
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, Jan. 2019 86
Copyright ⓒ 2019 KSII

An Effective Multivariate Control

Framework for Monitoring Cloud Systems
Performance

Ismail Hababeh1*, Anton Thabain2 and Sahel Alouneh3
1,2,3 German Jordanian University - Faculty of Electrical Engineering and Information Technology

Amman, 11180 - Jordan
1[e-mail: ismail.hababeh@gju.edu.jo]

 2[e-mail: anton.thabaine@hotmail.com]
3[e-mail: sahel.alouneh@gju.edu.jo]

*Corresponding author: Ismail Hababeh

Received July 18, 2017; revised November 27, 2017; revised January 27, 2018; accepted April 11, 2018;
published January 31, 2019

Abstract

Cloud computing systems’ performance is still a central focus of research for determining
optimal resource utilization. Running several existing benchmarks simultaneously serves
to acquire performance information from specific cloud system resources. However, the
complexity of monitoring the existing performance of computing systems is a challenge
requiring an efficient and interactive user directing performance-monitoring system. In this
paper, we propose an effective multivariate control framework for monitoring cloud
systems performance. The proposed framework utilizes the hardware cloud systems
performance metrics, collects and displays the performance measurements in terms of
meaningful graphics, stores the graphical information in a database, and provides the data
on-demand without requiring a third party software. We present performance metrics in
terms of CPU usage, RAM availability, number of cloud active machines, and number of
running processes on the selected machines that can be monitored at a high control level by
either using a cloud service customer or a cloud service provider. The experimental results
show that the proposed framework is reliable, scalable, precise, and thus outperforming its
counterparts in the field of monitoring cloud performance.

Keywords: performance monitoring system, inter-process communication, machine
data grid service, threading, performance object service, history data file

http://doi.org/10.3837/tiis.2019.01.006 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 87

1. Introduction

Performance Monitoring System (PMS) greatly impacts a system’s continuity and its
business perspective [1]. A PMS explores system operating processes and investigates their
functions in order to give system administrators an opportunity to discover systems faults,
network problems, and communication disruptions [2-3]. Indeed, cloud system
performance and security management require monitoring capabilities to guarantee system
availability, scalability, and functionality [4].
PMS tasks vary from the simple, such as performing automated system inspections using
open-source software, to the complex, such as physical component testing in order to
enhance overall system performance. In addition, a PMS can investigate when a business
reaches its ultimate support capacity and alert for that additional or new technology is
needed [5-6]. Monitoring cloud computing systems is needed for continuous measuring,
assessing, and improving the performance of the applications and their infrastructure
behaviors [7]. The main objective of cloud monitoring systems is to obtain or provide the
highest performance at the lowest cost [8].
Cloud monitoring system can be modeled in seven layers; facility, network, hardware,
operating systems, middleware, application, and the user that can be monitored and
controlled by either a cloud service customer or a cloud service provider [9]. At abstraction
level, monitoring cloud system could be viewed at both high and low monitoring levels. A
high-level monitoring represents the information on the status of real or virtual platform
running cloud applications, where a low-level monitoring represents the status of the cloud
physical infrastructure in terms of CPU speed, memory utilization, and network workload
[10]. Moreover, cloud performance monitoring can be classified according to tests and
metrics into two types; computation-based and network-based monitoring [11].
Basically, the knowledge gained from cloud monitoring is based on performance
computation metrics that are considered a standard measures to assess cloud system
performance [12]. Monitoring performance metrics then diagnose if the cloud system
operates in a way that satisfies the objectives of its business, operations, and infrastructure
functionality [7]. Such performance metrics support and help users, designers and
administrators to better decide on suitable action(s) for any performance fault that might
occur through running applications [13].
As the field of cloud computing is becoming more competitive, it is more important than
before to ensure that the selected performance metrics provide the best performance-cost
trade-off. However, there are many types of cloud systems so that it is not feasible to have
a standard measure of performance metrics for different cases.
In literature, the approaches [9][14-16] present different methods for monitoring cloud
systems. Each monitoring approach mainly focuses on a subset of performance features in
order to manage huge amount of dynamic monitored data to achieve high cloud systems
performance [14]. These monitoring approaches investigate specific cloud platforms by

88 Hababeh et al.: An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

controlling services that assess the effective performance metrics at hardware, operating
systems, application, and user layers [9]. The metrics considered by these approaches
include CPU speed, virtual machine startup time, server and memory throughput, and
storage utilization [16]. Performance metrics are often imply interactive data testing that
can be evaluated in terms of availability, reliability, accuracy, extensibility, atomicity,
adaptability and timeliness [15].
The metrics measurement accuracy is also considered a key issue in cloud performance, as
it is necessary to perform the operations that make use of the monitoring information
effectively and efficiently [17]. Therefore, cloud machines require time scheduling
technique in order to have an accurate time stamping when switching between different
monitoring machines.
Nevertheless, the current approaches assume a subsystem or rely on other agents for
collecting, filtering and aggregating performance monitored data. This may violate the
privacy and security when the monitored data classified as confidential. Moreover,
performance metrics for fault tolerance and scalability are not considered by the current
benchmark approaches. Consequently, the monitored systems should be able to manage
and control a large number of cloud machines efficiently and effectively in a short
measurement time.
To this end, we consider the effective and commonly used performance metrics that are
broadly applicable to a wide range of cloud applications. The metrics should truly and
accurately measure the hardware performance metrics such as CPU usage, RAM
availability, number of cloud active machines and the number of running processes on the
selected machine. CPU usage is defined as the percent operation of the cloud machine CPU
during available time period of its functionality. RAM availability is described as the
obtainable memory storage on specific cloud machine over a certain time period where the
monitoring has occurred. The number of cloud machines represents the number of active
cloud machines under monitoring. The number of running processes indicates how many
processes are currently running on the active cloud machine. Cloud system users may be
familiar with their system performance; however, some are not technically aware of how to
use multivariate-benchmarks [18]. Benchmarks can therefore help in extracting
performance information where components are embedded in the system that identifies the
machines’ metrics or distributes them into different structural components. However, the
result is a large overhead, which add other challenges since the performance of various sets
of machines needs to be determined [8 to 19].
Performance monitoring within a threaded [20] or a heavily parallelized environment is
also a major challenge. It requires overlooking some features that are not needed or they
have less impact on the decisions made by the cloud system user. In this scenario, the
complexity should be hidden, and performance monitoring should be done in the
background. Only important performance information that is familiar should be presented
to the users, such as CPU, RAM, and PING [21]. This is in addition to the number of
programs or processes that are currently running on the cloud system.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 89

To determine and provide reliable performance information about a cloud system, it is not
necessary to analyze and interpret the data in real time [22]. Therefore, in this research, the
concept of data synchronization in parallel semi-real time systems [23] is proposed in the
context of the use of data synchronization within a parallel threaded environment [24].
Semi-real time in this context means a millisecond based processing interval.
Benchmarking metrics and the complexity of the system task manager are given a high
usage and are compartmentalized within our proposed system. The data is extracted from
the operating system and then processed and presented to the user in a simplified GUI [25].
In such a system, the factors controlling processes or machine performance are not
included.
Most cloud system users are already familiar with monitored operating systems; therefore,
the proposed system has the potential to provide them with powerful new monitoring
services that can easily define the performance metrics.
In this paper, we discuss the performance metrics that are needed to design a powerful
integrated monitoring system. Such a system is designed to collect benchmark
measurements to produce a comprehensive performance monitoring system. In addition,
we developed a Performance Monitoring System as a Service (PMSaS) for collecting data
from a cloud system that is controlled by heterogeneous operating systems. Our proposed
monitoring system displays the performance results in terms of meaningful graphics, stores
the graphical information in a database, and provides the data on-demand.
The rest of the paper is organized as follows: in Section 2, we review the previous related
work in literature formonitoring cloud computing systems performance. Section 3
addresses our performance-monitoring framework. After that, we present and discuss the
experimental results and performance evaluation of monitoring real time cloud systems in
Section 4. Finally, conclusions and future research directions are presented in Section 5.

2. Related Work
In our research, we have reviewed studies, patents and methods that have touched on or
thoroughly assessed computer performance in various ways. Among them, we have seen
both ideas about injecting the system with benchmarks and concepts about specialized
performance monitoring tools. Our goal of having a universal and easy to use system for
both IT professionals and basic users has provided us with a general approach that will
reduce and hide complexity by utilizing the systems’ native tools. Within this context, we
compare our performance monitoring ideas with those of the other studies in the field to
provide logical and valuable insights to a system that simplifies this task as much as
possible.
Performance Monitoring is defined as part of the evaluation of system performance for the
purpose of determining the utilization of software and hardware resources, such as CPU
and memory use [18]. The authors compare changes in system performance with that of the
system’s reference state to be able to investigate the behavior of current resources in a

90 Hababeh et al.: An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

timely manner. However, extracting CPU and memory consumption is complex, which
reflects performance information inconsistency.
The patent [26] concerning benchmarks discloses how to retrieve system performance
information. This type of information helps when using benchmarks and
micro-benchmarks that highlight the performance of separate parts or the entire machine.
While this can be effective, the user may not have enough technical knowledge about such
cases and is not able to use the injected micro-benchmarks. Instead, the user will rely on
operating system applications, such as the task manager, to measure machine performance.
The complicated design of the task manager discussed in [27] is not needed as much for a
large system as it is for a small one. It is arguably one of the most powerful performance
monitoring tools, yet it is limited to one system due to its complexity. However, monitoring
various levels of system performance can be achieved by choosing not to monitor some
process variables. In addition, the simplification of the performance monitoring system
requires that less information be collected than that provided by the task manager.
The Microsoft Azure Fabric Controller [28] is a multi-layer monitoring system that selects
the centralized network architecture to improve cloud system efficiency. However, Azure
does not support monitoring heterogeneous cloud infrastructures.
The Paradyn project [29] develops the capabilities of a dynamic instrumentation technique
which generates performance profiles of unmodified resources. This approach includes the
Dyninst API running operating system kernels and the MRNet multicast network. It
achieves scalability by adjusting instrumentation granularity. However, implementation of
threaded programs on untested platforms may cause some bugs due to platform
dependency when using the dynamic instrumentation technique.
The open source performance monitoring system Nagios [30] enables establishments to
recognize the status of their network devices and alert systems administrators to problems.
However, in order to exert control over network components and services, difficult
text-based configuration files are required. Moreover, a confusing GUI and lack of
database connectivity make it hard to use, especially in parallel systems.
The infrastructure performance monitoring system boundary framework is presented in
[31]. This framework collects large amount of data about unit system performance from
heterogeneous running systems and generates diagrams in real-time for visualization.
However, the boundary suffers from granular performance analysis such that the
organization needs to determine its operational requirements.
Most research in the field of performance monitoring shows the existence of time and cost
overheads that degrade system performance especially when dealing with systems with a
large number of distributed nodes. In our approach, the demand for an efficient framework
to monitor such distributed systems has been addressed.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 91

 3. Performance Monitoring Service Design
In this paper, we present an approach to a cloud performance monitoring system which
consists of integrated performance components that are designed to serve as easily
replaceable plugins, thus allowing the system to be highly dynamic, quickly configured and
easily adjustable to any cloud system environment. Our approach is designed based on a
three-tier structure that defines the interaction and role of each performance component
with other components within the boundaries of its tier level and across outer levels. In the
following sections, we describe the performance monitoring structure in details.

3.1 Performance Monitoring Service Structure

The performance monitoring service PMS structure described below is based on three
functionality tiers; Top, Middle and Bottom. Fig. 1 presents the functionality of PMS tiers
and the operations that are assigned to each tier.

• The bottom tier contains many services that are installed on the clients cloud machines,

each machine communicates with other machines through its own firewall system and
local network router.

• When the client service is initiated from the client machine, it produces an XML file
that holds the client machine performance information.

• The XML file is then transmitted by the client machine and passes through the local
firewall system to the local network router in the bottom tier.

• The local network router transmits the XML file packets to the Internet Service
Provider (ISP) Router through the World Wide Web.

• The ISP Router transmits the XML file to the local network router in the middle tier.
• The local network router in the middle tier transmits the XML file through the server

firewall to the secured FTP cloud server that responds to the monitoring machine
requests in the top tier.

• A timer is set for few seconds to idle the client service in order to repeat the process and
to allow the cloud server to communicate with the monitoring machine.

• The monitoring machine in the top tier triggers a monitor service request that passes
through the local firewall system to the local network router.

• The local network router in the top tier transmits the monitor service request to the ISP
router.

• The ISP router will again transmit the monitor service request through the World Wide
Web to the cloud server local router advancing to the firewall and reaching the server
itself.

• The server response passes through the ISP router of the middle tier to the World Wide
Web reaching out to the ISP router of the top tier, then to the local monitor router
through the firewall back to the monitoring machine that issued the request.

92 Hababeh et al.: An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

Fig. 1. Performance Monitoring Service Functionality

The PMS tiers are illustrated in details as follows:

A. Top Tier

The top tier mainly consists of two components: The Monitor Service and the Desktop
Application. The two components are defined as follows:

• Monitor Service

This service has the responsibility of retrieving information files from the server
periodically and storing them inside a specified directory located on the monitoring
machine. In addition, this service passes the information files to the desktop
application [32] that initiated the call. Each machine-server call is triggered based on a
desktop application request.

• Desktop Application

A graphical user interface (GUI) [33] presents the information from all clients to the
monitoring administrator. This application spawns a background thread upon starting
that is responsible for reading and parsing the received client files periodically. In
addition, the GUI is updated with the parsed contents of all received files that are
triggered through a call to the monitor service.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 93

B. Middle Tier

The middle tier consists of a virtual machine running on a configured cloud server
operating in a passive mode to allow the client to provide the server with both data and
command ports, resulting in a simpler communication and connection environment.
Moreover, this virtual machine allows the client firewall to configure itself and choose the
specified ports on which the FTP connections will be established and run. In addition, the
FTP server [34] has been configured to allow anonymous login, which authenticates any
user connection to the server without the need to supply a username or password.

C. Bottom Tier

The bottom tier consists of the monitored client service that is responsible for collecting the
information from the client machine, parsing this information into XML format [35-36],
and then creating the XML file with the generated information. After the completion of the
XML data file, it will be uploaded to the FTP server and saved as a history data file that
keeps track of the latest updates on the monitored machines’ performance information. The
history data file is used to construct a graphical representation of monitored machine. The
updating process of the history file is based on a queue data structure (FIFO First-In
First-Out) [37]. The client service life cycle processes are run periodically as long as the
machine and service are running. Fig. 2 depicts the monitored client service life cycle
processes in the bottom tier.

Fig. 2. Client Service Life Cycle processes

3.2 Communication Processes

In this section, we describe the PMS model and the framework of communicating

94 Hababeh et al.: An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

processes. Our goal is to make use of performance monitoring by extracting data directly
from the monitoring machine’s operating system. Our monitoring framework uses
concurrent programming (threading) [38] to perform the performance computations. This
can be done by instantiating dedicated threads to process specific information in order to
produce the desired output, for example, parsing or upload operations.
The PMS is divided into multi-level components, and the overall system communication is
then achieved through the following processes:

• File Access

The PMS components work with files. The client rewrites the uploaded file or uploads
a file that is retrieved from a GUI snapshot of the client file.

• Inter-Process Communication

Inter-Process Communication (IPC) [39] is a communication protocol which allows
different operating processes to communicate with each other and data transfer
between processes. We used piping IPC [40] in our PMS, which works as a
client/server system, using ports to which processes subscribe, and thus allowing
complex data transfers.

3.3 Data Processing

The usage of generated XML data files, history files, and piping IPC in our PMS produces
simple data and process communication on a higher level. Unified Modeling Language
(UML) [41- 42] diagrams are used to illustrate the processes and their sequences within the
performance monitoring system. Fig. 3 shows the data flow processes of the PMS.

Fig. 3. PMS Data Flow Processes

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 95

In this section, we propose four monitoring information algorithms to illustrate the data
processes and their sequences within the performance monitoring system in cloud
computing environment where set of virtual machines are created for several datacenters.

• Performance Information Service Algorithm (PISA)

PISA algorithm collects the performance monitoring information and uploads it to the
server. It checks the client service timer; if the service timer is off, then the monitoring
data is generated in an xml file, encrypted and uploaded and stored in the server
storage.

Performance Information Service Algorithm

Input: CPU percentage, RAM available (MB), Current OS processes, Machine name, Date

and time
Output: Performance monitoring information xml data file
Begin
 IF Client Service Timer off THEN
 COLLECT Performance Monitoring Information
 GENERATE XML file
 ENCRYPT generated XML file
 PING server to check for availability
 IF server is available THEN
 UPLOAD file
 END IF
 RESET service timer
 END IF
End

• Machines Performance Object Service Algorithm (MPOSA)

MPOSA algorithm creates machines object list and displays it on client GUI. It opens
the machine history file and compares the service last updated time with the received
time of the requested service. Based on the previous result and according to the number
of history points, machines object list is updated and displayed on the client GUI.

Machines Performance Object Service Algorithm

Input: Available XML file list on server
Output: Machines Performance Object list
Begin
 IF timer goes off or user requested an update service THEN

96 Hababeh et al.: An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

 PING server to check for availability
 IF server is available THEN
 REQUEST files from Server
 STORE files on Monitoring machine
 CREATE Machines Object List
 FOR each file saved
 READ xml file And CREATE Machine Object
 OPEN MACHINE HISTORY FILE
 IF Last Updated Time Stamp < Received Time Stamp THEN
 IF number of history points equals maximum number of history points allowed THEN
 DELETE oldest Node
 END IF
 INSERT received new machine object to the top of machines object list
 END IF
 ADD machine object to machines object List
 END FOR
 SEND Machines object list to GUI
 END IF
 END IF
End

• Machines Data Grid Service Algorithm (MDGSA)

MDGSA algorithm converts the available monitor service to data grid view row and
updates the chart history points. The details of this algorithm are listed below.

Machines Data Grid Service Algorithm

Input: Machines Performance Object list
Output: Data Grid View Rows, Chart History Points
Begin
 PING monitor service to check availability
 IF monitor service is available THEN
 SEND request to machines object list
 RECEIVE response
 FOR each machine in response machines object list
 CONVERT machine object to Data Grid View Row
 ADD row to Data Grid View
 END FOR
 END IF
End

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 97

• Populating Performance Information Charts Service Algorithm (PPICSA)

PPICSA algorithm checks the updated history points in a machine history file and creates
the performance information charts accordingly. The details of this algorithm are
illustrated below.

Populating Performance Information Charts Service Algorithm

Input: Most recent history point in machine history file
Output: Populated history charts from the selected machines history file points
Begin
 IF a new machine is selected THEN
 CLEAR charts
 IF selected machine history file exists THEN
 READ xml file
 FOR each point in the history file
 CREATE chart point for each machine performance attribute
 ADD chart point to chart
 END FOR
 END IF
 END IF
End

• Monitoring Time Cost Performance

The time complexity in our approach is bounded by the time costs of collecting, converting
and displaying performance metrics of the monitored machines. The time costs are
described, defined, computed and improved as follows:

 The time costs of collecting, converting and displaying performance metrics
from all monitored machines are defined and computed as follows:

 Let Tsearch represent the time cost to search for one performance information
metric at one machine in order to display it on the monitoring screen.

 Let Tfetch represent the time cost to fetch one performance information metric
at one machine.

 Let Tload represent the time cost to load one performance information metric at
one machine from the cloud server.

 Let Texec represent the time cost to execute one performance information metric
at one machine from the cloud server.

 Let Tcollect represent the time cost to collect the performance information of a
certain metric at one machine. Then, Tcollect is computed as in equation 1:

 Tcollect = Tserach + Tfetch + Tload + Texec (1)

98 Hababeh et al.: An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

 Let Tgraph represent the time cost to convert the collected performance

information of one metric at one machine into a graph in the GUI.
 Let n represent the metric number in the monitored machine.
 Let Tmetric represent the time cost to display one metric performance

information at one machine on the screen. Then, Tmetric is computed as in
equation 2:

 Tmetric(n) = Tcollect(n) + Tgraph(n) (2)

Consequently, the time cost to display the graphs of all performance metrics from all

monitored machines on the screen is defined and simplified as follows:
 Let n represent the number of cloud system monitored machines.
 Let m represent the number of metrics in one machine.
 Let TMSR represent the total time cost to perform the monitoring service request

for all performance metrics at all machines. Then, TMSR is computed as in
equation 3:

TMSR = ∑ ∑ (T𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚, 𝑗𝑗))𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑚𝑚=1 (3)

 To this end, having one system that can provide all performance information metrics

that the user requires for one machine on one screen will allow the user to monitor
multi-metrics at all machines in much less time. Therefore, the time cost of searching for
each metric at each machine is optimized in our proposed approach and done automatically
for all metrics at all machines, thus improved the total time cost of monitoring service
request. Accordingly, the improved total monitoring time cost for all performance metrics
at all machines is defined as follows:

 Let Tsearch_all represent the total time cost to search for all performance
metrics at all machines. Then, Tsearch_all is computed as in equation 4:

 𝑇𝑇search_all = ∑ ∑ (Tsearch(𝑚𝑚, 𝑗𝑗))𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑚𝑚=1 (4)

 Let TimprovedMSR represent the improved total monitoring time cost. Then,

TimprovedMSR is computed as in equation 5:

 TimprovedMSR = TMSR - Tsearch_all (5)

Therefore, the performance improvement in monitoring service request is defined

according to the improved monitoring time cost that is computed as follows:
 Let PI represent the performance improvement achieved by our approach. Then,

PI is expressed in equation 6:

 PI = 1- (TimprovedMSR / TMSR) (6)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 99

3.4 Performance Monitoring System Tool

The internal validity of our performance information services technique is tested on
multiple machines in a cloud computing system. We developed a performance monitoring
system tool that is able to test the PISA, MPOSA, MDGSA, PPICSA services on a set of
performance history files obtained from different cloud machines. This tool is an open
source, user-friendly graphical user interface that is divided into 3 main areas to evaluate
cloud system performance. The proposed PMS tool is created following an approach that
requires less user interaction while preserving as much visual feedback as possible.
Moreover, it adds an important impact on extracting knowledge to the benefit of business
decisions. Fig. 4 shows the tool’s GUI, which is divided into 3 different blocks; namely;
control, information, and feedback.

Fig. 4. PMS GUI Blocks

The description of the GUI blocks that represent the performance metrics are detailed in the
following sub-sections.

3.4.1 Control Block
The User Control Block consists of multiple user-interactive buttons that serve as the main
process control component of the application, allowing the user to trigger system processes.
This block consists of the following button controls encapsulated inside the GroupBox
component:
• Start/Stop Service: Allows the user to control a service by starting or stopping it.
• Update Table: Triggers the information update processes, which will cause the

program to execute all of its operations. This button is disabled if there is already an
ongoing update process executing.

• Print: Starts the printing process of the form.
• Information: Produces a message box containing PMS project information.
• Exit: Closes the application.

3.4.2 Information Block
The information block consists of two components, named Control Machine and History
Charts.

100 Hababeh et al.: An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

• Control Machine

This component holds a Data Grid View Control that shows the latest performance
parameters parsed from the latest machine file retrieved from the server. The retrieved
performance metrics are machine name, number of processes, CPU usage, available
RAM, and date and time of the last performance check. Fig. 5 presents the
performance information generated from a control machine.

• History Charts

The History charts component includes four different metrics that are responsible for
displaying the results of the performance information analysis of the control machine.
The history charts metrics are defined as follows:
• Machine List: Holds the machine names for which the system has history files.
Choosing one of these machines will result in updating the components information
contained within its history file.

• Process Count: A chart that provides visual information about the number of
processes running on the chosen machine. Here, the X-axis stands for the time frame
in which the monitoring occurred and the Y-axis stands for the process count value.

• CPU Usage: The percent amount of CPU usage of the machine during the time
interval available in its history file. The X-axis stands for the time frame in which the
monitoring occurred and the Y-axis stands for the CPU usage value.

• RAM Available: The available RAM storage in mega-bytes on the chosen machine
over the course of its recorded history file. The X-axis stands for the time frame in
which the monitoring occurred and the Y-axis stands for the available RAM in
mega-bytes (MB). Fig. 5-a,b,c shows all the PMS information components as they
appear during run-time.

Fig. 5-a. CPU Information Metrics

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 101

Fig. 5-b. RAM Information Metrics

Fig. 5-c. Number of running processes on the active server

All components of the PMS information are updated immediately after an update operation
finishes without regard to the operation triggers “User Clicked” or “Auto Update”.

3.4.3 Feedback Block
The feedback block of the performance analysis consists of two components: system
information and a status bar.

A. System Information

The system information component serves as a feedback connection that holds the
information from the PMS connections to the monitor service and the FTP server. This
service has two components:

• The server connection status (connected, not connected).

• The service status (running, stopping, and stopped). Whereas the difference between

the states (stopping and stopped) is defined such that stopping the service means
finalizing its operations and de-allocating its resources, while the stopped state has
already finished all of its operations and released all of its resources.

102 Hababeh et al.: An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

The only interactive control inside the Information block is the “Auto Update” check box
that allows the system to automatically update the information about a semi-real time
scheme it running or to stop it.

B. Status Bar

The bottom bar consists of dynamic controls: The information label and the progress bar
that show the systems’ services status at run-time.

4. Experimental Results and Performance Evaluation
To validate our approach, we evaluated the performance techniques that are proposed by
Fish et al. [27] and Dotti et al. [18], and compared their performance monitoring results
with our technique. We run our monitoring tool under three algorithms that represents our
proposed monitoring method and the methods introduced in [27] and [18] respectively. For
simplicity, we assume the numbers of performance metrics are the same in all algorithms.
Each algorithm is tested twice and the collected results are recorded as minimum and
maximum time (time unit is: NanoSec). These collected results are required for extracting
the processes on an active server. Table 1 summarizes the average time considered for
performance evaluations. Fig. 6-8 depicts the experimental results of extracting monitoring
time of three cloud system servers (parents 1, 2, 3) each controlled two child nodes; parent
1 controls child’s 5 and 6, parent 2 controls child’s 7 and 8, parent 3 controls child’s 9 and
10 respectively.

Fig. 6. Performance monitoring time required for our proposed method

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 103

Fig. 7. Performance monitoring time required for Fish et al. [27] method

Fig. 8. Performance monitoring time required for Dotti et al. [18] method

104 Hababeh et al.: An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

Table 1 shows the server performance monitoring average time required for the methods in
comparison.

Table 1. Performance Monitoring Information Average Extraction Time

 Server
Number

Our Proposed
Method (nanosec)

Fish et al [27]
(nanosec)

Dotti et al [18]
(nanosec)

Server 1 1136 6238 7211
Server 2 1135 7229 8356

Server 3 1134 8708 10071

The average extraction time is computed based on the number of processes that are
extracted from the cloud servers and its machines (nodes). The proposed techniques in [27]
and [18] consider a single active server processes under monitoring at a time unit
(nanosecond), while in our technique we consider multivariate processes under monitoring
on the active cloud server and its client machines. Therefore, much more processes are
extracted and monitored by our technique in shorter time. The performance improvement
in the previous experiment is computed according to equation 6 above. For example, the
performance improvement of our approach over Dotti et al. [18] approach in server 1 is
evaluated as follows:

 PI(Server1) = 1- (1136 / 7211) = 84.25%

The performance improvements of our approach over both Fish et al. [27] and Dotti et al.
[18] approaches are summarized in Table 2.

Table 2. Performance Improvement Comparison

 Server
Number

Improvement %
over Fish et. al. [27]

Improvement % over
Dotti et. al. [18]

Server 1 81.79% 84.25%
Server 2 84.30% 86.42%
Server 3 86.98% 88.74%

Based on the results generated by our approach, an enhanced performance monitoring
system can be achieved while saving time, effort and power.

Fig. 9 shows the comparison of our proposed method with the methods introduced in [27]
and [18] in terms of average time (nanosec) required for generating performance
monitoring information.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 105

Fig. 9. Comparison of the Performance Monitoring Methods

This figure shows that more time is needed to extract performance information by
approaches in [27] and [18] due to the high complexity of extracting performance metrics.
Therefore, it is clear that our approach significantly outperforms its counterparts.

5. Conclusion
The data synchronization in a semi-real time for a control system in parallel and concurrent
computational environment can be achieved. Integrating the various components of the
performance monitoring system will empower the control systems of the real world
applications. Such control systems are required for creating functional performance
monitoring systems.
The benchmarks and the operating system task manager have high usage and are rather
populated within our proposed performance monitoring system. The benchmark data is
extracted from the operating system itself and is processed and given to the user within a
simplified GUI, though within such a system, the controlling factors of processes or
machine performance are not included.
There is potential to provide a powerful remote performance tool that can allow users to
monitor and control cloud system performance easily. Most users are already familiar with
task managers supported by different operating systems.

0

2000

4000

6000

8000

10000

12000

Our Proposed
Method

Fish et al [27] Dotti et al [18]

Ti
m

e
(N

an
os

ec
on

d)

Monitoring Method

Performance Monitoring Average Extraction Time

Server 1

Server 2

Server 3

106 Hababeh et al.: An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

References
[1] K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P. P. Jayaraman, S. U. Khan, A. Guabtni, and V.

Bhatnagar, "An overview of the commercial cloud monitoring tools: research dimensions,
design issues, and state-of-the-art," Computing, 97(4), pp.357-377. 2015.
Article (CrossRef Link)

[2] M. Riera-Guasp, J. A. Antonino-Daviu, and G. A. Capolino,"Advances in electrical machine,
power electronic, and drive condition monitoring and fault detection: state of the art," IEEE
Transactions on Industrial Electronics, 62(3), pp.1746-1759. 2015. Article (CrossRef Link)

[3] Z. Gao, C. Cecati, and S. X. Ding,"A survey of fault diagnosis and fault-tolerant
techniques—Part I: Fault diagnosis with model-based and signal-based approaches," IEEE
Transactions on Industrial Electronics, 62(6), pp.3757-3767. 2015. Article (CrossRef Link)

[4] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, "Cloud monitoring: A survey," Computer
Networks, 57(9), pp.2093-2115. 2013. Article (CrossRef Link)

[5] W. W. Eckerson, "Performance dashboards: measuring, monitoring, and managing your
business," John Wiley & Sons. 2010. Article (CrossRef Link)

[6] X. Sales, and J. Carenys, "Case study on performance management: A comprehensive
approach," British Journal of Economics, Management & Trade. Vol 3 no.2 pp 73-88. 2013.
Article (CrossRef Link)

[7] Jain RK. "Art of Computer Systems Performance Analysis: Techniques for Experimental Design
Measurements, Simulation and Modeling," Wiley Computer Publishing, John Wiley & Sons, Inc.
1992. Article (CrossRef Link)

[8] Frédéric Desprez, Eddy Caron, Luis Rodero-Merino, Adrian Muresan, "Auto-scaling, load
balancing and monitoring in commercial and open-source clouds," Cloud Computing:
Methodology, System and Applications, CRC Press, 2012. Article (CrossRef Link)

[9] J. Spring, "Monitoring cloud computing by layer, Part 1," IEEE Security & Privacy, 9 (2), pp 66–
68. 2012. Article (CrossRef Link)

[10] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, A. Pescapè, "Broadband
internet performance: a view from the gateway," ACM SIGCOMM 2011 Proceedings, 2011.
Article (CrossRef Link)

[11] Aceto, Giuseppe, Alessio Botta, Walter De Donato, and Antonio Pescapè. "Cloud monitoring:
A survey," Computer Networks 57, no. 9 . pp 2093-2115. 2013. Article (CrossRef Link)

[12] Hwang, K., Fox, G. and Dongarra, J, "Distributed and Cloud Computing," Morgan Kaufmann
Publisher, 2012. Article (CrossRef Link)

[13] Desborough, Lane, and Randy Miller. "Increasing customer value of industrial control
performance monitoring-Honeywell's experience," in Proc. of AIChE symposium series. No.
326. New York; American Institute of Chemical Engineers. 2002. Article (CrossRef Link)

[14] Rizwan Mian, Patrick Martin, Jose Luis Vazquez-Poletti, "Provisioning data analytic
workloads in a cloud," Future Generation Computer Systems, 2013. Article (CrossRef Link)

[15] Hwang, Kai, et al. "Cloud performance modeling with benchmark evaluation of elastic scaling
strategies," IEEE Transactions on Parallel and Distributed Systems, 27.1, pp.130-143. 2016.
Article (CrossRef Link)

[16] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, D.H.J. Epema, "A performance
analysis of EC2 cloud computing services for scientific computing," Cloud Computing,
Springer, pp. 115–131. 2010. Article (CrossRef Link)

https://doi.org/10.1007/s00607-014-0398-5
https://doi.org/10.1109/TIE.2014.2375853
https://doi.org/10.1109/TIE.2015.2417501
https://doi.org/10.1016/j.comnet.2013.04.001
https://www.google.jo/search?q=Performance+dashboards%3A+measuring%2C+monitoring%2C+and+managing+your+business%2C%E2%80%9D+John+Wiley+&ie=utf-8&oe=utf-8&client=firefox-b-ab&gfe_rd=cr&dcr=0&ei=W2zUWuqQKpST8Qf94JGQBA
https://doi.org/10.9734/BJEMT/2013/2829
http://www.jstor.org/stable/25061650
https://hal.inria.fr/file/index/docid/668713/filename/RR-7857.pdf
https://doi.org/10.1109/MSP.2011.33
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S.+Sundaresan%2C+W.+de+Donato%2C+N.+Feamster%2C+R.+Teixeira%2C+S.+Crawford%2C+A.+Pescap%C3%A8%2C+%E2%80%9CBroadband+internet+performance%3A+a+view+from+the+gateway%E2%80%9D%2C+ACM+SIGCOMM+2011+Proceedings%2C+2011&btnG
https://doi.org/10.1016/j.comnet.2013.04.001
https://books.google.jo/books?hl=en&lr=&id=IjgVAgAAQBAJ&oi=fnd&pg=PP1&dq=Hwang,+K.,+Fox,+G.+and+Dongarra,+J,+%E2%80%9CDistributed+and+Cloud+Computing%E2%80%9D,+Morgan+Kaufmann+Publisher,+2012&ots=9QSGo5YA-y&sig=7rGGXMWO9SSyG7ckgo6vMhzKzU0&redir_esc=y%23v=onepage&q&f=false
https://pdfs.semanticscholar.org/5d1a/2f4b06bc4e5714be1948099c2cb7b3236d42.pdf%23page=177
https://www.sciencedirect.com/science/article/pii/S0167739X12000209
https://doi.org/10.1109/TPDS.2015.2398438
https://doi.org/10.1007/978-3-642-12636-9_9

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 107

[17] Y. Mei, L. Liu, X. Pu, S. Sivathanu, "Performance measurements and analysis of network I/O
applications in virtualized cloud," in Proc. of IEEE 3rd International Conference on Cloud
Computing (CLOUD), pp. 59–66. 2010. Article (CrossRef Link)

[18] A. Dotti, V. D. Elvira, G. Folger, K. Genser, S. Y. Jun, J. B. Kowalkowski, and M. Paterno,
"Geant4 Computing Performance Benchmarking and Monitoring," Journal of Physics:
Conference Series (Vol. 664, No. 6, p. 062021). IOP Publishing. 2015. Article (CrossRef Link)

[19] L. Shannon, E. Matthews, N. Doyle, and A. Fedorova, "Performance monitoring for multicore
embedded computing systems on FPGAs," arXiv preprint arXiv:1508.07126. 2015.

 Article (CrossRef Link)
[20] C. D. Jones, L. Contreras, P. Gartung, D. Hufnagel, and L. Sexton-Kennedy,"Using the CMS

threaded framework in a production environmentو" in Proc. of Journal of Physics: Conference
Series (Vol. 664, No. 7, p. 072026). IOP Publishing. 2015. Article (CrossRef Link)

[21] A. Lister, "Fundamentals of operating systems," in Springer Science & Business Media, 2013.
 Article (CrossRef Link)
[22] A. I. Jehangiri, R. Yahyapour, P. Wieder, E. Yaqub, and K. Lu, "Diagnosing cloud performance

anomalies using large time series dataset analysis," in Proc. of IEEE 7th International
Conference on Cloud Computing CLOUD (pp. 930-933). June, 2014. Article (CrossRef Link)

[23] A. S. Radhamani and E. Baburaj, "Network Traffic Monitoring and Control for Multi core
processors in cloud computing applications," International Journal of Computer Information
Systems and Industrial Management Applications, 5 pp. 557-563. 2013.

 Article (CrossRef Link)
[24] V. Singh and A. Seth, "Approaches to Data Parallel Programming," International Research

Journal of Engineering and Technology (IRJET), Vol: 03 Issue: 05. 2016.
 Article (CrossRef Link)
[25] D. Licari, A. Baiardi, M. Biczysko, F. Egidi, C. Latouche, and V. Barone,"Implementation of a

graphical user interface for the virtual multi-frequency spectrometer: The VMS‐Draw tool,"
Journal of computational chemistry, 36(5), pp.321-334. 2015. Article (CrossRef Link)

[26] A. Blumenthal, M. Luedde, T. Manzke, B. Mielenhausen, and C. E. Swanepoel, "Measuring
software system performance using benchmarks,". U.S. Patent 7,546,598. 2009.

 Article (CrossRef Link)
[27] J. Fish, D. R. Moulton, and K. Gray,"Graphical user interface with on board and off-board

resources," Bosch Automotive Service Solutions Inc. U.S. Patent 9,299,197. 2016.
 Article (CrossRef Link)
[28] Last Accessed on July 7th, 2017. Article (CrossRef Link).
[29] W. R. Williams, X. Meng, B. Welton, and B. P. Miller,"Dyninst and MRNet: Foundational

Infrastructure for Parallel Tools," Tools for High Performance Computing, Springer
International Publishing. pp. 1-16. 2015. Article (CrossRef Link)

[30] K. Mehlhorn, "Data structures and algorithms 1: Sorting and searching," Springer Science &
Business Media, Vol. 1, 2013. Article (CrossRef Link)

[31] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn,"A survey of Cloud
monitoring tools: Taxonomy, capabilities and objectives," Journal of Parallel and Distributed
Computing, 74(10), pp.2918-2933. 2014. Article (CrossRef Link)

[32] T. Fuand M. Gaurav,"Apparatus, systems and methods for deployment of interactive desktop
applications on distributed infrastructures," U.S. Patent Application, No. 13/759,514. 2013.
Article (CrossRef Link)

https://doi.org/10.1109/CLOUD.2010.74
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=.+Dotti%2C++V.+D.+Elvira%2C+G.+Folger%2C+K.+Genser%2C+S.+Y.+Jun%2C+J.+B.+Kowalkowski%2C+and+M.+Paterno%2C+%E2%80%9CGeant4+Computing+Performance+Benchmarking+and+Monitoring%2C%E2%80%9D+Journal+of+Physics%3A+Conference+Series+%28Vol.+664%2C+No.+6%2C+p.+062021%29.+IOP+Publishing.+2015&btnG
https://arxiv.org/abs/1508.07126
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=C.+D.+Jones%2C+L.+Contreras%2C+P.+Gartung%2C+D.+Hufnagel%2C+and+L.+Sexton-Kennedy%2C%22Using+the+CMS+threaded+framework+in+a+production+environment%D9%88%E2%80%9D+Journal+of+Physics%3A+Conference+Series+%28Vol.+664%2C+No.+7%2C+p.+072026%29.+IOP+Publishing.+2015&btnG
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A.+Lister%2C++%E2%80%9CFundamentals+of+operating+systems%2C%E2%80%9D+in+Springer+Science+%26+Business+Media%2C+2013&btnG
https://doi.org/10.1109/CLOUD.2014.129
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A.+S.+Radhamani+and+E.+Baburaj%2C+%22Network+Traffic+Monitoring+and+Control+for+Multi+core+processors+in+cloud+computing+applications%2C%22+International+Journal+of+Computer+Information+Systems+and+Industrial+Management+Applications+5+pp.+557-563.+2013&btnG
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=V.+Singh+and+A.+Seth%2C+%22Approaches+to+Data+Parallel+Programming%2C%22+International+Research+Journal+of+Engineering+and+Technology+%28IRJET%29%2C+Vol%3A+03+Issue%3A+05.+2016&btnG
https://doi.org/10.1002/jcc.23785
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A.+Blumenthal%2C+M.+Luedde%2C+T.++Manzke%2C+B.++Mielenhausen%2C++and+C.+E.+Swanepoel%2C%E2%80%9DMeasuring+software+system+performance+using+benchmarks%2C%E2%80%9D.+U.S.+Patent+7%2C546%2C598.+2009&btnG
https://patents.google.com/patent/US9299197B2/en
https://www.tutorialspoint.com/microsoft_azure/microsoft_azure_fabric_controller.htm
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=W.+R.+Williams%2C+X.+Meng%2C+B.+Welton%2C+and+B.+P.+Miller%2C%E2%80%9DDyninst+and+MRNet%3A+Foundational+Infrastructure+for+Parallel+Tools%2C%E2%80%9D+Tools+for+High+Performance+Computing%2C+Springer+International+Publishing.+pp.+1-16.+2015&btnG
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=K.+Mehlhorn%2C+%E2%80%9CData+structures+and+algorithms+1%3A+Sorting+and+searching%2C%E2%80%9D+Springer+Science+%26+Business+Media%2C+Vol.+1%2C+2013&btnG
https://doi.org/10.1016/j.jpdc.2014.06.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=T.+Fuand+M.+Gaurav%2C%22Apparatus%2C+systems+and+methods+for+deployment+of+interactive+desktop+applications+on+distributed+infrastructures%2C%22+U.S.+Patent+Application+No.+13%2F759%2C514.+2013&btnG

108 Hababeh et al.: An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

[33] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, "Graphical user interface (GUI) testing:
Systematic mapping and repository," Information and Software Technology, 55(10),
pp.1679-1694. 2013. Article (CrossRef Link)

[34] R. Mohammadi, S. Y. Nabavi, and S. M. Emam, "Analysis of FTP and Web Server
Performance in Open Source Server Virtualization," International Journal of Computer
Science Issues (IJCSI), vol 13 no 5 2016. Article (CrossRef Link)

[35] W. Jackson,"Introduction to XML: Defining an Android App, Its Design, and Constants,"
Android Apps for Absolute Beginners. A press, Pp 101-130. 2014. Article (CrossRef Link)

[36] D. Nolan and D. T. Lang,"An Introduction to XML. In XML and Web Technologies for Data
Sciences with R," Springer New York. (pp. 19-52). 2014. Article (CrossRef Link)

[37] K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P. P. Jayaraman, S. Khan, and V.Bhatnagar," An
overview of the commercial cloud monitoring tools: research dimensions, design issues, and
state-of-the-art," Computing, 97(4), 357-377. 2015. Article (CrossRef Link)

[38] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur,"Framework for testing multi‐
threaded Java programs," Concurrency and Computation: Practice and Experience, 15(3‐5),
pp.485-499. 2003. Article (CrossRef Link)

[39] P. D. Bain,"Inter-process communication in a multi-tenant environment," International
Business Machines Corporation. U.S. Patent Application 14/842,926. 2015.

 Article (CrossRef Link)
[40] C. K. Hsieh, H. Falaki, N. Ramanathan, H. Tangmunarunkit, and D. Estrin,"Performance

evaluation of android IPC for continuous sensing applications," ACM SIGMOBILE Mobile
Computing and Communications Review, 16(4), pp.6-7. 2013. Article (CrossRef Link)

[41] S. Friedenthal, A. Moore and R.Steiner, "A practical guide to SysML: the systems modeling
language," Morgan Kaufmann, 2014. Article (CrossRef Link)

[42] C. Larman," Applying UML and Patterns: An Introduction to Object Oriented Analysis and
Design and Iterative Development," in Pearson Education. 2012. Article (CrossRef Link)

https://doi.org/10.1016/j.infsof.2013.03.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R.+Mohammadi%2C+S.+Y.+Nabavi%2C+and+S.+M.+Emam%2C+%22Analysis+of+FTP+and+Web+Server+Performance+In+Open+Source+Server+Virtualization%2C%22+International+Journal+of+Computer+Science+Issues+%28IJCSI%29+vol+13+no+5+2016&btnG
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=W.+Jackson%2C%22Introduction+to+XML%3A+Defining+an+Android+App%2C+Its+Design%2C+and+Constants%2C%22+Android+Apps+for+Absolute+Beginners.+A+press%2C+Pp+101-130.+2014&btnG
https://doi.org/10.1007/978-1-4614-7900-0_2
https://doi.org/10.1007/s00607-014-0398-5
https://doi.org/10.1002/cpe.654
http://www.freepatentsonline.com/y2016/0274956.html
https://doi.org/10.1145/2436196.2436200
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S.+Friedenthal%2C+A.+Moore+and+R.Steiner%2C+%E2%80%9CA+practical+guide+to+SysML%3A+the+systems+modeling+language%2C%E2%80%9D+Morgan+Kaufmann%2C+2014&btnG
http://sutlib2.sut.ac.th/sut_contents/H76936.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, January 2019 109

Ismail Hababeh received the bachelor’s degree in computer science from
University of Jordan, Amman-Jordan, the master’s degree in computer
science from Western Michigan University, Michigan – USA, and the PhD
degree in computer science from Leeds Metropolitan University, Leeds-UK.
He is currently with German Jordanian University at the Faculty of
Electrical Engineering and Information Technology. His research interests
span the areas of cloud computing, big data security, wireless
communication networks, and systems performance.

Anton William Thabain received the BSc degree in Computer
Science from the German Jordanian University, Amman - Jordan, in 2016.
Currently, he pursuing the MSc and PhD from the Technical University of
Cologne. His research interest includes the development of parallelized
computer systems and computer performance algorithms in addition to
Game AI development.

Sahel Alouneh is an Associate Professor of computer engineering and
the Dean of Faculty of Electrical Engineering and Information Technology
at the German Jordanian University. His research interests include
computer networks, big data security, cloud computing, software security,
MPLS security and recovery, Wireless networking security, Software
testing, computer design and architecture.

	3.4 Performance Monitoring System Tool
	3.4.1 Control Block
	3.4.2 Information Block
	3.4.3 Feedback Block

