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Abstract 
 

Silent Data Corruptions (SDCs) is a serious reliability issue in many domains of computer 
system. The identification and protection of the program instructions that cause SDCs is one of 
the research hotspots in computer reliability field at present. A lot of solutions have already 
been proposed to solve this problem. However, many of them are hard to be applied widely 
due to time-consuming and expensive costs. This paper proposes an intelligent approach 
named SDCPredictor to identify the instructions that cause SDCs. SDCPredictor identifies 
SDC-causing Instructions depending on analyzing the static and dynamic features of 
instructions rather than fault injections. The experimental results demonstrate that 
SDCPredictor is highly accurate in predicting the SDCs proneness. It can achieve higher fault 
coverage than previous similar techniques in a moderate time cost. 
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1. Introduction 

With the processor design trends towards smaller transistor size, lower core voltage and 
higher frequency, the threat of soft errors becomes more and more serious. [1]. Soft errors 
could lead to silent data corruption (SDC) which are difficult to be detected. When SDCs 
occur, the program executes normally, but the outputs of program are incorrect. Thus, with the 
sustained effect of  Moore’s Law, more and more transistors will be integrated into the chips, 
so that soft errors of hardware will occur more and more frequently [2].Therefore, necessary 
protection measures should be adopted to prevent SDC errors.  

Hardware-based solutions such as triple modular redundant and dual modular redundancy 
increase the equipment cost greatly.  Software-based solutions can also handle soft errors of 
hardware without any additional cost on hardware. Due to the advantages of cost savings, 
hardware-independent design, flexibility and implementation simplicity, software-based 
detection methods are being paid more and more attention in soft error mitigation research [3]. 
To date some of these methods have already been applied to many fields including 
astronautics and high performance computing [4]. 

  Compared with the hardware-based techniques, software-based techniques can save more 
hardware resources; nevertheless, they occurs significant performance overhead. Reducing 
performance overhead has become to be the top issue of such techniques. To reduce 
performance overheads, recent works tend to protect these SDC-prone instructions selectively 
[5-7].  

It was recently reported that a small part of programs’ instructions are responsible for most 
of SDCs, and protect these instructions selectively can achieve high coverage against SDCs [8, 
9]. These instructions are called SDC-prone instructions. Therefore, how to identify the 
SDC-prone instructions becomes a key problem.  

Recently, a lot of works [10-16] try to improve the static injection framework. CriticalFault 
[10] applies vulnerability analysis to avoid the derated fault injections. Relyzer [11] employs 
pruning techniques to decrease the quantity of fault injections by predicting the outcomes of 
faults. Although the quantity of fault injections is reduced, the statistical fault injection (SFI) 
experiments are still time-consuming. SmartInjector [12] proposes an intelligent fault injection 
framework to identify the SDC-prone instructions. It firstly decreases the quantity of fault 
injections by predicting the outcomes of faults, and then reduces the time for a single fault 
simulation by predicting the fault outcome prediction technique. Shoestring [13] leverages 
compiler to analyze and identify the statistically vulnerable instructions. The time cost of 
Shoestring is low because it does not rely on any SFI injections. However, the compiler 
analysis technology is static and lack of dynamic analysis of program instructions, resulting in 
lower error coverage. SymPLIFIED [14] identifies SDC-prone instructions using symbolic 
execution, which enumerates all potential hardware errors.  

The work [16] presents a selective protection technique that allows users to selectively 
protect these SDC-prone data. The main idea of work [16] is predicting the SDC proneness of 
a program’s data firstly, then selectively protects the most SDC-prone instructions of the 
program for the user-specified overhead bound. Since the prediction model is built based on 
the Classification and Regression Tree (CART) algorithm, the process of prediction do not 
need to perform fault injections. Therefore, it is more time-saving than fault injection based 
method. However, CART algorithm is easy to cause the over fitting which leads to a poor 
stability and low accuracy. 
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In this paper, by employing random regression forest algorithm, an ensemble regression 
prediction scheme, we propose a novel prediction model, SDCPredictor, to predict the SDC 
proneness of program instructions. SDCPredictor identifies SDC-causing Instructions 
depending on analyzing the static and dynamic features of instructions rather than fault 
injections, thus it can save a lot of time and manpower. Our experimental results demonstrate 
that SDCPredictor is more accurate in predicting the SDCs proneness than previous 
similar techniques in a moderate time cost. To summarize, our contributions are as follows: 
   We propose an intelligent approach named SDCPredictor to identify the instructions 

that cause SDCs. SDCPredictor identifies SDC-causing Instructions depending on 
analyzing the static and dynamic features of instructions rather than fault injections.    

   Our method assumes that different features are not equally important. To strengthen the 
generalization error of SDCPredictor, we employ weight value to represent the 
importance of the features. That means features with larger weights have high 
probability to be selected.  In order to improve the prediction accuracy, we screen all 
trees by evaluating their quality. Those trees whose accuracy is lower will be excluded. 
Only the trees whose accuracy is high enough will be reserved. 

   We evaluate the efficiency of proposed approach. The experimental results 
demonstrate that the proposed approach can acquire higher fault coverage at the same 
performance overhead bound than previous similar approaches. 

The remainder of this paper is organized as follows. We review in brief the works related to 
identifying SDC-prone instructions in Section 2, while fault model of the proposed approach is 
presented in Section 3. In Section 4 we introduce the proposed approach. The results of the 
experiments are reported and analyzed in section 5, and finally section 6 summarizes the paper 
and points out the field of research in future. 

2. Related Work 
Considerable research efforts have been done to identify the SDC-causing instructions. A 
typical technique is modeling the SDC rate of SDC-causing instructions by performing fault 
injections.  
CriticalFault [10] make use of vulnerability analysis to avoid derated injections. Relyzer [11] 
employs pruning techniques to decrease the quantity of fault injections by predicting the 
outcomes of faults. Hardware faults with similar behavior are deemed to be equivalent faults 
and fall into one group. Only one representative fault is selected to implement fault injection 
for each group. SmartInjector [12] proposes an intelligent fault injection framework to identify 
the SDC-prone instructions. It firstly decreases the quantity of fault injections by predicting 
the outcomes of faults, and then reduces the time consumption for an individual fault 
simulation by predicting the fault outcome prediction technique.  

Instructions vulnerability analysis is another important solution to identify SDC-causing 
instructions. Shoestring [13] uses a static compiler analysis technology to identify 
SDC-causing instructions, and protect them by inserting redundant instructions. Shoestring 
only considers the instructions which are possible to cause user-visible errors. These 
instructions which are possible to lead to SDC errors are left unprotected. Although Shoestring 
is time-saving, the SDC coverage is low. SymPLIFIED [14] identifies SDC-prone instructions 
using symbolic execution, which enumerates all potential hardware errors. This might cost 
more time than SFI due to the state explosion problem caused by symbolic execution. 
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The work [15] employs genetic algorithm (GA) to identify the most vulnerable sections of a 
program. By analyzing the dynamic dependencies between the program blocks, the proposed 
method can identify the most vulnerable basic blocks of a program precisely. However, some 
instructions of vulnerable blocks may make no contributions to the outputs of program. 
Protecting these instructions will incur high and unnecessary performance overhead. The work 
process of work [15] is shown in Fig. 1. The step 1 converts a program to a smaller and 
executable one. In step 2, the most vulnerable blocks of the input program are selected by GA. 
Step 3 strengthens the identified vulnerable blocks. 

 

 
Fig. 1. Block diagram of the work [15] 

 
The work [16] introduces a prediction model named SDCAuto to predict the SDC 

proneness of a program’s instructions. SDCAuto is built using CART algorithm, requiring 
little to no human intervention. Therefore, it is no need to perform fault injections in the 
process of instructions selective protection against SDC-causing errors. Fig. 2 illustrates the 
diagram of the work [16]. The work [16] first compiles the source code into LLVM IR, and 
extracts instruction features based on LLVM IR file. Then, it obtains the SDC proneness for 
each instruction with the help of SDCAuto model.  
 

 
Fig. 2. Block diagram of the work [16] 

 
Finally, detectors are inserted into the source code for protecting the most SDC-prone 

instructions for the user-specified overhead bound. 

3. Fault Model 
SEU-induced soft errors fall into two categories: user-visible errors and user-invisible errors. 
User-visible errors usually cause architecture-level symptoms such as program crash or hang, 
which can be detected by symptom-based detection techniques. When the user-invisible errors 
occurs, the program executes normally and do not cause any abnormal symptoms. Nevertheless, 
the outputs of program are incorrect, i.e. SDC errors. These errors cannot be handled by 
symptom-based detection techniques. Therefore, we focus on SDC errors in this paper. 

Faults in memory and caches are not considered, since these devices are usually protected 
with ECC. We focus on the faults that occur in processors’ functional units and registers, 
which are not protected by fault-tolerant techniques due to performance reasons. Faults occur 
in processors’ functional units and registers can lead to control flow errors and data flow errors. 



1570               LiPing Liu et al.: Identifying SDC-Causing Instructions Based on Random Forests Algorithm 

We focus only data flow errors and assume that control flow errors are detected by 
control-flow checking techniques. Faults in the instruction opcode are also not considered, 
since it always causes illegal opcode exception rather than SDC. 

Finally, as in work [16], we assume that at most one fault occurs during a program’s 
execution.  

4. Proposed method 
SDCPredictor aims to build a intelligent prediction model which can predict the SDC 
proneness of program instructions accurately without faults injection. For this purpose, we 
extract some dynamic and static features of instructions and create training data set with the 
help of faults injection experiments. Based on the training data set, our prediction model is 
built using random regression forests.  

To understand this paper better, some useful definitions which are used in this paper are 
presented.  

SDC coverage: The SDC coverage is defined as the rate of SDC causing errors detected by 
error detection technology. 

SDC proneness per instruction: This is the probability that a fault in instruction leads to 
an SDC. This is denoted as . 

Dynamic count ratio: This is the ratio of the number of dynamic instances of instruction  
executed to the total number of dynamic instructions in the program. This is denoted as . 

To understand our proposed method on a macro level, we give a brief presentation about its 
work process. The flow diagram of the proposed method is shown in Fig. 3. Details of each 
element are as follows. We first introduces the extracted program features of instructions that 
highly correlated with SDC-prone. We then explain the implement of faults injection 
experiments on selected benchmark programs to generate training data set. Finally, we 
describe how to build our prediction model and design protected code.  

 

 
Fig. 3. Flow diagram of the proposed method 

 
 

4.1 Feature extraction 
We extract features of instructions according to our analysis and prior work [12, 13, 16, 17 and 
18]. In all, 72 features are extracted. These features of instructions fall into nine categories 
shown in Table 1. Detailed categories results are as follows: (1) Comparison operations related 
features. Comparison operations may cause the control flow deviation, which cannot be 
detected by existing control flow checking techniques because such comparison operations are 
resilient. Some errors may be masked by comparison operations. (2)Memory address 
calculation related features.  Accessed memory address must be in legal address space. If the 
accessed memory address exceeds the legal bound, this operation will lead to a segmentation 
fault. If not, the operation is possible to cause SDCs.  (3) Sub-word operations related features. 
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Sub-word operations such as left shift operation and right shift operation often discard some 
bits of registers. Bit-flipping errors occurred in the discarded bits will be derated and will not 
cause SDCs. Thus, SDC proneness of the instruction operands will be reduced. (4) Logical 
operations related features. Logical operations such as AND operations and OR operations are 
possible to mask errors that occurred in corresponding bit of operands. For example, if a bit 
value of AND instruction operand is 1, then the bit-flipping errors occurred in the 
corresponding bit of other instruction operand will be masked. (5) Successor instruction related 
features. When an error occurs, the error will propagate along the data dependency chain. When 
a SDC-masked instruction is encountered, the error is possible to be masked; otherwise it will 
propagate to the end points of data dependency chain and leads to an incorrect output. 
Therefore, the SDC proneness of precursor instructions in data dependency chain is affected by 
the successor instructions. (6) Type of end points of data dependency chains related features. 
Different end points of data dependency chains have different effects on the outputs of program. 
(7) Code structure related features.  The SDC proneness of instructions is highly correlated with 
the execution probability of run-time. Thus, instructions on the hot paths of the program have 
higher SDC proneness due to the higher execution probability of run-time. (8) Data width 
related features. Data width is the effective number of bits of instruction operands. The higher 
the data width, the higher the SDCs rate of instructions will be. (9) Execution time related 
features. Instructions executed with a higher frequency read and write resisters frequently. 
Corrupted data of resisters are most likely to be used by these instructions. Therefore, these 
instructions usually have a higher SDC proneness. 
 

Table 1. Some features extracted for Model Building 
Feature group Feature Description 

Comparison 
operations related 
features 

is_cmp whether the operation is a comparison operation  
is_loop_terminator whether the comparison result can determine the 

time of loop execution 
is_cmp_with_zero whether the comparison is made with zero 
is_cmp_with_address  whether memory address is exist in the operands 

of comparison operation   
Memory access 
and addressing 
related features 

is_read whether the operation read data from memory 
is_memory_addressing whether the result of operation is used to address 

memory 
is_write whether the operation write data to memory 

Sub-word 
operations related 
features 

is_shl whether the instruction is a left shift operation  

is_shr whether the instruction is a right shift operation 

Logical 
operations related 
features 

is_and whether the instruction is a logic “and” operation 
is_or whether the instruction is a logic “or” operation 
is_xor whether the instruction is a logic “xor” operation 

Successor 
instruction related 
features 

shl_instructions_count The number of  left shift instructions contained in 
successor instruction 

shr_instructions_count The number of right shift instructions contained in 
successor instruction 

Type of end 
points of data 
dependency 
chains related 
features 

is_global whether the operation modify the value of global 
variable 

is_stack_push whether the operation push a value to stack 
is_function_call whether the operation call a function  
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Code structure  
related features 

number_of_pred _BBs number of predecessor BBs 
number_of_suc _BBs number of successor BBs 
is_within_loop whether the operation is within a loop 
is_accumulative_computati
on 

whether the operation is a 
cumulative-computation operation  

bb_length the number of static instructions in the basic block 
that contains the specific instruction 

Data width related 
features 

data_width_Source 
_operand 

the effective number of bits of instruction source  
operand 

data_width_destination_op
erand 

the effective number of bits of instruction 
destination operand 

Execution time 
related  features 

dynamic_count_ratio dynamic count ratio of the specific instruction 

 

4.2 Fault injection and training data generation 
In order to acquire high-quality training samples, we create training data set with the help of 
faults injection experiments. We use the famous fault injection tool PINFI [19] to implement 
fault injection experiment. PINFI is built with Intel Pin [20] and uses the API exposed by Pin to 
inject faults. 
 

Table 2. Characteristics of the training benchmarks. 
Program Description Benchmark suite 

Bzip2 File compression and decompression 
program 

SPEC benchmarks  

Perlbench SPEC benchmark for perl interpreter SPEC benchmarks  
Blackscholes Financial analysis program PARSEC benchmarks 
Swaptions Price portfolio of swaptions PARSEC benchmarks 
TSP Solving the TSP problem by genetic algorithms Stanford benchmarks 

Qsort quick-sort algorithm Stanford benchmarks 

IS Integer sorting, random memory access NAS benchmarks 

EP  Embarrassingly Parallel NAS benchmarks 

BFS Breadth-First search Parboil benchmarks  

MM Dense Matrix-Matrix Multiply Parboil benchmarks  

 
Table 3. Characteristics of the testing benchmarks. 

Program Description Benchmark suite 
Gzip File compression program SPEC benchmarks  
Ferret Similarity search program PARSEC benchmarks 
Queens Solving the classic n-queens problem  Stanford benchmarks 

CG Conjugate Gradient, irregular memory 
access and communication  

NAS benchmarks 

LBM Fluid dynamics computing program Parboil benchmarks 
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We select 15 benchmarks which are drawn from SPEC benchmarks [21], NAS parallel 
benchmarks [22], Stanford benchmarks [23], Parboil benchmarks [24] and PARSEC 
benchmarks [25]. These benchmarks are divided into two groups randomly: training group and 
testing group.  Table 2 and Table 3 provide a brief description of these benchmarks. We 
compile these benchmarks using LLVM compiler and provide the executable file to PINFI 
after linking.  

Foregone studies showed that data dependencies among the instructions are important 
influence factors to SDC proneness and a large part of program instructions have no influence 
to the outputs of program. To simplify these programs, static-slicing technique [26] are 
utilized to convert a program to a smaller and executable one. Converted program eliminates 
those instructions that have no influence to the outputs of program and can be executed 
normally.  

First, we select some instructions as fault injection targets by running PINFI on each 
converted program.  

Second, we inject faults into these selected instructions with the aid of statistical fault 
injection like Relyzer [11]. To simulate the data corruption faults, we flip one certain bit of 
instruction’s source operand register and each bit flips one time. In each run, a fault, i.e., a 
single bit flip, is injected into the operands register of the dynamic instruction instance. The 
outcome of the fault is compared with the fault-free outcome. The fault-free outcome is 
obtained by executing the original executable program with the same input. The outcome are 
divided into four categories by program execution results: (1) Crash, the program terminate 
unexpectedly and threw an exception, (2) SDC, when SDCs occur, the program executes 
normally, but the outputs of program are incorrect, (3) Hang, which means the execution time 
of program is much longer than a fault-free execution, and (4) Benign, which means the faults 
are derated or masked inherently by the program and the outputs of program are correct.  

Third, the SDC proneness )(SDCP of each instruction is obtained through the equation (1) 

)()( ID
N
NSDCP

fault

SDC
×=                                                                                                                           (1) 

where SDCN is the SDC count caused by instruction I , faultN is the total number of initial faults 
attributed to the instruction I , D(I) is the dynamic count ratio of the instruction I .  

Finally, a sample },{ CF is generated, where F is the extracted features vector, and C is the 
annotated class label (i.e., SDC proneness). 

4.3 Regression model training 

4.3.1 Selecting the classification algorithm 
In order to better meet the requirements of our data and problem space, the machine learning 
algorithm must be selected carefully. We choose the Random Forest (RF) algorithm for the 
following three reasons:  
 Some features we extracted are boolean data types, e.g., is_ stack_push, is_load and 

is_cmp, while some other features are numerical, e.g., bb_length and data_width. Other 
regression algorithms might not support such a hybrid data types. RF is competent to  such 
a hybrid data types. 

 Other regression models, such as deep neural network and support vector machine (SVM), 
need to normalize the input data. Besides, In order to achieve accurate prediction results 
many parameters need to be adjusted. While, RF requires little data preparation and 
parameters adjustment. 
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 In recent years, more and more research results prove that RF is one of the most accurate 
techniques and is currently regarded as the most advanced prediction method. A random 
regression forest is an ensemble of regression methods which consisting of multiple 
decision trees. A single decision tree could cause over fitting, while this problem can be 
largely avoided by multiple randomly trained decision trees. RF can give estimates of what 
variables are important in the classification. It also can effectively estimate missing data 
and maintain accuracy. 

4.3.2 Training random regression forests 
Our prediction model based of random regression forests is trained by samples with 72 feature 
vectors. The full training samples have 10000 training instructions. Our random regression 
forest is constructed based on these training instructions. In classification, random forest uses 
voting mechanism to determine the classification result. In regression, the regression value of 
forest is obtained by computing the average value of the individual tree predictions. Let 

 = {  |  = 1, 2, . . . , N}iF f  R i∈  denote the feature vectors, and let } , . . . , ,{ C N21 ccc=  denote the 
labeled regression values of the training samples (i.e., SDC proneness). We build the trees 
compliance with the random forest framework [27]. For each tree in the random forest, we use 
the bootstrap resampling from the training samples to select the training subset. For each node 
split for building the tree, we select the random selection as the node split strategy.  

Different features are not equally important. In other words, the importance of the different 
features to the SDC proneness of instructions is different. The more important the feature is, the 
more influence on the prediction results it has. Therefore, important features should have high 
probability to be selected. To do this, we employ weight value to represent the importance of 
the features. That means features with larger weights have high probability to be selected. We 
calculate the feature weight using the formula presented in [28]. The formula for calculation the 
feature weight as follows: 

2
22

1 1

( )m ij ij
i j

ij

o e
e

χ
= =

−
=∑ ∑                                                                                                        (2) 

where m  is the number of  feature A , ijo is the count of joint event ( iA , jC ), defined as: 

( )ij i jo count A a C c= = =                                                                                                      (3) 

ije  is the expected value of joint event ( iA , jC ), defined as: 
( ) ( )i j

ij

count A a count C c
e

N
= × =

=                                                                                                         (4) 

where N is the number of training samples, count(A = ia ) is the number of samples whose 
value of feature A is ia , and count(C = jc ) is the number of samples whose value of the class 

feature is jc . An 2χ statistic weight is calculated for each feature. From the weights, we select 
only different subsets of features with high weights to build individual decision trees. 

In order to improve the prediction accuracy, we screen all trees by evaluating their quality. 
Those trees whose accuracy is lower will be excluded. Only the trees whose accuracy is high 
enough will be reserved. As previously described, we use the bootstrap resampling from the 
training samples to select the training subset. Samples selected for building a tree are called 
in-of-bag (IOB) data, while the rest is called out-of-bag (OOB) data. When a tree is built, we 
exploit the OOB data to evaluate its prediction accuracy through calculating the mean square 
error (MSE). The mean square error for a given regressor ( )kh x  is defined as: 
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−

=
−

=
−

∑
                                                                                                      (5) 

where ix  is a sample in the OOB data and iC  is the class label of the sample ix . It can be 
seen from the formula: the smaller MSE of a tree, the higher accuracy is. Hence, we only retain 
trees whose MSE are below the predetermined threshold. Thus, the prediction accuracy of our 
random regression forests is increased.  

4.3.3 SDC proneness prediction 
Once the random forest is built from training data-set, we can use it to estimate the SDC 
proneness of each instruction of the testing programs. The higher SDC proneness indicates 
higher SDC probability and greater importance. Therefore, the instructions with high SDC 
proneness should be given high priority. According to the importance of the instruction, the 
instructions selective duplication algorithm designs the detector to protect the most 
SDC-prone instructions for the user-specified overhead bound.  

4.3.4 Choose the instructions to protect and design detector 
Based on the instruction’s SDC proneness, we then select instructions to maximize the SDC 
coverage for the user-specified overhead bound through a standard dynamic programming 
algorithm [29]. To protect these protected instructions, we need to insert duplicated 
instructions and check instructions, which we called detectors. These instructions are inserted 
immediately after the protected instructions. Our detectors use new registers and memory 
spaces and do not interfere with the original program semantics. By comparing the original 
value computed by the protected instruction with the value computed by the duplicated 
instructions, detectors can detect the errors occurred in protected instructions. If they match, it 
means that no errors occurred; otherwise, it means that an error has been detected and the 
control flow of program will be transferred to error handling routine. 

5. Experimental evaluation 
In this section experiments are designed to evaluate the effectiveness of the proposed approach, 
we choose five programs, namely Gzip, Ferret, Queens, CG and LBM, which are chosen form 
SPEC benchmarks [21], NAS parallel benchmarks [22], Stanford benchmarks [23], Parboil 
benchmarks [24] and PARSEC benchmarks [25] mentioned in section 4.2.  

We compile these benchmarks using LLVM compiler and provide and run them in a single 
threaded mode. It should note that the proposed approach is not only applicable to single 
threaded mode. We conduct the evaluation experiment on an Intel i7 machine, with 8 GB of 
RAM and 400 GB Hard drive running Debian Linux Version 6.0.  

SDC proneness accuracy, SDC coverage and time efficiency are important metrics for 
evaluating our approach.  Therefore, we carry out a detailed test and analysis to these metrics.  

5.1 SDC proneness accuracy 
Prediction the SDC proneness of instructions is the key of machine learning based selective 
protection technique. The prediction accuracy determines the error detection rate. To acquire 
an accurate prediction effect, parameters of prediction model need to be tuned. For random 
regression forests model, three parameters play determinative roles in improving the prediction 
accuracy: (1) maximum number of features in individual tree, and (2) number of trees, and (3) 
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minimum sample leaf size of an individual tree. Setting a reasonable value for the first 
parameter can maintain the diversity of the trees and increase the generalization ability of 
prediction model. We set it to the recommended value n  , where n is the total number of 
features. The second parameter is a decisive parameter for the prediction accuracy. In order to 
find the optimal value, we gradually increased it from 50 with a step-size 2 until the prediction 
accuracy becomes stable or decreasing. Finally, we set the optimal value to 215. Setting a 
reasonable value for the third parameter can avoid over-fitting problem. According to our 
experimental scene, we set the value to 100. 

 We evaluate the predicting accuracy of our prediction model by calculating the average 
squared errors of testing data-set and the accuracy (the percentage of the samples whose SDC 
proneness estimation error is less than 10%) of SDC proneness estimation. 

 
Table 4. The MSE and accuracy of the testing programs. 

Program MSE Accuracy 
Gzip 0.00548 88.77% 
Ferret 0.00249 94.55% 
Queens 0.00179 95.29% 
CG 0.00362 91.65% 
LBM 0.00428 90.13% 

 
The MSE and accuracy are shown in Table 4. From the Table 4 it can be seen that our 

model achieve high prediction accuracy of SDCs proneness. The high accuracy benefits from 
the following aspects. Firstly, we give different selection probability to features with different 
weight. This enhances the generalizing ability of each tree of random forests. Besides, we 
create training data set with the help of faults injection experiments which acquires 
high-quality training samples. In addition, the process of optimizing parameters improves the 
prediction accuracy. More importantly, the extended features such as data propagation 
distance and the type of SDC-masked instructions included in the successor instructions make a 
great contribution to the prediction accuracy. Therefore, the proposed approach can guide 
error detection mechanism to make the best detector placement.  

5.2 SDC coverage 
In this paper we define the SDC coverage as the rate of errors detected by our error detection 
technology. We apply our approach to predict the SDC proneness for each instructions of a 
program. Under the user-specified overhead bound, we select these instructions with the 
highest SDC proneness, and expand the set of protected instructions under the performance 
overhead constrains. We inject faults into these protected instructions with the aid of statistical 
fault injection like Relyzer [11], and then collect the number of errors detected by our error 
detection technology. Finally, we calculate the SDC coverage according the results calculated. 
We also compare our results with the work [15] and SDCAuto presented in work [16]. We use 
our approach to maximize SDC coverage under the user-specified performance overhead.  

By computing the SDC coverage of each program under the same performance overhead 
bound, we compare our method with work [15] and SDCAuto. We select three performance 
overhead bounds: 10%, 20% and 30%. Fig. 4 shows the statistical results obtained by our 
approach (SCDPredictor), work [15] and SDCAuto for each benchmark. As it can be seen in 
Fig. 4, the averages SDC coverage for SCDPredictor, Work [15] and SDCAuto are 34.68%, 
25.84% and 32.3% respectively for the 10% performance overhead bound, the corresponding 
averages SDC coverage are 51.4%, 40.4% and 47.8% for the 20% performance overhead 
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bound, and 69.0%, 56.04% and 62.16% for the 30% performance overhead bound. It can be 
seen that the SCDPredictor acquires highest SDC coverage at the same performance overhead 
bound. That came out of work [15] uses genetic algorithm (GA) to identify the most 
vulnerable blocks of a program. However, not all the instructions of vulnerable blocks make 
contributions to the outputs of program and need to be protected. Protecting these instructions 
will incur high performance overhead. The models of SCDPredictor and SDCAuto are built 
using machine learning approaches. 

 

 

 
Fig. 4. The comparison of SDC coverage under different performance overhead bounds: 10%, 20% 

and 30% 

 

  These models can predict the SDC proneness of each instruction. Instructions with highly 
SDC proneness are duplicated and protected. Thus, SCDPredictor and SDCAuto obtain higher 
SDC coverage than work [15]. Since SDCAuto is built using CART, which is easy to cause the 
over fitting, it is lack of prediction robustness and stability. Unlike SDCAuto, SCDPredictor is 
built using random regression forests, which hardly cause over-fitting and are insensitive to 
noisy data due to it constructs a number of weak learners. More importantly, SCDPredictor can 
obtain higher accuracy in predicting the SDCs proneness than SDCAuto. Therefore, 
SCDPredictor acquires highest SDC coverage.  

5.3 Time efficiency  
In this subsection, the time efficiency of the proposed method is evaluated. The time efficiency 
is defined as the time consumed for identifying the program instructions which need to be 
protected. We record the consuming time for identifying instructions of each benchmark under 
a user-specified overhead bound. The results in Fig. 5 show that the average consuming times 
for SCDPredictor, Work [15] and SDCAuto are 0.67h, 1.60h and 0.6h respectively for the 
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10% performance overhead bound, the corresponding average consuming times are 0.86h, 
2.63h and 0.79h for the 20% performance overhead bound, and 1.14h, 3.32h and 1.09h for the 
30% performance overhead bound.  

We observe that the SCDPredictor model performs worse than the SDCAuto model, but still 
manages to outperform Work [15] in terms of time efficiency. For SCDPredictor and 
SDCAuto, most of the times are spent on the feature extraction, SDC proneness prediction and 
selection algorithm. Feature extraction needs to traverse all instructions of application. Some 
features also need to execute application multiple times. Thus, the complexity of feature 
extraction can be approximated as ( )O mn , where m  is the total number of features and n is 
the total number of instructions. The prediction model of SDCAuto is built using CART, which 
has a complexity of ( )O n , where n is the depth of tree. While, the prediction model of 
SCDPredictor is built using random forests. The complexity of random forests is ( )O kn , where 
k is the total number of trees and n is the depth of tree. The complexity of selection algorithm 
can be approximated as ( )O n .Therefore, the consuming time gap between SCDPredictor and 
SDCAuto is mainly due to the process of SDC proneness prediction.   

Work [15] exploits the genetic algorithm (GA) to identify the most vulnerable blocks of a 
program. In Work [15], the BB subsequence in code execution path which is selected in the 
control flow graph is treated as a chromosome.  

 

    

 
 

Fig. 5. The comparison of time efficiency under different performance overhead bounds: 10%, 20% and 
30% 
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In order to evaluate the fitness of a chromosome, BBs of the chromosome are executed several 
times. Thus, the complexity of Work [15] can be approximated as ( ln )O n n , where n is the 
total number of BBs. Therefore, the Work [15] is the most time-consuming.  

6. Conclusions and Future Research 
In order to overcome the shortcomings of instruction selective recalculation, such as huge time 
cost and low error coverage, a prediction model named SDCPredictor based on random forests 
is proposed.  SDCPredictor does not need to perform fault injections to predict the SDC 
proneness of each instruction. In order to strengthen the generalization error of SDCPredictor, 
we choose features according to their weights when building the individual tree of random 
forests. To acquire high-quality training samples, we create training data set with the help of 
faults injection experiments. Besides, for better prediction accuracy, we screen all trees by 
evaluating their quality. Those trees whose accuracy is lower will be discarded. Only those 
trees whose accuracy is high enough will be kept. Thus, SDCPredictor obtains higher 
prediction accuracy of SDC proneness for each instruction.  

We assess the effectiveness of SDCPredictor from three metrics: SDC proneness accuracy, 
SDC coverage and time efficiency. The experimental results demonstrate that SDCPredictor is 
highly accurate in predicting the SDCs proneness. It can achieve higher fault coverage than 
previous similar techniques in a moderate time cost. 

 Invariant based detection techniques incur lower overhead than duplication-based detection 
techniques. Existing invariant based detection techniques have drawbacks in terms of false 
alarm and low error coverage, which have affected their application. Therefore, developing 
efficient invariant based detection techniques are the further research directions for our research 
group. 
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