
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, Dec. 2018 6139
Copyright ⓒ 2018 KSII

Analysis of Web Browser Security
Configuration Options

Ananth A. Jillepalli*, Daniel Conte de Leon, Stuart Steiner and Jim Alves-Foss

Center for Secure and Dependable Systems, University of Idaho
Moscow, ID 83843 - USA

[e-mail: {ajillepalli, dcontedeleon, ssteiner, jimaf}@uidaho.edu]
Corresponding author: Ananth A. Jillepalli

Received March 21, 2018; revised May 16, 2018; accepted July 8, 2018;

published December 31, 2018

Abstract

For ease of use and access, web browsers are now being used to access and modify sensitive
data and systems including critical control systems. Due to their computational capabilities
and network connectivity, browsers are vulnerable to several types of attacks, even when fully
updated. Browsers are also the main target of phishing attacks. Many browser attacks,
including phishing, could be prevented or mitigated by using site-, user-, and device-specific
security configurations. However, we discovered that all major browsers expose disparate
security configuration procedures, option names, values, and semantics. This results in an
extremely hard to secure web browsing ecosystem. We analyzed more than a 1000 browser
security configuration options in three major browsers and found that only 13 configuration
options had syntactic and semantic similarity, while 4 configuration options had semantic
similarity, but not syntactic similarity. We: a) describe the results of our in-depth analysis of
browser security configuration options; b) demonstrate the complexity of policy-based
configuration of web browsers; c) describe a knowledge-based solution that would enable
organizations to implement highly-granular and policy-level secure configurations for their
information and operational technology browsing infrastructures at the enterprise scale; and d)
argue for necessity of developing a common language and semantics for web browser
configurations.

Keywords: Security policy, application hardening, secure configurations, enforcing least
privilege, web browser security, phishing prevention

A shortened version of this paper appeared in IEEE SSCI 2016, December 06-09, Athens, Greece. This version is
an expansion of the previously presented research. More information regarding the expansion’s specifics are given
in Section 1.3. We would like to thank the U.S. National Science Foundation (NSF) and the State of Idaho, for
funding this research work. NSF under CyberCorps awards 1027409 and 1565572. Idaho under IGEM
Cybersecurity grants of 2012 and 2016. We would also like to thank Mr. Venkata Anirudh Bhandari for his role in
achieving this article’s contributions.

http://doi.org/10.3837/tiis.2018.12.028 ISSN : 1976-7277

6140 Jillepalli et al.: Analysis of Web Browser Security Configuration Options

1. Introduction

Applications connected to the Internet are one of the most vulnerable aspects of the
enterprise-level Information Technology (IT) infrastructure. To narrow down the focus of this
article, let us restrict the scope of discussion to web browsers. Web browsers are a prime target
for malicious cyber-actors. Web browsers, if not configured for enhanced security, are
vulnerable to client-side, command execution, and information disclosure attacks as classified
by Web Application Security Consortium [1]. These include Cross-Site Scripting (XSS),
Cross-Site Request Forgery (CSRF), and Content Spoofing, among many others. Phishing and
spear-phishing are today a common modus operandi to initiate such attacks. Some of these
attacks remain functional even when a browser is fully updated.

1.1 Specific Problem and Proposed Solution
If a web browser is configured with default install-time configuration settings all functionality
is enabled for all websites and all users. We cannot rely upon default web browser
configurations because these do not implement the principle of least privilege. In this case,
attackers would only need a victim to click on a malicious link to trigger execution of attacker
controlled code. Such an event can lead to data exfiltration, modification, and system
compromise. Furthermore, if the user is currently logged-on to internal corporate website(s),
the risk for system and data compromise and upward attacker mobility is greatly increased. If
the system being accessed is an industrial control system then such an attack avenue may
enable the attacker to directly impact the physical world. In addition, detection of these attacks
is particularly difficult due to blending of unauthorized access with normal system access.
These attacks may also avoid provenance and dataflow alarms since the system access seems
to be originating from an authorized user session. In addition, these attacks can also bypass
most firewall rules, that are protecting the security perimeter.
 To prevent or mitigate most of these attacks we need to deploy high-granularity
enterprise-wide tailored security configurations in applications connected to the Internet.
Tailored security configuration implies restricting selective execution of application features,
such as JavaScript code and storage, depending on a combination of domain, user/role, client
device, and application. An example of such a high-granularity configuration in web browsers
would be: enabling JavaScript for user Mike, on MikesPC, while using Internet Explorer, and
when accessing intranet.example.corp and disabling JavaScript and access to most other
non-intranet sites using the same browser for the same user in the same device, and possibly all
other devices. An all-spanning and enterprise-wide configuration to disable browser features
like JavaScript and storage are not practical, since most sites would be rendered unusable,
including trusted sites. Such highest privilege configurations result in an insecure browsing
ecosystem. Therefore, high-granularity enterprise-wide tailored web browser security
configurations may be the only solution to the widespread occurrence of security breaches
resulting from attacks targeting the web browsing ecosystem.

1.2 Project Context and Research Questions
We undertook a quest to ascertain the requirements that, when fulfilled, would enable
organizations to securely configure their web browsing infrastructure using a least privilege
approach. We wanted to discover: a) Why organizations were not already implementing such
an approach and b) What could be done to help facilitate implementation of such an approach.
We started our quest by answering the following questions in the case of the three major web

KSII TRANSACTIONS ON INTERNET A ND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 6141

browsers: 1) Which security-relevant configuration options are available? 2) How similar or
different are the available configuration options? 3) What kind of procedures and expertise are
required to configure these available options? 4) How similar or different are the procedures
and expertise required to configure the available options? 5) Which tools are available today,
to help IT/OT system administrators, to configure web browsers using a highgranularity and
least privilege approach? 6) What functionality should tools or configuration languages
expose to facilitate a high-granularity web browser configuration approach?
 We believe we have answered all these questions with our research and are moving forward
with the development of prototype environments that would enable high-granularity and least
privilege web browser and application-level secure configurations. The overall research
project, HiFiPol, began with an initial exploration into questions 1-5 in Bhandari’s thesis
[2],[3] and for question 6 within Jillepalli’s thesis [4],[5],[6]. This paper expands those earlier
publications adding new results as detailed in following subsection.

1.3 The Contributions of this Article
The contributions of this article are as follows: First, we analyze and categorize secure
browsing configuration options across the three major web browsers: Google Chrome
(v37.0.2062), Internet Explorer (v10.0.9200), and Mozilla Firefox (v33.0.2). As of 03/19/2018,
the latest versions of these three web browsers are: Internet Explorer: v11.0.56, Google
Chrome: v65.0.3325, and Mozilla Firefox: v59.0.1. However, for the configuration options
discussed in Tables 5, 6, 7, 8, and 9, we have verified that no significant change in the syntax
and semantics has occurred for all three web browsers, between the versions that we analyzed
and current versions. The high syntactic and semantic variability of web browser configuration
options across all three major web browsers is still a major roadblock in the implementation of
a secure browsing ecosystem for most organizations. Second, we describe, in detail, the
similarities and differences between available configuration options across these three
browsers. Third, we developed a tool named Open Browser GP that can remotely configure
security related settings, based on policy, across Google Chrome, Internet Explorer, and
Mozilla Firefox. Fourth, we propose the need to develop a set of common settings and a
common language for web browser configurations.
 This article is an expanded version of a conference paper [3] published by IEEE. The
differences between the conference paper and this article are as follows: (1) performed a
policy-based analysis of configuration options in three major web browsers and reported the
results of this analysis in Section 6 and in Table 9; (2) discussed the results and implications of
our findings in Section 7; (3) revised and enhanced the semantic and syntactic analysis and
reported the new results in Sections 4, 5 and in Tables 3, 4, 5, 6, 7, and 8; (4) expanded the
description regarding the development of the Open Browser GP tool in Sub-Section 8.1; (5)
expanded the description of the categorization for configuration options and scope of our
security configuration analysis in Section 3; (6) verified that the configuration options being
discussed in the article are valid in the current versions of the three web browsers in Section 3;
and (7) expanded the reasoning behind our argument concerning the necessity of a common
language, syntactic, and semantics amongst web browsers, and added a policy-based
specification case study in Section 9 and in Listings 2 and 3.

1.4 Outline of this Article
The remainder of this article is organized as follows: Section 2 provides information on
currently available tools for remotely configuring web browsers. It also presents some of the
limitations associated with these solutions. Section 3 describes our setup and classification of

6142 Jillepalli et al.: Analysis of Web Browser Security Configuration Options

available configuration options across Internet Explorer, Google Chrome, and Mozilla Firefox.
Sections 4, and 5 describe the process and results of our syntactics-based and semantics-based
analysis of security-related configuration options across the three web browsers. Section 6
demonstrates the process of policy-based configuration of web browsers. We also make an
observation regarding the complexity of such a policy-based configuration process. Section 7
discusses the results and implications of the analyses conducted in Sections 4, 5, and 6. Section
8 describes the design, development process, advantages, and limitations of a user-friendly,
multiweb-browser, and multi-platform tool named as Open Browser GP. For the remainder of
this paper GP should be understood as a reference to Group Policy. Section 9 discusses the
need to create and utilize common settings and a common configuration language across all
web browsers and all operating systems. Section 10 discusses another web browser
configuration analysis work, and the differences between that work and ours. Section 11
briefly describe the ongoing and near term future work, respectively. Conclusion to the article,
declarations, and references follow.

2. CURRENT TOOLS FOR REMOTE WEB BROWSER
CONFIGURATION

We put forth information about the pros and cons of the currently available tools for remote
web browser configuration, which are: Microsoft Group Policy, FreeIPA, and Quest KACE
(previously known as Dell KACE). We also briefly discuss the pros and cons of these tools,
with respect to the problem discussed in Subsection 1.1.

2.1 Microsoft Group Policy and SmartScreen
Microsoft Windows line of operating systems are equipped with Administrative Templates,
which are a popular and useful way of configuring applications, including web browsers, in
Microsoft Windows client systems. Files with .ADMX and .ADML extensions are
Administrative Template Files which were introduced by Windows Vista and Windows 2008
server. .ADML files are referenced by .ADMX files. Where, .ADML files contain textual
descriptions of the configurations and .ADMX files contain the actual configurations [7].
Group Policy and Group Policy Objects are used by Windows Server, to remotely configure
multiple client systems that are joined to a Windows Domain Server. This method is used by
organizations ranging from medium scale private companies to large scale government
organizations to configure multiple Windows client operating systems by using a Windows
Server infrastructure called Active Directory. The Local Group Policy Editor can also be used
to configure web browser settings in client operating systems, which have the “Local Group
Policy Object Editor” installed [8].
 The .ADMX and .ADML files for Internet Explorer (IE) are already available in the Policy
Definitions folder in all Windows operating systems and these files also receive an update
whenever IE is updated. The .ADMX and .ADML files for Google Chrome (GC) are not
installed by default in Windows. They have to be acquired from GC’s developer website [9],
[10]. Mozilla Firefox (MF) does not support Group Policy functionality natively (as of
03/19/2018). It requires a third party add-on such as GPO for Firefox, to configure
administrative templates and connect Firefox to the Windows registry [11],[12]. This means
that the .ADMX and .ADML files for MF are not created and maintained by Mozilla. In
addition, the installation process of a third party add-on involves manual configuration of
different entries in Mozilla Firefox, which is a complex task requiring a high level of expertise

KSII TRANSACTIONS ON INTERNET A ND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 6143

and experience with configuring MF. However, as of 03/19/2018, even with the third party
add-ons, MF doesn’t have many settings which are compatible with Group Policy.
 Active Directory (AD) is useful to manage and configure Windows machines only. In
addition, even when using AD, system administrators have to manually configure each web
browser setting to achieve the same configuration option in all web browsers. For example,
even though all web browsers support the JavaScript Enable/Disable configuration setting, the
web browsers use different configuration option locations, names, and values. Therefore, the
process of configuration of all browsers using Group Policy usually requires training and a
level of expertise.
 Starting from Microsoft Windows 8, the Windows line of operating systems started using
SmartScreen, which is a cloud-based anti-phishing white-list. SmartScreen is also embedded
into various Microsoft applications: web browsers (Internet Explorer 7 and above and
Microsoft Edge), e-mail suite (Outlook), and Exchange Server. SmartScreen is effective in
blocking known, reported phishing resources. However, it is a white-list and not a granular,
least-privilege configuration tool.

2.2 FreeIPA
Red Hat, Inc. created, develops, and sponsors an opensource project called the FreeIPA [13].
FreeIPA is used to emulate Microsoft’s Active Directory functionality in Linux and other
Unix-like computers. When it comes to implementation of tailored security configurations for
web browsers, FreeIPA also has limitations similar to Active Directory. Two such limitations
are as follows: FreeIPA does not map common configuration options across different web
browsers. Which implies that system administrators have to manually configure common
configuration options for each web browser individually. FreeIPA works across Linux- and/or
Unix-based systems and requires Active Directory to configure browser settings in Windows
client systems.

2.3 Quest KACE
The Quest KACE (previously Dell KACE) Systems Management Appliance is an appliance
and software tool for remote management of client devices in an enterprise. It is the only tool
we found that can remotely manage a multi-platform IT infrastructure. It provides: Inventory
and IT asset management, systems deployment, patch management and security, and service
desk. This utility allows system administrators to create a client-server infrastructure, to
deploy software, run scripts, and manage security patches. This utility also provides a secure
DNS infrastructure and a user-friendly GUI interface for systems administrators [14].
 Nonetheless, akin to every remote management and configuration tool known to the
authors, Quest KACE’s remote deployment of configurations is based on running scripts for
configurations. These scripts are manually developed by system administrators. To implement
high-granularity configuration options on multiple web browsers across multiple platforms,
system administrators would need to manually create separate scripts for each browser and
each configuration group. This implies that organizations would still need system
administrators with in-depth expertise regarding the naming and semantics of all configuration
options for all web browsers used within their organization.
 These drawbacks provided us with the motivation to: a) analyze security configuration
options across Google Chrome (v37.0.2062), Internet Explorer (v10.0.9200), & Mozilla
Firefox (v33.0.2) (Sections 4, 5, and 6), and subsequently: b) develop a knowledge- and policy
based multi-browser and multi-platform browser configuration tool (Section 8).

6144 Jillepalli et al.: Analysis of Web Browser Security Configuration Options

3. Data Sources and Scope of Analysis
We present details regarding the setup, on which we carried out our analysis. First, we layout
details regarding our analysis scope. Second, we categorize all available configuration options
into four categories. To make the scope of our analysis manageable and realistic, we chose to
work on three web browsers. They are: Internet Explorer (IE), Google Chrome (GC), and
Mozilla Firefox (MF). These were the three most popular web browsers for desktops and
laptop devices, as reported by StatCounter [15]. The versions we used for our analysis were:
Internet Explorer: v10.0.9200, Google Chrome: v37.0.2062, and Mozilla Firefox: v33.0.2.

Table 1. Browser Configuration Option Categories. Table adapted from [2],[3]. GUI: Graphical User

Interface and SEC: Security.
Browser Settings Categorization

Category Name Category Description
GUI-SEC GUI and Security setting

GUI-NOSEC GUI and Non-Security setting
NOGUI-SEC Non-GUI and Security setting

NOGUI-NOSEC Non-GUI and Non-Security setting

Table 2. Number of Analyzed Security Configuration Settings per Major Web Browser and per
Category. Based on data reported in [2],[3].

Category Name

Number of Settings

IE GC MF

Total 1191

Sub-total 770 158 263

GUI-SEC 260 058 047

GUI-NOSEC 300 078 147

NOGUI-SEC 210 022 069

NOGUI-NOSEC Not analyzed

Table 3. Number of Syntactically (and Semantically) Similar Configuration Options across the Three

Web Browsers per Category. These 13 settings are described in Tables 5 and 6.
Category Name Number of Settings - All Web Browsers

Total 13

GUI-SEC 6

GUI-NOSEC 6

NOGUI-SEC 1

NOGUI-NOSEC Not analyzed

KSII TRANSACTIONS ON INTERNET A ND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 6145

Table 4. Number of Semantically (but not Syntactically) Similar Configuration Options across the
Three Web Browsers per Category. These 4 settings are described in Tables 7 and 8.

Category Name Number of Settings - All Web Browsers

Total 4

GUI-SEC 2

GUI-NOSEC 1

NOGUI-SEC 1

NOGUI-NOSEC Not analyzed

 Web browsers have several settings and options available to be configured. Since security
settings are our focus for this article, we first classified all available configuration options. See
Table 1 for a list of categories. We classified Machine-level configuration options for each of
three web browsers into a Cartesian product of (1) GUI or NOt-GUI and (2) SECurity or
NOt-SECurity related. Machine-Level configuration options refer to options that are
applicable to a device rather than to the individual users of that device. Results of this
classification are shown in Table 2. To create this classification, we analyzed 770 Internet
Explorer, 158 Google Chrome, and 263 Mozilla Firefox configuration options. We did not
consider configuration options that were in the NOSECurity category.

 We used Python scripts to extract the data and the predetermined configuration option
names from .ADMX and .ADML files of IE and Chrome. Firefox configuration options were
extracted by processing the entries described in the Mozilla’s database describing Firefox’s
internal configuration options (about:config). In this article, we will only be looking at
excerpts from the extracted data (Tables 5, 6, 7, 8, and 9). To access the entire data tables we
refer the reader to Bhandari’s thesis [2].

1 <command>
2 <name>IE_Registry_Configurations</name>
3 <executable>IE_Registry_Configurations.bat</executable>
4 <expect></expect>
5 <timeout_allowed>no</timeout_allowed>
6 </command>
7 <active-response>
8 <command>IE_Registry_Configurations</command>
9 <location>local</location>
10 </active-response>

Listing 1. An excerpt of the configuration command additions required to be made to the vanilla

OSSEC configuration file in the server system.

6146 Jillepalli et al.: Analysis of Web Browser Security Configuration Options

Table 5. The 13 Syntactically (and Semantically) Similar Configuration Options amongst the three
Web Browsers, Part A. N/A = Not Available. The syntactic similarity can be observed across the

horizontal axis, i.e., each row lists a fuctionality and its’ corresponding configurations across three web
browsers, which are syntactically similar.

Global Configuration

Name
Internet Explorer

Configuration Name
Google Chrome

Configuration Name
Mozilla Firefox

Configuration Name
Global Configuration Description

Cache_Szie_Setting DefaultDomainCache
LimitInMB

DiskCacheSize Cache_Size

Used to set the cache size in IE, GC, and MF. It corresponds to (Set default storage limits for websites)
in IE, (Set disk cache size in bytes) in GC and (Set Browser Cache Size) in MF.

DNSPrefetching N/A DnsPrefetching
Enabled

DNS

Used to activate or deactivate DNS prefetching. If we enable this setting DNS prefetcing is activated
and deactivated if we disable this setting. It corresponds to (Enable network prediction) in Google
Chrome and (Disable DNS Prefetching) in Mozilla Firefox.

DefaultBrowser
Check

N/A DefaultBrowser
SettingEnabled

Check_Default
_Browser

Configures to check whether the browser is the default in a given system in GC and MF. It corresponds
to (Set Chrome as Default Browser) in GC and (Check if Firefox is the default browser) in MF.

DeveloperTools DisableDeveloper
Tools

DeveloperTools-
Disabled

N/A

Configures whether a browser allows or disallows access to developer tools. If we enable this
configuration option developer tools cannot be accessed by a user. It corresponds to (Turn off
Developer Tools) in Internet Explorer and (Disable Developer Tools) in Google Chrome.

Display Images N/A DefaultImages
Setting

Permission_Images

Configures whether we can display images or not while pages load in Google Chrome and Mozilla
Firefox Browsers. It corresponds to (Default images setting) in Google Chrome and (Allow or disallow
images to load) in Mozilla Firefox.

Download
DirectorySetting

N/A DownloadDirectory Download_Dir

Used to set the download directory of the browser. It corresponds to (Set download directory) in Google
Chrome and (Set Download Directory) in Mozilla Firefox.

Geo Location Setting GeoLocationDisable DefaultGeoLocation
Setting

Geo_location

Configures whether a browser can track GEO location of the system. It corresponds to (Turn off
browser geolocation) in Internet Explorer, (Default geolocation setting) in Google Chrome and (Setting
to enable or disable GEO location) in Mozilla Firefox.

KSII TRANSACTIONS ON INTERNET A ND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 6147

Table 6. The 13 Syntactically (and Semantically) Similar Configuration Options amongst the three
Web Browsers, Part B. N/A = Not Available. The syntactic similarity can be observed across the

horizontal axis, i.e., each row lists a fuctionality and its’ corresponding configurations across three web
browsers, which are syntactically similar.

Global Configuration
Name

Internet Explorer
Configuration Name

Google Chrome
Configuration Name

Mozilla Firefox
Configuration Name

Global Configuration Description
HomePage N/A HomepageLocation Home_Page

Configures home page of Google Chrome and Mozilla Firefox Browsers. It corresponds to (Configure
the home page URL) in Google Chrome and (Home Page) in Mozilla Firefox.

JavaScript IZ_PolicyActive
Scripting_1

DefaultJavaScript
Setting

JavaScript-Enabled

Configures whether Javascript is enabled or disabled. It corresponds to (Allow active scripting) in
Internet Explorer, (Default JavaScript setting) in Google Chrome and (Setting to enable or disable
Javascripts) in Mozilla Firefox.

Max_Proxy_Setting N/A MaxConnections
-PerProxy

Max_Proxy

Used to set the maximum number of connections per proxy in GC and MF. It corresponds to (Maximal
number of concurrent connections to the proxy server) in GC and (Set maximum number of
connections to proxy server) in MF.

PopUpBlocker IZ_PolicyBlockPopup
Windows_1

DefaultPopupsSetting PopUpsDisabled

Configures if pop-ups are allowed or disallowed. It corresponds to (Use Pop-up Blocker) in Internet
Explorer, (Default popups setting) in Google Chrome and (Setting to configure Pop-ups) in MF.

PrintSetting NoPrinting PrintingEnabled N/A
Configures whether we can display images or not while pages load in GC and MF Browsers. It
corresponds to (Default images setting) in GC and (Allow or disallow images to load) in MF.

SafeBrowsing
Setting

N/A SafeBrowsingEnabled Safe_Browsing

Used to activate or deactivate safe browsing to detect phishing malware while loading websites. It
corresponds to (Enable Safe Browsing) in GC and (Enable Safe Browsing) in MF.

Table 7. The 4 Semantically (but not Syntactically) Similar Configuration Options amongst the
three Web Browsers, Part A. N/A = Not Available. The semantic similarity can be observed

across the horizontal axis, i.e., each row lists a fuctionality and its’ corresponding configurations
across three web browsers, which are syntactically (but not semantically) similar.

Global Configuration
Name

Internet Explorer
Configuration Name

Google Chrome
Configuration Name

Mozilla Firefox
Configuration Name

Global Configuration Description
CrashRestore DisableACRPropmt N/A Crash_Restore

Allows us to configure the browser to prompt when the browser tries to recover from any crash sessions.
It corresponds to (Turn off Automatic Crash Recovery) in IE and (Crash Recovery) in MF.

Restore_Previous_
Session

ContinuousBrowsing RestoreOnStartup Start_Up_Pages

Configures the browser such that, it restarts with the web pages from last browsing session. It
corresponds to (Start Internet Explorer with tabs from last browsing session) in Internet Explorer,
(Action on startup) in Google Chrome and (Set how the browser should start) in Mozilla Firefox.

6148 Jillepalli et al.: Analysis of Web Browser Security Configuration Options

Table 8. The 4 Semantically (but not Syntactically) Similar Configuration Options amongst the
three Web Browsers, Part B. N/A = Not Available. The semantic similarity can be observed

across the horizontal axis, i.e., each row lists a fuctionality and its’ corresponding configurations
across three web browsers, which are syntactically (but not semantically) similar.

Global Configuration

Name
Internet Explorer

Configuration Name
Google Chrome

Configuration Name
Mozilla Firefox

Configuration Name
Global Configuration Description

Plugin_Prompt_
Setting

IZ_PolicyRun
ActiveX_Controls_1

DefaultPluginsSetting Plugin_Prompt

Configures whether a browser should run plugins only after click or run plugins automatically. It
corresponds to (Run ActiveX controls and plugins) in Internet Explorer, (Default plugins setting) in
Google Chrome and (Setting to run plugins only on click) in Mozilla Firefox.

Plugin_Setting IZ_PolicyRunActiveX
Controls_1

DefaultPluginsSetting N/A

Configures whether a browser allows or disallows plugins. It corresponds to (Run ActiveX controls and
plugins) in Internet Explorer and (Default plugins setting) in Google Chrome.

Table 9. The policy-based configuration options across three web browsers. DEF = Placeholder for
white-listed web domains and N/A = Not Available.

Policy
Name

Internet Explorer
Configuration Name

Google Chrome
Configuration Name

Mozilla Firefox
Configuration

Name
Policy Description

Selective
Enabling

of JavaScript

IZ_PolicyActiveScripting_0
IZ_ZoneSettingValue_2

IZ_ZoneSettingSites_DEF
IZ_ZoneActiveScripting_1

DefaultJavaScript-Setting:0
AllowJavaScriptForUrls:DEF

N/A natively.
Requires 3rd

party add-ons

Enables loading of JavaScript only for some web domains and disables it for all others. This is also
known as JavaScript white-list.

Selective
Enabling
of Images

IZ_PolicyShowPictures_0
IZ_ZoneSettingValue_2

IZ_ZoneSettingSites_DEF
IZ_ZoneShowPictures_1

DefaultImages-Setting:0
AllowImages-ForUrls:DEF

N/A natively.
Requires 3rd

party add-ons

Enables loading of Images only for some web domains and disables it for all others. This is also known
as Image White-list.

Selective
Enabling

of Cookies

IZ_PolicyDisableCookies_0
IZ_ZoneSettingValue_2

IZ_ZoneSettingSites_DEF
IZ_ZoneDisableCookies_1

DefaultCookies-Setting:0
AllowCookies-ForUrls:DEF

N/A natively.
Requires 3rd

party add-ons

Enables loading of Cookies only for some web domains and disables it for all others. This is also known
as Cookie White-list.

KSII TRANSACTIONS ON INTERNET A ND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 6149

4. Syntactic Analysis of Configuration Options in Web Browsers
We present criteria, process, and results for our syntactic analysis of security configuration
options. The syntactic similarity amongst configuration options of three web browsers, was
determined by checking and matching names of machine-level configuration options. For
example, let’s consider a scenario where we need to check the syntax of configuration option
corresponding to JavaScript in all three web browsers. By observing the names of each
configuration option, we can find that the JavaScript configuration option is similarly named
in all three web browsers. The functionality is available as: IZ_PolicyActiveScripting_1 in
Internet Explorer, DefaultJavaScriptSetting in Google Chrome, and JavaScriptEnabled in
Mozilla Firefox.
 In our matching, we found that only 13 configuration options were syntactically similar
(Table 3). These 13 configuration options are displayed in Tables 5 and 6. Amongst the 13
options, only 4 configuration options are syntactically similar between all three web browsers
and the remaining 9 are similar between two. Note that these are all of the semantically similar
configurations, not just the security-related ones.
 Each row of Tables 5, 6, 7, and 8 consists of two sub-rows. The first column of the first
sub-row contains the global configuration option name which has been devised by us. We
devised these names to serve as a blanket term for a browser functionality, across all three web
browsers. The second, third, and fourth columns of the first sub-row present the global
configuration name’s equivalent configuration option names as associated with: Internet
Explorer, Google Chrome and Mozilla Firefox respectively. The second subrow of each row
contains a description of the respective configuration option. We created these descriptions
manually, for each common configuration option. The term N/A indicates that the particular
configuration option is not available in the corresponding browser [2].

5. Semantic Analysis of Configuration Options in Web Browsers
In this section, we present criteria, process, and results for our semantic analysis of security
configuration options. In addition, an observation regarding multiple semantically similar
functionalities being represented by a same configuration option is made. We also explain the
relationship between syntactical and semantic commonality.
 The semantic commonality amongst configuration options of three web browsers was
determined by checking and matching functionality of machine-level configuration options.
For example, let’s consider a scenario where we need to check the semantics of configuration
option corresponding to the functionality of being able to restore last browsing session in all
three web browsers. By observing the functionality of each configuration option, we can find
that this functionality can be achieved in all three web browsers. The functionality is available
as: ContinuousBrowsing in the Internet Explorer, RestoreOnStartup in the Google Chrome,
and Start_Up_Pages in the Mozilla Firefox.
 In our matching, we found out that only 4 configuration options were semantically similar,
as seen in Table 4. These 4 configuration options are displayed in Tables 7 and 8. Out of the
4 options, only 2 configuration options are syntactically similar between all three web
browsers and the remaining 2 are similar between any two. Note that these are all of the
semantically similar configurations, not just the securityrelated ones.

6150 Jillepalli et al.: Analysis of Web Browser Security Configuration Options

5.1 Multiple Functionalities, One configuration Option
Our semantic analysis produces an interesting type of commonality: multiple semantically
similar functionalities are represented by only one configuration option. As observed in Table
8, both Plugin_Prompt_Setting and Plugin_Setting functionalities are controlled by the same
configuration option in Internet Explorer and Google Chrome. Which are:
IZ_PolicyRunActiveX-Controls_1 and DefaultPluginsSetting options, respectively. Whereas,
out of the two functionalities, only the first one can be implemented in Mozilla Firefox. This
phenomenon goes on to compound the already complex problem of policy-based and
functionality-based secure configuration of multiple web browsers in an enterprise.
 An interesting observation here is that: by virtue of working principle (nature), syntactic
similarity is a proper subset of semantic similarity. Which means: all the configuration options
that are syntactically similar, are also semantically similar. This would mean that the total
number of semantically similar configuration options is 17 (14 syntactic + 3 semantic). Note
that these are all of the semantically similar configurations, not just the security-related ones.
For syntactic and semantic similarity definitions, read second paragraphs of Sections 4 and 5
respectively. All semantically common configuration options are not syntactically common.

6. Policy-based Analysis of Configuration Options
We present an analysis of the configuration options for three web browsers, when a
configuration is initiated via implementation of policies.
 Let us consider the scenario – an organization named Acme has the following
organizational policy: All systems in the organization must have three dedicated web browsers
for accessing one of the following three web domains. Acme domain/Intranet (trusted),
Internet (trusted only for some), and Internet (untrusted). A web browser assigned to one
particular web domain cannot access any other web domains. As of 03/19/2018, there is no
native configuration option to restrict browsing completely for a list of web domains.
Therefore, to restrict a web browser’s browsing access for certain web domains, system
administrators have to configure the web browsers such that no functionality works, apart
from simple text pages or trust and use third-party white-list add-ons.
 For the sake of this article, let us take a look at three configuration policies: 1) Selective
enabling of JavaScript, 2) Selective enabling of Images, and 3) Selective enabling of Cookies.
The detailed description of these policies and their corresponding configurations for the three
web browsers are given in Table 9.
 Each row of Table 9 consists of two sub-rows. The first column of the first sub-row
contains the policy name which has been devised by us. We devised these names to serve as a
blanket term for a browser functionality, across all three web browsers. The second, third, and
fourth columns of the first sub-row present configuration option required to implement the
policy as associated with: Internet Explorer, Google Chrome and Mozilla Firefox respectively.
The second sub-row of each row contains a description of the respective policies and their
implementation across the three web browsers. As seen in Table 9, we can discern that the
process of configuring multiple web browsers, to implement a policy, is a complex task. To
ease this process, a proof-of-concept tool is presented in Section 8.

KSII TRANSACTIONS ON INTERNET A ND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 6151

7. Results and Implications
A syntactic-similarity and semantic-similarity analysis of configuration options across
Internet Explorer, Google Chrome, and Mozilla Firefox was discussed in Sections 4 and 5.
This analysis helps in understanding the relationship between security-settings in these web
browsers. We found that only 17 configuration options out of 1,191 were similar across these
three web browsers. Our finding sheds light on the existing disparity between the names and
semantics of security configuration options within the three major web browsers. One direct
implication of this disparity is the high learning curve for system administrators to learn about
all configuration options in these web browsers.
 The analysis presented in Section 6 helps in understanding the difficulty of implementing
secure web browser policies at the enterprise-level. A direct implication of such finding is that
the current configuration-based approach paired with the disparity of names and semantics of
the security configuration options makes it extremely hard to implement a security policy
across the enterprise.
 To streamline the process of implementing web browser security policies we created a
prototype version of a user-friendly, multi-web-browser, and multi-platform toolset named
Open Browser GP. We describe this toolset in Section 8. In Section 9, we advocate that a
common configuration language amongst all major web browsers is needed.

8. Security Orchestration with Open Browser GP
In this section, we present Open Browser GP: a ‘proof-of-concept’ tool developed to help ease
the complexity of configuring web browser security options in a technologically diverse
enterprise. Open Browser GP is an enterprise, multiplatform, and a multi-web-browser
policy-based configuration tool.

8.1 Development of Open Browser GP Tool
Firstly, using python scripts, we extracted configuration options from: a) ADMX files of
Internet Explorer and Google Chrome, and b) vanilla about:config entries of Mozilla Firefox.
We compiled all the extracted configuration options into an Erlang database. Secondly, we
wrote batch scripts to automate the process of configuring three web browsers: Internet
Explorer, Google Chrome, and Mozilla Firefox. Thirdly, we setup OSSEC [16] server-client
infrastructure to transfer and execute the batch scripts in client machines. Finally, we created a
web-server based GUI using YAWS [17], so that users can provide configuration input,
thereby triggering the corresponding configuration batch scripts. All these steps resulted in the
creation of a tool, which we named Open Browser GP (OBGP).
 While installing OSSEC, we have to enable Active Response functionality. Also, IP
(Internet Protocol) addresses of the client systems should be added to the active-response
whitelist. OSSEC has a provision for transferring batch scripts from a server system to a client
system and executing these batch scripts in the client system. After installation, to execute
configuration-automation batch scripts in the clients, we have to add some XML tags into the
configuration file of OSSEC. All of these XML tags are displayed in Listing 1. In context of
Listing 1, the <executable> </executable> tag is used to execute the files defined
within the tag. The <expect> </expect> tag is used to provide any additional input
parameters to be executed along side <executable> </executable> tags. The
<timeout_allowed> </timeout_allowed> tag is used to specify the waiting time

6152 Jillepalli et al.: Analysis of Web Browser Security Configuration Options

before stopping the execution, in case of any interference. All the other tags are obvious and
self-explanatory. After saving these new additions to the configuration file, we had to restart
OSSEC server.

Fig. 1. A flowchart representing steps involved in maneuvering through OBGP’s web interface.

8.2 Open Browser GP Tool Web Interface

For easier usage, we designed a single-screen web-based interface for OBGP. Figs. 1 and 2
display the interface of OBGP. Fig. 2 illustrates the five-sectional division of the tool. The five
sections are as follows:

Fig. 2. Open Browser GP: A Multiplatform and Multibrowser Policy Configuration Tool. Figure

re-used with permission, from a previous article [3].

KSII TRANSACTIONS ON INTERNET A ND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 6153

Fig. 3. Individual Sections of the OpenBrowserGP Tool GUI: (a) Client Groups, (b) OS & Browsers, (c)
Available Settings, (d) Description of Browser Settings, and (e) Browser Settings. Figure re-used with

permission, from a previous article [3].
1. Client Groups section: Displayed in Fig. 2(a). This module contains a group of

client system(s) connected to the server. Tool-users can select any group to be
configured, as per policy requirement.

2. OS & Browsers section: Displayed in Fig. 2(b). This module contains all of client
system’s operating systems (OS) and web browsers. Tool-users can select any OS
and/or web browser to be configured, as per policy requirement.

3. Settings in Corresponding Web Browsers section: Displayed in Fig. 2(c).
This module contains all the settings which are available in each web browser present
in the client systems. Tool-users can select any setting(s) to be configured, as per
policy requirement.

4. Description of Settings section: Displayed in Fig. 2(d). This module
contains the selected configuration option’s display name, version-support
information of the option, and a brief description of the selected setting. Tool-users are
provided an option to hide this module by clicking on the Standard View option.

5. Classification and Setting Options section: Displayed in Fig. 2(e). This
module consists of the assigned category for the user-selected configuration option,
and different possible options to configure the selected setting.

 Fig. 3 is a flow chart representing steps involved in navigating through OBGP’s web
interface. Fig. 2 represents a user enabling the configuration option Allow Active
Scripting in Internet Explorer for Group 1 cluster of clients. To achieve the
screen seen in Fig. 2, a user has to load the web-based interface of OBGP tool. Next, the group
of clients was chosen. The group of clients is the target of configuration option.
 This selection opens up the OS & Browsers module, where a user can select the web
browser to be configured. Selecting a web browser unlocks the Settings in
Corresponding Web Browsers module, where a user can select the required setting to

6154 Jillepalli et al.: Analysis of Web Browser Security Configuration Options

be configured. This selection unlocks the Description of Settings screen, and
Classification and Setting Options screen, where a user can choose between the
corresponding setting’s options. To apply the changes selected through OBGP, a user must
also click on Save and Apply Settings on Selected Groups button. Doing so
will initiate the OSSEC remote deployment process, which deploys the new configuration to
the selected group of client system(s).

8.3 Advantages and Limitations of Open Browser GP Tool
OBGP tool allows tool-users to configure options of three major web browsers using a single
interface. Subsequently, OBGP users are then able to map similar security configuration
options across different browsers. Such a mapping empowers OBGP users with the ability to
update their configuration policies for web browsers. OBGP’s web-based interface is similar
to Group Policy Management utility (GPM) of Microsoft Windows, which makes it
easy-to-learn for users who are familiar with GPM. OSSEC is used by OBGP to manage
authentication of remote client connections. All technologies used in development of OBGP
are open source in nature, providing flexibility with modification(s) and usage. OBGP
categorizes every configuration option of three web browsers, which helps OBGP users in
managing configurations.
 OBGP is currently a prototype with the following limitations: a) It can only configure
Internet Explorer (IE), Google Chrome, and Mozilla Firefox; b) It can only configure web
browsers on Microsoft Windows operating system (version 7 and above); c) Due to OSSEC
limitations, OBGP tool cannot configure User-level settings of IE; d) Even when not selecting
a particular group of clients, the group will still receive all transmissions initiated by OSSEC;
and e) Due to limitations of Mozilla Firefox, OBGP uses a third party add-on called GPO for
Firefox to configure options in Firefox.

9. Toward a Standard for Web Browser Configuration Settings
In Sections 4 and 5, we found that only 17 configuration options out of 1191 were similar
across three web browsers: Internet Explorer, Google Chrome, and Mozilla Firefox. In Section
6, we observed the complexity of implementing a new security policy in an organization with
respect to changing policy-corresponding web browser configurations. Given the problem,
and given the analysis results and observations, we argue that there are two current
requirements: a) developing a single common language for configuring all web browsers, and
b) an agreement between web browser developers regarding usage of common syntactics and
semantics for configuration options.
 When both the requirements are met, we get two positive outcomes: a) an enterprise’s
system administrators have to develop configuration options once, for each policy group, and
deploy the options within their client systems; and b) future automated tools for a policy-based
development and deployment of web browser configurations would not need to convert
configurations into multiple disparate configuration languages. Thereby - greatly facilitating
the development of such automated tools [5], [6]. For example XML, or other specification
formats could be used to express the desired browser configurations. However, the verbose
and nestingbased characteristics of XML, and other similar specification formats do not enable
a easily reconfigurable policy-based configuration environment.

KSII TRANSACTIONS ON INTERNET A ND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 6155

1 Policy: PID_01_000
2 {
3 Description: "Enabling Plug-in func. universally."
4 Rationale: "Staff requires plug-ins for designing ads."
5 Status: "Enabled"
6 Field: Plugins: "Enabled"
7 ApplyToSys: "ALL"
8 ApplyToApp: "APP.ALL"
9 }.
10
11 Policy: PID_01_001
12 {
13 Description: "Disabling Plug-in automatic exec. func."
14 Rationale: "Principle of least privilege."
15 Status: "Enabled"
16 Field: Plugins.Auto: "Disabled"
17 ApplyToSys: "ALL"
18 ApplyToApp: "APP.ALL"
19 Parent: PID_01_000
20 }.
21
22 Policy: PID_01_002
23 {
24 Description: "Enabling Plug-in automatic exec. func."
25 Rationale: "Digital Rights Management."
26 Status: "Enabled"
27 Field: Plugins.Auto: "Enabled"
28 ApplyToSys: "ALL"
29 ApplyToApp: "APP.GC"
31 Parent: PID_01_000
32 }.

Listing 2. HERMES specification corresponding to the three policies discussed in Section 9.

Corresponding XML specification is given in Listing 3.

 To achieve the goal of an easily reconfigurable policy-based configuration environment,
we have developed a language called HERMES: a High-level, and Easily Reconfigurable
Machine Environment Specification language. HERMES has been introduced and
documented in a prior publication [6]. To see the difference between HERMES and XML with
regards to policy-based specification usage, let us use configurations listed in Table 8 and
prepare three policies. 1) Plug-ins are allowed universally, across all the web browsers and
systems of an enterprise. 2) Plug-ins are not allowed to run automatically, across all the web
browsers and systems of the enterprise. 3) Plug-ins are allowed to run automatically only in
Google Chrome browser, across all systems of the enterprise. In Listings 2 and 3, we express
the above three policies in XML and HERMES specifications, respectively.

6156 Jillepalli et al.: Analysis of Web Browser Security Configuration Options

1 <policy>
2 <id>PID_01_000</id>
3 <description>
4 Enabling Plug-in functionality universally.
5 </description>
6 <rationale>Staff requires</rationale>
7 <status>enabled</status>
8 <field><plugins>enabled</plugins></field>
9 <applyToSys>ALL</applyToSys>
10 <applyToApp>ALL</applyToApp>
11 </policy>
12
13 <policy>
14 <id>PID_01_001</id>
15 <description>
16 Disabling Plug-in automatic exec. func. globally.
17 </description>
18 <rationale>Principle of least privilege.</rationale>
19 <status>enabled</status>
20 <field><pluginsAuto>disabled</pluginsAuto></field>
21 <applyToSys>ALL</applyToSys>
22 <applyToApp>ALL</applyToApp>
23 <parentid>PID_01_000</parentid>
24 </policy>
25
26 <policy>
27 <id>PID_01_002</id>
28 <description>
29 Enabling Plug-in automatic exec. func.
31 </description>
32 <rationale>Digital Rights Management.</rationale>
33 <status>enabled</status>
34 <field><pluginsAuto>enabled</pluginsAuto></field>
35 <applyToSys>ALL</applyToSys>
36 <applyToApp>GC</applyToApp>
37 <parentid>PID_01_000</parentid>
38 </policy>

Listing 3. XML specification corresponding to the three policies discussed in Section 9. Corresponding

HERMES specification is given in Listing 2.

KSII TRANSACTIONS ON INTERNET A ND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 6157

10. Related Work
An analysis comparing security of Internet Explorer, Google Chrome, and Mozilla Firefox
web browsers had been performed by Accuvant Labs in 2011 [18]. As a result of this analysis,
Accuvant Labs proposed a set of security measures for increasing web browser’s protection. In
their analysis, Accuvant Labs comparatively measured effectiveness of some of the web
browser security features to determine which web web browser was better in effectively
implementing each individual security feature. These features include Sandboxing, URL
Blacklisting, Plug-in Security, and Just-In-Time (JIT) Hardening.
 The difference between Accuvant’s analysis and our analysis is that Accuvant’s analysis
tested the correctness of each web browsers’ security features. By contrast, our analysis
identified syntactic and semantic differences between security configuration options across
Internet Explorer, Google Chrome, and Mozilla Firefox. Our analysis also looked at the
challenges and advantages of using a policy-based approach to secure web browsers in an
enterprise. Our analysis also informed us that, currently, even when using leading remote
client configuration tools, web-browser-specific configuration expertise is needed to remotely
configure web browsers within an enterprise-level IT/OT infrastructure. On the front of a
common configuration language for web brwosers, several languages have been created for
specification of configurations. Some examples of such configuration specification languages
are: High-level, Easy-to-use, Reconfigurable, Machine Environment Specification language
(HERMES) [6], Security Policy Assertion Language (SecPAL) [19], Open Vulnerability and
Assessment Language (OVAL), eXtensible Access Control Markup Language (XACML)
[20], Extensible Configuration Checklist Description Format (XCCDF)[21], Margrave
(focused on firewall analysis) [22], [23], and Security Policy Language (SPL) [24]. Some of
these are part of the Security Content Automation Protocol (SCAP) specification [25].

11. Ongoing and Future Work
We foresee future work in three related areas of research. They are: a) development of
common settings and a common configuration language across multiple web browsers - such a
task is ideal to be undertaken by web browser developers; b) further validation, expansion, and
development of Open Browser GP tool is needed to use it across all operating systems,
including mobile ones; and c) the analyses of this article demonstrate that the server-based
client configuration model can be expanded across multiple operating systems and multiple
applications, such as: e-mail clients and firewalls - not just web browsers.

12. Conclusions
A central Microsoft Windows-based server is used by many system administrators in both:
public and private sectors, to secure and configure web browsers of multiple Microsoft
Windows client machines. This mechanism fails to configure web browsers across multiple
operating systems. Such a failure decreases overall security, increases inconsistency, and
creates a new avenue for security breaches. As a result, maintenance of
critical/sensitive/private data in organizations, of both private and public sectors becomes a
riskier endeavor. In this article, we present four contributions which help protect security of
data management through web browsers. The four contributions are as follows:
 The contributions of this article are not necessarily sufficient by themselves to mitigate
every security vulnerability across web browsers. Nonetheless, the contributions of this article

6158 Jillepalli et al.: Analysis of Web Browser Security Configuration Options

will enable system administrators to: a) categorically manage configuration options across
Internet Explorer, Google Chrome, and Mozilla Firefox; and b) deploy changes/updates to the
configurations as per policy change, using Open Browser GP tool. This article’s results inform
us that using certain processes, it is possible to configure the security settings of Internet
Explorer, Google Chrome, and Mozilla Firefox web browsers, across multiple platforms of an
organization. Two articles present a step-by-step tutorial of configuring multiple web
browsers using Active Directory and Group Policy in Microsoft Windows [26].

References

[1] Web Application Security Consortium, “WebAppSec: threat classification,” online, January 2010.
[Visited: March 2018]. Article (CrossRef Link).

[2] Venkata Anirudh Bhandhari, “Analysis of Web Browser Security Policies and A Multiplatform
and Multibrowser Browser Configuration Tool: Open Browser GP,” Master’s thesis, University of
Idaho, August 2015. Article (CrossRef Link).

[3] Daniel Conte de Leon, Venkata Anirudh Bhandari, Ananth A. Jillepalli, and Frederic T. Sheldon,
“Using A Knowledge-based Security Orchestration Tool to Reduce the Risk of Browser
Compromise,” in Proc. of 2016 IEEE 07th Symposium Series On Computational Intelligence
(SSCI-2016), December 2016. Article (CrossRef Link).

[4] Ananth A. Jillepalli, “HiFiPol:Browser - Securing the Web Browsing Ecosystem,” Master’s thesis,
University of Idaho, May 2017. Article (CrossRef Link).

[5] Ananth A. Jillepalli and Daniel Conte de Leon, “An Architecture for a Policy-oriented Web
Browser Management System: HiFiPol: Browser,” in Proc. of 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC-2016), June 2016. Article (CrossRef Link).

[6] Ananth A. Jillepalli, Daniel Conte de Leon, Stuart Steiner, and Frederick T. Sheldon, “HERMES:
A High-level Policy Language for High-granularity Enterprise-wide Secure Browser
Configuration Management,” in Proc. of 2016 IEEE 07th Symposium Series On Computational
Intelligence (SSCI-2016), December 2016. Article (CrossRef Link).

[7] Jeremy Moskowitz, “Inside ADM and ADMX Templates for Group Policy,” online, January 2008.
[Visited: March 2018]. Article (CrossRef Link).

[8] Judith Herman, “Managing Group Policy ADMX files: A Step-by-step Guide,” online, June 2007.
[Visited: March 2018]. Article (CrossRef Link).

[9] Jack Stromberg, “Configuring Google Chrome via Group Policy,” online, August 2013.
[Visited: March 2018]. Article (CrossRef Link).

[10] National Security Agency - Central Security Service, “Deploying and Securing Google Chrome in
a Windows Enterprise,” online, October 2012. [Visited; March 2018]. Article (CrossRef Link).

[11] Redkitten Corporation, “How to Install a Firefox Add-on,” online, June 2015. [Visited: March
2018]. Article (CrossRef Link).

[12] MozillaZine Knowledge Base, “about:config Entries,” online, June 2015. [Visited: Mach 2018].
Article (CrossRef Link).

[13] Red Hat Inc., “FreeIPA,” online, June 2015. [Visited: March 2018]. Article (CrossRef Link).
[14] Quest Software Inc., “KACE Systems Management Appliance: Patch Management and Endpoint

Security,” online, November 2016. [Visited: March 2018]. Article (CrossRef Link).
[15] StatCounter, “Statcounter global stats,” online, December 2014. [Visited: March 2018].

Article (CrossRef Link).
[16] Daniel B. Cid, “Open Source Security [OSSEC],” online, June 2012. [Visited: March 2018].

Article (CrossRef Link).
[17] Zachary Kessin, “Building Web Applications with Erlang,” 1st Edition, O’Reilly, Springfield,

Missouri, June 2012.

http://projects.webappsec.org/f/WASC-TC-v2_0.pdf
http://digital.lib.uidaho.edu/cdm/ref/collection/etd/id/864
https://dx.doi.org/10.1109/SSCI.2016.7849910
http://digital.lib.uidaho.edu/cdm/ref/collection/etd/id/1137
https://dx.doi.org/10.1109/COMPSAC.2016.50
https://dx.doi.org/10.1109/SSCI.2016.7849914
http://technet.microsoft.com/%20en-us/magazine/2008.01.layout.aspx
http://msdn.microsoft.com/en-us/library/bb530196.aspx%23manageadmxfilestopic2
http://jackstromberg.com/2013/08/%20configuring-google-chrome-via-group-policy/
https://www.nsa.gov/ia/_files/app/deploying_and_securing_google_chrome_in_a_windows_enterp.pdf
http://www.redkitten.co.uk/firefox/how-to-install-a-firefox-add-on-for-all-users-remotely/
http://kb.mozillazine.org/About%3Aconfig_entries
https://www.freeipa.org/page/About
https://www.quest.com/products/kace-systems-management-appliance/patch-management-security.aspx
http://gs.statcounter.com/
http://www.ossec.net/

KSII TRANSACTIONS ON INTERNET A ND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 6159

[18] Accuvant Labs, “Browser Security Comparison - A Quantitative Approach,” online, December
2011. [Visited: March 2018]. Article (CrossRef Link).

[19] Microsoft Research “Policy Language Research,” online, June 2015. [Visited: March 2018].
Article (CrossRef Link).

[20] Tao Xie, Vincent Hu and Rick Kunh, “Testing and Verification of Security Policy,” online, June
2016. [Visited: March 2018]. Article (CrossRef Link).

[21] National Institute of Standards and Technology, “XCCDF - The Extensible Configuration
Checklist Description Format,” online, September 2011. [Visited: March 2018].
Article (CrossRef Link).

[22] Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and Shriram
Krishnamurthi, “The Margrave Tool for Firewall Analysis,” in Proc. of USENIX Large Installation
System Administration Conference (LISA), San Jose, CA, November 07-12, 2010.
Article (CrossRef Link).

[23] Dan Dougherty and Kathi Fisler and Shriram Krishnamurthi, “The Margrave Policy Analyzer,”
online, May 2015. [Visited: March 2018]. Article (CrossRef Link).

[24] J. B. Bernabe, J. M. M. Perez, J. M. A. Calero, J. D. J. Re, F. J. Clemente, G. M. Perez, and A. F.
Skarmeta, “Security policy specification,” Network and Traffic Engineering in Emerging
Distributed Computing Applications, J. Abawajy, M. Pathan, M. Rahman, and M. M. Deris, Eds.
Oxford: IGI Global, ch. 04, pp. 66–93, 2013. Article (CrossRef Link).

[25] National Institute of Standards and Technology, “Emerging Specification Listing,” online, March
2018. [Visited: March 2018]. Article (CrossRef Link).

[26] Ananth A. Jillepalli, Daniel Conte de Leon, Stuart Steiner, Frederick T. Sheldon, and Michael A.
Haney, “Hardening the client-side: A guide to enterprise-level hardening of web browsers,” in Proc.
of 2017 IEEE 15th Dependable, Autonomic and Secure Computing (DASC-2017), Nov. 2017.
Article (CrossRef Link).

https://accuvantstorage.blob.core.windows.net/web/files/AccuvantBrowserSecCompar_FINAL.pdf
http://research.microsoft.com/en-us/projects/security_policy/
https://sites.google.com/site/asergrp/projects/policy
https://scap.nist.gov/specifications/xccdf/
https://cs.brown.edu/%7Esk/Publications/Papers/Published/nbfdk-margrave-firewall/paper.pdf
http://www.margrave-tool.org/
https://www.igi-global.com/chapter/security-policy-specification/67499
http://scap.nist.gov/emerging-specs/listing.html
https://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.120

6160 Jillepalli et al.: Analysis of Web Browser Security Configuration Options

Ananth A. Jillepalli, M.S. is a PhD Candidate at the University of Idaho. He received his
Master of Science in Computer Science (Cybersecurity) degree from University of Idaho in
2017. His research interests include design and analysis of risk assessment methodologies in
cybersecurity domain. Email: ajillepalli@ieee.org

Daniel Conte de Leon, Ph.D. is a cybersecurity researcher and educator at the
University of Idaho. He received his PhD degree in Computer Science with a focus on
security and safety of critical systems in 2006 from the University of Idaho. Dr. Conte de
Leon performs research on the development of processes, methods, and tools for the design,
development, configuration, and maintenance of safe and secure systems. Currently, with a
focus on adequate and complete application of secure design principles, such as least
privilege, to system architecture, design, implementation, and maintenance. He also works
on developing innovative hands-on methods and tools for cybersecurity education and
training. Dr. Conte de Leon's teaching experience comes from many years of teaching across
the Computer Science curriculum. Email: dcontedeleon@uidaho.edu

Stuart Steiner, M.S. is a PhD Candidate at the University of Idaho, where he is actively
researching web security. Stuart is a member of the University Idaho Center for Secure and
Dependable Systems (CSDS). Stuart is also full-time faculty at Eastern Washington
University where he primarily teaches lower-division programming courses. Stuart is an
active member of the ACM and IEEE, where he actively recruits and promotes Women and
Diversity in Computing. Email: ssteiner@uidaho.edu

Jim Alves-Foss, Ph.D. is a professor in the Department of Computer Science at the
University of Idaho and director of the university's Center for Secure and Dependable
Systems. His research interests include the design and analysis of secure distributed systems,
with a focus on formal methods and software engineering. Alves-Foss received a PhD in
computer science from the University of California, Davis. He is a senior member of IEEE
and ACM. Email: jimaf@uidaho.edu.

