulting image has 

more complex changes. When the value of H is larger, the vibration of L(t) is less violent, and 
the change of the image obtained by it is simpler. Therefore, H is a quantitative indicator of the 
complexity or roughness of the image surface. 

If the zero-mean Gaussian random distribution function is represented by L(t), then its 
specific form can be expressed by the following formula 

2
0

2

1
( ) 2 exp( )

22

s
F x ds

σπσ−∞

−
= ∫                                         (18) 

According to formula (14), we can know that 
2

20

( ) ( ) 1 2
2 exp( )

22 2
H

L t t L t x
E E x x dx C

t

σ

σπσ π

+∞+ ∆ − −
= = = =

∆
∫                   (19) 

Thus, formula (19) can be expressed by the following formula 
log ( ) ( ) log logE L t t L t H t C+ ∆ − − ∆ =                                     (20) 

Because H and C are constants, we know that logE|L(t+∆t)−L(t)| and log t∆  have a linear 

relationship through formula (20). In Cartesian coordinates, (log , log ( ) ( ) )t E L t t L t∆ + ∆ −  
represents the slope of the line, which is represented by H, and it fits a straight line through this 
information to obtain the value of H. 

3.3 Fractal Features of Images 
The general image fractal feature is to use the method of Section 2.2 fractal Brown function to 
analyze the specific image to get its distribution function and fractal dimension, as follows. 

(1) Distribution function 
One of the characterizations of the image surface shape is its distribution function F(x). In 

this paper, F(x) is the zero-mean Gaussian distribution function N(0,σ2), whose characteristic 
is determined byσ2. Here by formula (18) and formula (19) obtained. 

(2) Fractal dimension 
The fractal dimension is a fractal description of the image characteristic parameters. It 

fractals the characteristics of the image to be processed through Section 2.3, and its fractal 
dimension is obtained using formula (15). Under the same distribution function F(x), the 
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bigger the image fractal dimension D is, the more the object under test is rougher and vice 
versa. 

3.4 Random midpoint displacement method 
The fractal theory can be used to obtain a specific stochastic mid-point displacement method, 
which expresses the value of (xmi,ymi) using the following formula. Specifically [23, 24] 

1
( ) / 2 ()

mi i i
x x x s w rand

+
= + + ⋅ ⋅                                               (21) 

   1
( ) / 2 ()

mi i i
y y y s w rand

+
= + + ⋅ ⋅                                              (22) 

In Eq. (21) and Eq. (22), x is the horizontal axis and y is the vertical axis. s and w are control 
parameters, s controls the left and right direction of x movement and the up and down direction 
of y movement, w is the actual movement distance of s in the x and y directions, and rand( ) 
controls the moving random variables. 

The random variable s·w·rand() is represented by the normal random function stdev*N(0,1) 
such that s·rand() is a normal distribution. The standard deviation evolution law of the new 
interval can be recorded by parameter H. According to B. B. Mandelbrot’s theory, its 
dimension is 1+H. 

Step3

Step2

Step1

 
Fig. 3. Random midpoint displacement method diagram 

 
The idea of the one-dimensional random midpoint displacement method is as follows. First, 

the two endpoints of the existing endpoint attribute line’s midpoint is used as the mean value 
of both ends and any random displacement. Next, the two line segments after displacement are 
repeated, until the given condition is reached, As shown in Fig. 3, the line’s two-dimensional 
promotion is similar to its one-dimensional promotion. 

3.5 Bi-dimensional Empirical Mode Decomposition Interpolation 
Algorithm Based on Fractal Theory 
Fractal interpolation algorithms includes the following. First is image feature extraction, and  
second is the image interpolation. The details are as follows. 

(1) Image feature extraction 
1) Describe E|LH(t+∆t)−LH(t)|2 by calculating the expected value of the pixel brightness 

difference in the spatial distance of the image ∆t. 
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2) Determine the scale limit parameters |∆t|min and |∆t|max. 
If the image is an ideal fractal feature, then its fractal dimension is constant. However, the 

actual image may not be completely perfectly fractal. Therefore, it needs to determine a scale 
range, which ensures that the fractal dimension in this range is a constant. The specific 
determination method is as follows. Draw a fractal dimension diagram, which is 
logE|LH(t+∆t)−LH(t)|2 relative to the log|∆t| curve, wherein the upper and lower limits of the 
straight line segments are |∆t|min and |∆t|max. 

3) Calculate the standard deviation δ  of the parameter H and the pixel gray level normal 
distribution, and get the following relationship according to formula (16) 

2 2log ( ) ( ) 2 log logH HE L t t L t H t σ+ ∆ − − ∆ =                              (23) 
In the formula, σ2= E|LH(t+1)−LH(t)|2. H and σ can be obtained by solving the above 

formula. 
(2) Bi-dimensional empirical mode decomposition fractal interpolation 

0.25 0.5 0.75 1

D2 D1

D2

t

x(t)

1 2

(a)

h

Y

X
(b)  

Fig. 4. Random midpoint shift recursive method 
 

The bi-dimensional empirical mode decomposition fractal interpolation algorithm is 
essentially the process of the recursive random midpoint displacement method, as shown in 
Fig. 4, which is achieved by the following formula, for the pixels in the image (i, j). Assuming 
i, j, when all are odd numbers, its gray value LH has been determined, and when i and j are both 
even numbers, it can be obtained as follows. 

2 2

1
( , ) { ( 1, 1) ( 1, 1) ( 1, 1)

4
( 1, 1)} 1 2

H H H H

H
H

L i j L i j L i j L i j

L i j t H Gσ−

= − − + + − + + +

+ − + + − ∆ ⋅ ⋅ ⋅
                     (24) 

When i, j, there is only one, even when 
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/ 2 2 2

1
( , ) { ( , 1) ( 1, ) ( 1, )

4
( , 1)} 2 1 2

H H H H

H H

H

L i j L i j L i j L i j

L i j t H Gσ− −

= − + − + +

+ + + − ∆ ⋅ ⋅ ⋅
                                 (25) 

Where G is a Gaussian random variable with an N(0,1)) distribution and ‖∆‖ is the 
inter-sample distance. Therefore, it can use the H and σ of the original image’s feature 
description information to get the interpolation point’s brightness. 

This approach reaches the set spatial resolution and continues to re-start the above steps. In 
each iteration process, it needs to insert the midpoint, which is a Gaussian random variable, 
and the expectation is the average of four adjacent points. The offset of the point can be jointly 
determined by H and σ, which can describe the image’s characteristic information. When H=0, 
the offset of this point relative to the average of four adjacent points needs to be determined 
byσ. When H=1 and the variance is 0, the average of the four adjacent points is equivalent to 
the linear interpolation. If the value ofσis constant, the smaller that the value of H is the more 
random that the interpolation point will be for the specific interpolation principle that is shown 
in Fig. 5. 

0 1 32 4

1

2

0

i

j
‖Δt‖ 

 
Fig. 5. Fractal interpolation basic diagram 

 
The image under testing has a very high self-similarity characteristic in everyday 

production and life, and the fractal interpolation is used to reverse the self-similarity. 
Therefore, this is also the most important reason that the fractal interpolation algorithm can 
obtain a better interpolation effect. 

3.6 Bi-dimensional empirical mode decomposition algorithm 
interpolation of the concrete realization of the process 
Since bi-dimensional empirical mode decomposition algorithm interpolation can be achieved 
by the above principles, the related formulas and matlab programming, the main steps are: 

(1) Read in the picture I, and it is transformed into  M×N data matrix; 
(2) For the I(i, j) matrices, i and j are all even numbers and are interpolated by the formula 

(32) 
(3) Interpolate with (33) for I(i, j) with only one even number; 
(4) Perform a data rounding operation on the I(i, j) matrix obtained through step (2) and the 

step (3); 
(5) The matrix I(i, j) is converted into a picture output. 

4. Fractal interpolation parameter particle swarm optimization 
To further improve the computational efficiency of the fractal interpolation algorithm, the 
particle swarm optimization is performed on the parameters such as the vertical scale factor 
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and the initialization involved in the fractal interpolation algorithm. The specific procedure is 
as follows [25-33]. 

We use Xi=(xi1,xi2,…,xiD) denoting the ith particle,  its best position is represented by pbest 
which is expressed in term of P=(pi1,pi2,…,piD), and its velocity in term of Vi=(vi1,vi2,…,viD). 
The best place for the entire group is represented by gbest. The d-th dimension (1≤d≤D) of each 
generation of each particle is dealt with specifically by the relevant method as follows: 

The particle swarm optimization algorithms that are used to optimize the parameters 
involved in the basic steps are as follows: 

1 2( ) ( )() ()id id id id gd idw c x c R xv v rand p and p= + − + −                           (26) 

id id idx x v= +                                                                (27) 
Step 1: Population initialization, where n particles are assumed, the position and velocity is 

represented by 0

ix  and 0

iv , respectively, and the number of iterations is set; 
Step 2: Calculate the fitness of all particles in a certain state, denoted as pi; 
Step 3: Compare the fitness value pi calculated in step 2 with the optimal solution 

ibestp obtained from the optimization, if 
ii bestp p< , the new fitness value is replaced by the 

new fitness value and the new one is replaced by the new one Of the particles to replace the 
particles of the previous stage, that is 

ibest ip p=  and 
i ibest bestx x= . 

Step 4: By comparing the optimal fitness value 
ibestp  of each particle in the population with 

the optimal fitness value 
ibestg  of all particles, if 

i ibest bestp g< , 
ibestp  of the particle is 

substituted for a of all particles 
ibestg , and the position and state of the particle save, ie 

i ibest bestg p=  and 
i ibest bestx x= ; 

Step 5: Through the calculation of step 1 to step 4, we can get the new velocity and position 
of the particle, and use it to replace the corresponding value of the original particle to generate 
new particle. 

Step 6: If the setting optimization condition has not been reached through the operation of 
step 1 to step 5, then step 2 is performed again until the setting condition is satisfied. The 
specific optimization calculation process is shown in Fig. 6. 

 
Initialize, randomly determine the particle's 

position and initial velocity

Calculate the fitness of each 
particle

if fitness (x)> fitness (pbest) then pbest = x

if fitness (x)> fitness (gbest) then gbest = x

gbest parameters for the optimal 
parameters

Optimize particle 
location

Optimize particle 
velocity

Meet the 
termination 
conditions

Y

No. Forming the next 
generation of groups

 
Fig. 6. Particle swarm algorithm diagram 
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5. Image Fractal Interpolation Experimental Analysis 

5.1 Image quality evaluation 
The ultimate goal of image processing is to obtain a clearer image in order, to achieve the 
purpose of changing the visual effects. Therefore, it is very important to evaluate the quality of 
the processed images. The current image quality evaluation is based on  two ways as: 
subjective evaluation  and objective evaluation. The following three types of image quality 
evaluation are adopted as the basic characteristics and application scenarios for analysis and 
description. 

(1) Subjective evaluation of image quality 
The subjective evaluation of image quality is similar to a diving competition in sports. The 

image quality is scored by multiple referees, and then the competition’s results are determined 
according to the rules. The referee who subjectively evaluates the image quality may be a 
general practitioner or a professionally trained person. 

The subjective evaluation of the image quality is subjective and contains more content. The 
evaluation results can be easily disturbed by the evaluators. The evaluation results obtained 
cannot fully reflect the real quality of the images.  

(2) Objective evaluation of image quality 
This is the objective evaluation of image quality through the PSNR, MSE and other 

indicators of image quality before and after the judging. It involves with the specific meanings 
of MSE and PSNR and see [23, 35]. 

(3) Wang et al. proposed an approach to image fidelity measurement,which may also prove 
highly effective for measuring thefidelity of other signals, such as the structural similarity 
(SSIM) index. It involves with the specific meanings of SSIM (see [34, 35]). 

Through the above analysis, we can know that the objective evaluation of the image quality 
can better reflect the quality of the processed image. We will use this method to evaluate the 
image quality interpolated by the interpolation algorithm proposed in this paper, so as to 
objectively verify the performance and advantages of the interpolation algorithm proposed 
here. 

5.2 Experiment 1 
To verify the advantages of the image interpolation algorithm proposed in this paper, we 
choose Lena and Couple from standard image testing library. The experimental images are 
shown in Fig.7. In the experiment, the two images are reduced by 2 times, 4 times, 8 times and 
16 times respectively, and then the sizes of the two images are restored by using the 
interpolation algorithm, double three times, double non-linearity and the nearest neighbor 
interpolation, respectively. The reduction effect is shown respectively in Fig. 8 to Fig. 15. The 
PSNR, MSE and calculation time are shown in Tables 1-3. 
 

  
(a) Lena                              (b) Couple 

Fig. 7. Lena and Couple experimental images 
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(a)                                 (b)                                       (c)                                       (d)  

Fig. 8. Lena image reduced by the 2 times different algorithm interpolation zoom to the original sized 
renderings((a) Fractal interpolation, (b) Bicubic interpolation, (c) Double nonlinear interpolation, and 

(d) Nearestneighbor interpolation) 
 

    
(a)                                      (b)                                         (c)                                      (d)  

Fig. 9. Lena image reduced by the 4 times different algorithm interpolation zoom to the original sized 
renderings((a) Fractal interpolation, (b) Bicubic interpolation, (c) Double nonlinear interpolation, and 

(d) Nearestneighbor interpolation) 

    
(a)                                    (b)                                       (c)                                    (d)  

Fig. 10. Lena image reduced by the 8 times different algorithm interpolation zoom to the original sized 
renderings((a) Fractal interpolation, (b) Bicubic interpolation, (c) Double nonlinear interpolation, and 

(d) Nearestneighbor interpolation) 
 

    
(a)                                      (b)                                       (c)                                        (d)  

Fig. 11. Lena image reduced by the 16 times different algorithm interpolation zoom to the original sized 
renderings((a) Fractal interpolation, (b) Bicubic interpolation, (c) Double nonlinear interpolation, and 

(d) Nearestneighbor interpolation) 
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(a)                                      (b)                                          (c)                                          (d)  

Fig. 12. Couple image reduced by the 2 times different algorithm interpolation zoom to the original 
sized renderings 

((a) Fractal interpolation, (b) Bicubic interpolation, (c) Double nonlinear interpolation, and (d) 
Nearestneighbor interpolation) 

    
(a)                                    (b)                                        (c)                                      (d) 

Fig. 13. Couple image reduced by the 4 times different algorithm interpolation zoom to the original 
sized renderings((a) Fractal interpolation (b) Bicubic interpolation (c) Double nonlinear interpolation (d) 

Nearestneighbor interpolation) 

    
(a)                                   (b)                                       (c)                                       (d) 

Fig. 14. Couple image reduced by the 8 times different algorithm interpolation zoom to the original 
sized renderings((a) Fractal interpolation, (b) Bicubic interpolation, (c) Double nonlinear interpolation, 

and (d) Nearestneighbor interpolation) 

    
(a)                                      (b)                                        (c)                                      (d) 

Fig. 15. Couple image reduced by the 16 times different algorithm interpolation zoom to the original 
sized renderings((a) Fractal interpolation, (b) Bicubic interpolation, (c) Double nonlinear interpolation, 

and (d) Nearestneighbor interpolation) 
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It can be seen from Fig. 8 to Fig. 11 that the Lena image is magnified to its original size by 
different interpolation algorithms after being reduced by 2, 4, 8 and 16 times, respectively. In 
this paper, the proposed effect after interpolation is 8 and 16 times Obviously better than the 
other three interpolation algorithms; and especially in the case of 16 times, the effect of the 
interpolation algorithm in this paper is still relatively clear, the other three algorithms have 
been relatively vague renderings, especially the nearest neighbor interpolation The resulting 
graph is unable to distinguish the image of the character information, therefore, the advantage 
of the algorithm is obvious. In the cases of 2 and 4 times, the algorithm in this paper also has 
advantages, but the subjective visual perception is not obvious. Follow-up will be analyzed in 
detail through objective indicators such as PSNR and MSE. 

Couple images are reduced by 2, 4, 8 and 16 times, respectively, and then magnified to the 
original size by different interpolation algorithms. As shown in Fig. 12 to Fig. 15, we can see 
that the effect of interpolation after 8 and 16 times is obviously better than the other three 
algorithms. In the case of 16 times, the interpolation result image obtained in this paper can 
basically reflect the overall information of the original image, and the results obtained by the 
other three algorithms are not complete. The original image information is summarized, which 
directly proves the advantages of the interpolation algorithm in this paper. In 2 and 4 times 
cases, the algorithm also has advantages, but subjective visual perception is not obvious, the 
paper will be followed by specific indicators of comparative analysis. 

It can be seen from Table 1 that after the 2, 4, 8, and 16 times of reduction, it is enlarged to 
its original size. The interpolation algorithm proposed in this paper has the highest PSNR, 
which objectively shows that the interpolation algorithm in this paper has the uniqueness of 
the interpolation, and the interpolation effect is the best. Especially in the case of 8,16 times, 
the other three kinds of interpolation algorithm has appeared more vague circumstances, and 
the proposed interpolation algorithm restore the original size of the image, not only the image 
is more clearly , the PSNR of the image restored to its original size is also the highest among 
several interpolation algorithms. It proves that the interpolation algorithm proposed in this 
paper has the highest image quality. 
 

Table 1. PSNR (unit: dB) statistics for different algorithms for different magnifications 

Experimental 
images Gain This paper 

method 
Double 

three times 
algorithm 

Double 
non-linear 
algorithm 

Nearest 
neighbor 
algorithm 

Lena 
2 31.79 30.08 28.91 28.26 
4 26.63 25.62 24.96 24.03 
8 22.26 22.23 21.77 21.13 
16 20.07 19.70 19.27 19.02 

Couple 
2 38.75 30.42 29.62 28.88 
4 26.67 26.65 26.14 25.53 
8 24.27 23.74 23.42 23.00 
16 22.37 21.78 21.56 21.24 

 

Table 2. MSE statistics for different algorithms for different magnifications 

Experimental 
images Gain 

This 
paper’s 
method 

Double 
three times 
algorithm 

Double 
non-linear 
algorithm 

Nearest 
neighbor 
algorithm 

Lena 
2 43.03 63.91 83.61 97.07 
4 141.43 178.32 207.36 256.86 
8 386.57 387.16 432.36 501.53 
16 639.58 697.07 769.01 814.71 

Couple 
2 8.68 59.06 71.03 84.20 
4 139.97 140.60 158.07 181.98 
8 243.54 274.78 295.89 325.58 
16 377.13 431.43 453.70 488.33 
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It can be seen from Table 2 that after the 2, 4, 8 and 16 times of reduction, the interpolation 
algorithm enlarges to the original size. The mean square error of the interpolation algorithm 
proposed in this paper is the smallest, which also shows that the interpolation algorithm in this 
paper is the most stable and has the most obvious effect. As can be seen from Table 3, the 
interpolation algorithm proposed in this paper needs less computation time than the other three 
interpolation algorithms, and it can be known from the experimental results that the 
interpolation algorithm in this paper not only has the best interpolation effect but also can 
provide real-time processing guarantee.. As can be seen from Table 4, the interpolation 
method proposed in this paper obtains the best SSIM index, and objectively it interpolates the 
highest image visual quality, and the interpolation effect is also the best. 

 
Table  3. Different magnification algorithm different calculation time (unit: second) statistics 

Experimental 
images Gain 

This 
paper’s 
method 

Double 
three times 
algorithm 

Double 
non-linear 
algorithm 

Nearest 
neighbor 
algorithm 

Lena 
2 0.25 0.19 0.18 0.17 
4 0.18 0.19 0.18 0.17 
8 0.26 0.21 0.19 0.19 
16 0.19 0.20 0.17 0.16 

Couple 
2 0.29 0.21 0.21 0.21 
4 0.27 0.22 0.20 0.20 
8 0.28 0.21 0.22 0.21 
16 0.26 0.22 0.27 0.22 

 
Table 4. SSIM statistics for different algorithms for different magnifications 

Experimental 
images Gain 

This 
paper’s 
method 

Double 
three times 
algorithm 

Double 
non-linear 
algorithm 

Nearest 
neighbor 
algorithm 

Lena 
2 0.9675 0.9378 0.9003 0.8912 
4 0.9421 0.9026 0.8767 0.8591 
8 0.9076 0.8985 0.8446 0.7901 
16 0.8319 0.8235 0.7741 0.7367 

Couple 
2 0.9587 0.9082 0.9001 0.8991 
4 0.9336 0.8929 0.8863 0.8877 
8 0.8994 0.8683 0.8538 0.8485 
16 0.8244 0.7326 0.7226 0.7144 

 

5.3 Experiment 2 
To better serve the mine measured image processing, this example mine support image using 
the method proposed in this paper and the wavelet method to enhance the processing, and is 
shown in Fig. 16. This method of image interpolation enhances the image. The effect is shown 
in Fig. 17, and the wavelet method for image enhancement effect is shown in Fig. 18. 

It can be seen from Fig. 16 to Fig. 18 that the image obtained by the method of the present 
invention can clearly identify the texture information of the image. The image obtained by the 
wavelet method cannot well recognize the texture information contained in the image. 

To analyze the above method in the aspect of preserving the image feature information, the 
indicators such as the PSNR, the MSE and the SSIM of the images obtained by the two 
methods are analyzed in detail as shown in Table 5 to Table 7 below. 



5972                                                                              Fengping An, et al: Bi-dimensional Empirical Mode Decomposition Algorithm 
Based on Particle Swarm-Fractal Interpolation 

  
Fig. 16. Measured roadway support grayscale Fig. 17. This method interpolates the enhanced 

renderings 
 

 
Fig. 18. Wavelet method to enhance the effect map 

 
Table  5. PSNR (unit: dB) statistics table of two methods after the measured image processing 

Image type 
This 

paper’s 
method 

Wavelet 
method 

PSNR 43.25 39.37 
 

Table  6. two methods for the measured image processing MSE statistical tables 

Image type 
This 

paper’s 
method 

Wavelet 
method 

MSE 69.31 78.92 
 

Table  7.  Two methods for the measured image processing ssim statistical tables 

Image type 
This 

paper’s 
method 

Wavelet 
method 

SSIM 0.8961 0.8503 
 

It can be seen from Table 5 to Table 7 that the peak SNR of the image obtained by the 
proposed method is the highest, which also objectively shows the superiority of the proposed 
method in the processing of the down hole measured image features. The mean square error of 
the image obtained by this method is small, which also reflects that the measured image is 
more stable and the effect is the most significant. It can also provide more favorable image 
feature information support for the surrounding rock deformation of mine roadway in the later 
period. The SSIM of interpolation results obtained by this method is the best, which shows that the 
interpolation image obtained has the best visual effect. 

5.4 Experiment 3 
To better reflect the advantages of the interpolation method proposed in this paper, this 

experiment selects the cameraman image from the standard test image library to conduct 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018                        5973 

experiments, and the experimental images are shown in Fig. 19. In the experimental process, 
first, the image is reduced by 4 times. Then the interpolation algorithm [35, 36] are used to 
respectively conduct the size reduction, and the obtained reduction effect is shown in Fig. 20. 
Moreover, the PSNR, MSE and SSIM of the interpolated image are calculated, as shown in 
Table 8. 

 
Table 8. PSNR, MSE and SSIM statistics of different magnification and different algorithms 

Indicator 
type 

This paper 
method 

Reference 
[35] 

Reference [36] 

PSNR 29.69 27.37 26.39 
MSE 128.43 120.03 121.07 
SSIM 0.9482 0.9018 0.9187 

 

 
Fig. 19. Cameraman 

 

   
 (a) Fractal Interpolation     (b) Reference [35]   (c) Reference [36] 

Fig. 20. Different interpolation methods enlarge the image to the original size effect diagram after 
reducing the image by 4th 

 
For the cameraman images, the interpolation method in this paper and References [35-36] 

are respectively used to interpolate and enlarge to the original size after reducing it by 4. As 
you can see from Fig. 20, the method proposed in this paper is superior to the interpolation 
method in References [35-36] with respect to subjective vision. As seen from Table 6, the 
MSE of interpolation results obtained by this method is the smallest, which reflects that the 
interpolation algorithm in this paper is the most stable. The PSNR of the interpolation results 
obtained by this method is the highest, which indicates that the interpolation image obtained is 
of the best quality. The SSIM of the interpolation results obtained by this method is the best, 
which shows that the interpolation image obtained has the best visual effect. 

The experimental results from Experiment 1 to 3 show that the interpolation method 
proposed in this paper is optimal after 2nd, 4th, 8th, and 16th scale reduction and then 
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amplified to the original size. This finding is primarily observed because the fractal 
interpolation method proposed in this paper first analyzes the amount of image feature 
information, and then it performs interpolation according to the information of the image 
feature information. This result is equivalent to understanding the size distribution of the 
feature information contained in the image pixels, and interpolation is subsequently performed. 
This approach can improve the utilization of feature information in the interpolation process, 
and fully implement data-driven interpolation according to the self-characteristic information 
of the image itself. This method is also fundamentally different from other interpolation 
methods, and it can ensure the interpolation effect of the image in principle.  

6. Conclusion 
This work proposes an adaptive fractal interpolation algorithm, in which all parameters are 
determined by the particle swarm optimization. The algorithm aims to solve the problem of 
inaccurate and low real-time interpolation in bi-dimensional empirical mode decomposition, 
for the problem may cause a reliable bi-dimensional intrinsic mode function. The proposed 
algorithm not only improves the interpolation accuracy, but also inceases the interpolation 
efficiency. Some case analyses illlustrate its advantage over the other interpolation algorithms. 

Experiments show that the Lena and Couple images are magnified to the original size after 
being reduced in size by 2, 4, 8 and 16 times. This paper proposes that after 8 and 16 times of 
the algorithm, the interpolated renderings are obviously superior to the other three algorithms 
Especially in the case of 16 times, the renderings obtained by the interpolation algorithm in 
this paper are still relatively clear. The renderings obtained by the other three algorithms are 
already quite vague, especially the result graph obtained by the nearest neighbor interpolation 
method can not be distinguished The image of the character information, we can see the 
advantage of this algorithm is more obvious. In the case of 2,4 times, the algorithm in this 
paper also has advantages, but the subjective visual perception is not obvious. Follow-up will 
be analyzed in detail through objective indicators such as peak signal-noise ratio and mean 
square error. The proposed algorithm not only has the highest peak signal to noise ratio, but 
also has the smallest mean square error, which verifies the advantages of the interpolation 
algorithm in this paper. In addition, it can be known from the experimental results that the 
interpolation method proposed in this paper is better than the bilinear, adjacent and other 
interpolation methods, and is also better than the interpolation methods proposed in recent 
years, such as those in References [35-36]. This is mainly because the interpolation method 
proposed in this paper makes full use of the characteristic information of the image to be 
interpolated, and then performs the interpolation. It is an interpolation method based on the 
information of the image itself. This is the essential difference between and the interpolation 
method proposed in this paper and other interpolation methods, and it is also the key cause of 
its best interpolation effect. 

It can be seen from Fig. 16, 17, 18 and 20 that for the measured image interpolation, the 
image obtained by the method of the present invention can clearly identify the texture 
information. The image obtained by the wavelet method can not well recognize the texture 
information contained in the image. Furthermore, the PNSR,  the MSE, and the SSIM of the 
image obtained by the method proposed in this paper are also small. This result also reflects 
that the measured image is more stable and the effect is the most obvious. It can provide more 
favorable image feature information support for the surrounding rock deformation of the mine 
roadway in the later period. 
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