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Abstract

Silent Data Corruptions (SDCs) is a serious reliability issue in many domains of computer
system. The identification and protection of the program instructions that cause SDCs is one of
the research hotspots in computer reliability field at present. A lot of solutions have already
been proposed to solve this problem. However, many of them are hard to be applied widely
due to time-consuming and expensive costs. This paper proposes an intelligent approach
named SDCPredictor to identify the instructions that cause SDCs. SDCPredictor identifies
SDC-causing Instructions depending on analyzing the static and dynamic features of
instructions rather than fault injections. The experimental results demonstrate that
SDCPredictor is highly accurate in predicting the SDCs proneness. It can achieve higher fault
coverage than previous similar techniques in a moderate time cost.

Keywords: Fault tolerance, Error detection, Reliability, SDC-Causing instructions, Random
forests.
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1. Introduction

With the processor design trends towards smaller transistor size, lower core voltage and

higher frequency, the threat of soft errors becomes more and more serious. [1]. Soft errors
could lead to silent data corruption (SDC) which are difficult to be detected. When SDCs
occur, the program executes normally, but the outputs of program are incorrect. Thus, with the
sustained effect of Moore’s Law, more and more transistors will be integrated into the chips,
so that soft errors of hardware will occur more and more frequently [2]. Therefore, necessary
protection measures should be adopted to prevent SDC errors.

Hardware-based solutions such as triple modular redundant and dual modular redundancy
increase the equipment cost greatly. Software-based solutions can also handle soft errors of
hardware without any additional cost on hardware. Due to the advantages of cost savings,
hardware-independent design, flexibility and implementation simplicity, software-based
detection methods are being paid more and more attention in soft error mitigation research [3].
To date some of these methods have already been applied to many fields including
astronautics and high performance computing [4].

Compared with the hardware-based techniques, software-based techniques can save more
hardware resources; nevertheless, they occurs significant performance overhead. Reducing
performance overhead has become to be the top issue of such techniques. To reduce
performance overheads, recent works tend to protect these SDC-prone instructions selectively
[5-7].

It was recently reported that a small part of programs’ instructions are responsible for most
of SDCs, and protect these instructions selectively can achieve high coverage against SDCs [8,
9]. These instructions are called SDC-prone instructions. Therefore, how to identify the
SDC-prone instructions becomes a key problem.

Recently, a lot of works [10-16] try to improve the static injection framework. CriticalFault
[10] applies vulnerability analysis to avoid the derated fault injections. Relyzer [11] employs
pruning techniques to decrease the quantity of fault injections by predicting the outcomes of
faults. Although the quantity of fault injections is reduced, the statistical fault injection (SFI)
experiments are still time-consuming. Smartlnjector [12] proposes an intelligent fault injection
framework to identify the SDC-prone instructions. It firstly decreases the quantity of fault
injections by predicting the outcomes of faults, and then reduces the time for a single fault
simulation by predicting the fault outcome prediction technique. Shoestring [13] leverages
compiler to analyze and identify the statistically vulnerable instructions. The time cost of
Shoestring is low because it does not rely on any SFI injections. However, the compiler
analysis technology is static and lack of dynamic analysis of program instructions, resulting in
lower error coverage. SymPLIFIED [14] identifies SDC-prone instructions using symbolic
execution, which enumerates all potential hardware errors.

The work [16] presents a selective protection technique that allows users to selectively
protect these SDC-prone data. The main idea of work [16] is predicting the SDC proneness of
a program’s data firstly, then selectively protects the most SDC-prone instructions of the
program for the user-specified overhead bound. Since the prediction model is built based on
the Classification and Regression Tree (CART) algorithm, the process of prediction do not
need to perform fault injections. Therefore, it is more time-saving than fault injection based
method. However, CART algorithm is easy to cause the over fitting which leads to a poor
stability and low accuracy.
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In this paper, by employing random regression forest algorithm, an ensemble regression
prediction scheme, we propose a novel prediction model, SDCPredictor, to predict the SDC
proneness of program instructions. SDCPredictor identifies SDC-causing Instructions
depending on analyzing the static and dynamic features of instructions rather than fault
injections, thus it can save a lot of time and manpower. Our experimental results demonstrate
that SDCPredictor is more accurate in predicting the SDCs proneness than previous
similar techniques in a moderate time cost. To summarize, our contributions are as follows:

® \We propose an intelligent approach named SDCPredictor to identify the instructions

that cause SDCs. SDCPredictor identifies SDC-causing Instructions depending on
analyzing the static and dynamic features of instructions rather than fault injections.

® Our method assumes that different features are not equally important. To strengthen the
generalization error of SDCPredictor, we employ weight value to represent the
importance of the features. That means features with larger weights have high
probability to be selected. In order to improve the prediction accuracy, we screen all
trees by evaluating their quality. Those trees whose accuracy is lower will be excluded.
Only the trees whose accuracy is high enough will be reserved.

® \We evaluate the efficiency of proposed approach. The experimental results
demonstrate that the proposed approach can acquire higher fault coverage at the same
performance overhead bound than previous similar approaches.

The remainder of this paper is organized as follows. We review in brief the works related to
identifying SDC-prone instructions in Section 2, while fault model of the proposed approach is
presented in Section 3. In Section 4 we introduce the proposed approach. The results of the
experiments are reported and analyzed in section 5, and finally section 6 summarizes the paper
and points out the field of research in future.

2. Related Work

Considerable research efforts have been done to identify the SDC-causing instructions. A
typical technique is modeling the SDC rate of SDC-causing instructions by performing fault
injections.

CriticalFault [10] make use of vulnerability analysis to avoid derated injections. Relyzer [11]
employs pruning techniques to decrease the quantity of fault injections by predicting the
outcomes of faults. Hardware faults with similar behavior are deemed to be equivalent faults
and fall into one group. Only one representative fault is selected to implement fault injection
for each group. Smartinjector [12] proposes an intelligent fault injection framework to identify
the SDC-prone instructions. It firstly decreases the quantity of fault injections by predicting
the outcomes of faults, and then reduces the time consumption for an individual fault
simulation by predicting the fault outcome prediction technique.

Instructions vulnerability analysis is another important solution to identify SDC-causing
instructions. Shoestring [13] uses a static compiler analysis technology to identify
SDC-causing instructions, and protect them by inserting redundant instructions. Shoestring
only considers the instructions which are possible to cause user-visible errors. These
instructions which are possible to lead to SDC errors are left unprotected. Although Shoestring
is time-saving, the SDC coverage is low. SymPLIFIED [14] identifies SDC-prone instructions
using symbolic execution, which enumerates all potential hardware errors. This might cost
more time than SFI due to the state explosion problem caused by symbolic execution.
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The work [15] employs genetic algorithm (GA) to identify the most vulnerable sections of a
program. By analyzing the dynamic dependencies between the program blocks, the proposed
method can identify the most vulnerable basic blocks of a program precisely. However, some
instructions of vulnerable blocks may make no contributions to the outputs of program.
Protecting these instructions will incur high and unnecessary performance overhead. The work
process of work [15] is shown in Fig. 1. The step 1 converts a program to a smaller and
executable one. In step 2, the most vulnerable blocks of the input program are selected by GA.
Step 3 strengthens the identified vulnerable blocks.
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Fig. 1. Block diagram of the work [15]
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The work [16] introduces a prediction model named SDCAuto to predict the SDC
proneness of a program’s instructions. SDCAuto is built using CART algorithm, requiring
little to no human intervention. Therefore, it is no need to perform fault injections in the
process of instructions selective protection against SDC-causing errors. Fig. 2 illustrates the
diagram of the work [16]. The work [16] first compiles the source code into LLVM IR, and
extracts instruction features based on LLVM IR file. Then, it obtains the SDC proneness for
each instruction with the help of SDCAuto model.
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Finally, detectors are inserted into the source code for protecting the most SDC-prone
instructions for the user-specified overhead bound.

3. Fault Model

SEU-induced soft errors fall into two categories: user-visible errors and user-invisible errors.
User-visible errors usually cause architecture-level symptoms such as program crash or hang,
which can be detected by symptom-based detection techniques. When the user-invisible errors
occurs, the program executes normally and do not cause any abnormal symptoms. Nevertheless,
the outputs of program are incorrect, i.e. SDC errors. These errors cannot be handled by
symptom-based detection techniques. Therefore, we focus on SDC errors in this paper.

Faults in memory and caches are not considered, since these devices are usually protected
with ECC. We focus on the faults that occur in processors’ functional units and registers,
which are not protected by fault-tolerant techniques due to performance reasons. Faults occur
in processors’ functional units and registers can lead to control flow errors and data flow errors.
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We focus only data flow errors and assume that control flow errors are detected by
control-flow checking techniques. Faults in the instruction opcode are also not considered,
since it always causes illegal opcode exception rather than SDC.

Finally, as in work [16], we assume that at most one fault occurs during a program’s
execution.

4. Proposed method

SDCPredictor aims to build a intelligent prediction model which can predict the SDC
proneness of program instructions accurately without faults injection. For this purpose, we
extract some dynamic and static features of instructions and create training data set with the
help of faults injection experiments. Based on the training data set, our prediction model is
built using random regression forests.

To understand this paper better, some useful definitions which are used in this paper are
presented.

SDC coverage: The SDC coverage is defined as the rate of SDC causing errors detected by
error detection technology.

SDC proneness per instruction: This is the probability that a fault in instruction rleads to
an SDC. This is denoted as p(spcC).

Dynamic count ratio: This is the ratio of the number of dynamic instances of instruction 1
executed to the total number of dynamic instructions in the program. This is denoted as n(r) .

To understand our proposed method on a macro level, we give a brief presentation about its
work process. The flow diagram of the proposed method is shown in Fig. 3. Details of each
element are as follows. We first introduces the extracted program features of instructions that
highly correlated with SDC-prone. We then explain the implement of faults injection
experiments on selected benchmark programs to generate training data set. Finally, we
describe how to build our prediction model and design protected code.
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Fig. 3. Flow diagram of the proposed method

4.1 Feature extraction

We extract features of instructions according to our analysis and prior work [12, 13, 16, 17 and
18]. In all, 72 features are extracted. These features of instructions fall into nine categories
shown in Table 1. Detailed categories results are as follows: (1) Comparison operations related
features. Comparison operations may cause the control flow deviation, which cannot be
detected by existing control flow checking techniques because such comparison operations are
resilient. Some errors may be masked by comparison operations. (2)Memory address
calculation related features. Accessed memory address must be in legal address space. If the
accessed memory address exceeds the legal bound, this operation will lead to a segmentation
fault. If not, the operation is possible to cause SDCs. (3) Sub-word operations related features.
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Sub-word operations such as left shift operation and right shift operation often discard some
bits of registers. Bit-flipping errors occurred in the discarded bits will be derated and will not
cause SDCs. Thus, SDC proneness of the instruction operands will be reduced. (4) Logical
operations related features. Logical operations such as AND operations and OR operations are
possible to mask errors that occurred in corresponding bit of operands. For example, if a bit
value of AND instruction operand is 1, then the bit-flipping errors occurred in the
corresponding bit of other instruction operand will be masked. (5) Successor instruction related
features. When an error occurs, the error will propagate along the data dependency chain. When
a SDC-masked instruction is encountered, the error is possible to be masked; otherwise it will
propagate to the end points of data dependency chain and leads to an incorrect output.
Therefore, the SDC proneness of precursor instructions in data dependency chain is affected by
the successor instructions. (6) Type of end points of data dependency chains related features.
Different end points of data dependency chains have different effects on the outputs of program.
(7) Code structure related features. The SDC proneness of instructions is highly correlated with
the execution probability of run-time. Thus, instructions on the hot paths of the program have
higher SDC proneness due to the higher execution probability of run-time. (8) Data width
related features. Data width is the effective number of bits of instruction operands. The higher
the data width, the higher the SDCs rate of instructions will be. (9) Execution time related
features. Instructions executed with a higher frequency read and write resisters frequently.
Corrupted data of resisters are most likely to be used by these instructions. Therefore, these
instructions usually have a higher SDC proneness.

Table 1. Some features extracted for Model Building

Feature group

Feature

Description

Comparison
operations related
features

is_cmp

whether the operation is a comparison operation

is_loop_terminator

whether the comparison result can determine the
time of loop execution

is_cmp_with_zero

whether the comparison is made with zero

is_cmp_with_address

whether memory address is exist in the operands
of comparison operation

Memory access
and addressing
related features

is_read

whether the operation read data from memory

is_memory_addressing

whether the result of operation is used to address
memory

is_write whether the operation write data to memory
Sub-word is_shl whether the instruction is a left shift operation
?g ;ruar::ns related is_shr whether the instruction is a right shift operation
Logical is_and whether the instruction is a logic “and” operation
operations related | is_or whether the instruction is a logic “or”” operation
features is_xor whether the instruction is a logic “xor” operation

Successor
instruction related
features

shl_instructions_count

The number of left shift instructions contained in
successor instruction

shr_instructions_count

The number of right shift instructions contained in
successor instruction

Type of end
points of data
dependency
chains related
features

is_global

whether the operation modify the value of global
variable

is_stack_push

whether the operation push a value to stack

is_function_call

whether the operation call a function
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Code structure
related features

number_of pred BBs

number of predecessor BBs

number_of suc BBs

number of successor BBs

is_within_loop

whether the operation is within a loop

is_accumulative_computati
on

whether the operation is a
cumulative-computation operation

bb_length

the number of static instructions in the basic block

that contains the specific instruction

Data width related | data_width_Source the effective number of bits of instruction source

features _operand operand
data_width_destination_op | the effective number of bits of instruction
erand destination operand

Execution time
related features

dynamic_count_ratio dynamic count ratio of the specific instruction

4.2 Fault injection and training data generation

In order to acquire high-quality training samples, we create training data set with the help of
faults injection experiments. We use the famous fault injection tool PINFI [19] to implement
fault injection experiment. PINFI is built with Intel Pin [20] and uses the API exposed by Pin to
inject faults.

Table 2. Characteristics of the training benchmarks.

Program Description Benchmark suite
Bzin? File compression and decompression SPEC benchmarks
P program
Perlbench SPEC benchmark for perl interpreter SPEC benchmarks
Blackscholes | Financial analysis program PARSEC benchmarks
Swaptions Price portfolio of swaptions PARSEC benchmarks
TSP Solving the TSP problem by genetic algorithms Stanford benchmarks
Qsort quick-sort algorithm Stanford benchmarks
IS Integer sorting, random memory access NAS benchmarks
EP Embarrassingly Parallel NAS benchmarks
BFS Breadth-First search Parboil benchmarks
MM Dense Matrix-Matrix Multiply Parboil benchmarks
Table 3. Characteristics of the testing benchmarks.
Program Description Benchmark suite
Gzip File compression program SPEC benchmarks
Ferret Similarity search program PARSEC benchmarks
Queens Solving the classic n-queens problem Stanford benchmarks
CG Conjugate Gradient, irregular memory NAS benchmarks
access and communication
LBM Fluid dynamics computing program Parboil benchmarks
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We select 15 benchmarks which are drawn from SPEC benchmarks [21], NAS parallel
benchmarks [22], Stanford benchmarks [23], Parboil benchmarks [24] and PARSEC
benchmarks [25]. These benchmarks are divided into two groups randomly: training group and
testing group. Table 2 and Table 3 provide a brief description of these benchmarks. We
compile these benchmarks using LLVM compiler and provide the executable file to PINFI
after linking.

Foregone studies showed that data dependencies among the instructions are important
influence factors to SDC proneness and a large part of program instructions have no influence
to the outputs of program. To simplify these programs, static-slicing technique [26] are
utilized to convert a program to a smaller and executable one. Converted program eliminates
those instructions that have no influence to the outputs of program and can be executed
normally.

First, we select some instructions as fault injection targets by running PINFI on each
converted program.

Second, we inject faults into these selected instructions with the aid of statistical fault
injection like Relyzer [11]. To simulate the data corruption faults, we flip one certain bit of
instruction’s source operand register and each bit flips one time. In each run, a fault, i.e., a
single bit flip, is injected into the operands register of the dynamic instruction instance. The
outcome of the fault is compared with the fault-free outcome. The fault-free outcome is
obtained by executing the original executable program with the same input. The outcome are
divided into four categories by program execution results: (1) Crash, the program terminate
unexpectedly and threw an exception, (2) SDC, when SDCs occur, the program executes
normally, but the outputs of program are incorrect, (3) Hang, which means the execution time
of program is much longer than a fault-free execution, and (4) Benign, which means the faults
are derated or masked inherently by the program and the outputs of program are correct.

Third, the SDC proneness p(sDC) of each instruction is obtained through the equation (1)

P(SDC):%X D(I) )

where Nsoc IS the SDC count caused by instruction 1, Nw« is the total number of initial faults
attributed to the instruction 1, p(1yis the dynamic count ratio of the instruction I .

Finally, a sample {F,c} is generated, where F is the extracted features vector, and c is the
annotated class label (i.e., SDC proneness).

4.3 Regression model training

4.3.1 Selecting the classification algorithm

In order to better meet the requirements of our data and problem space, the machine learning

algorithm must be selected carefully. We choose the Random Forest (RF) algorithm for the

following three reasons:

® Some features we extracted are boolean data types, e.g., is_ stack push, is_load and
is_cmp, while some other features are numerical, e.g., bb_length and data_width. Other
regression algorithms might not support such a hybrid data types. RF is competent to such
a hybrid data types.

®  Other regression models, such as deep neural network and support vector machine (SVM),
need to normalize the input data. Besides, In order to achieve accurate prediction results
many parameters need to be adjusted. While, RF requires little data preparation and
parameters adjustment.
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® In recent years, more and more research results prove that RF is one of the most accurate
techniques and is currently regarded as the most advanced prediction method. A random
regression forest is an ensemble of regression methods which consisting of multiple
decision trees. A single decision tree could cause over fitting, while this problem can be
largely avoided by multiple randomly trained decision trees. RF can give estimates of what
variables are important in the classification. It also can effectively estimate missing data
and maintain accuracy.

4.3.2 Training random regression forests

Our prediction model based of random regression forests is trained by samples with 72 feature
vectors. The full training samples have 10000 training instructions. Our random regression
forest is constructed based on these training instructions. In classification, random forest uses
voting mechanism to determine the classification result. In regression, the regression value of
forest is obtained by computing the average value of the individual tree predictions. Let
F={fie Rli=1,2,..., N} denote the feature vectors, and let C={cs,c,...,cn} denote the

labeled regression values of the training samples (i.e., SDC proneness). We build the trees
compliance with the random forest framework [27]. For each tree in the random forest, we use
the bootstrap resampling from the training samples to select the training subset. For each node
split for building the tree, we select the random selection as the node split strategy.

Different features are not equally important. In other words, the importance of the different
features to the SDC proneness of instructions is different. The more important the feature is, the
more influence on the prediction results it has. Therefore, important features should have high
probability to be selected. To do this, we employ weight value to represent the importance of
the features. That means features with larger weights have high probability to be selected. We
calculate the feature weight using the formula presented in [28]. The formula for calculation the
feature weight as follows:

YR IELL @

where m is the number of feature A, o, is the count of joint event (A, C,), defined as:
0, =count(A=a NC=c,) 3)

e, is the expected value of joint event (A ,C,), defined as:

count(A=a.)xcount(C =c.
6, = Soun( .)N (C=c) @

where N is the number of training samples, count(4 =a,) is the number of samples whose
value of feature A is a, and count(C' =c;) is the number of samples whose value of the class

feature is c;. An 7z statistic weight is calculated for each feature. From the weights, we select

only different subsets of features with high weights to build individual decision trees.

In order to improve the prediction accuracy, we screen all trees by evaluating their quality.
Those trees whose accuracy is lower will be excluded. Only the trees whose accuracy is high
enough will be reserved. As previously described, we use the bootstrap resampling from the
training samples to select the training subset. Samples selected for building a tree are called
in-of-bag (IOB) data, while the rest is called out-of-bag (OOB) data. When a tree is built, we
exploit the OOB data to evaluate its prediction accuracy through calculating the mean square
error (MSE). The mean square error for a given regressor h, (x) is defined as:
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N-N
Zi:l (hk(Xi)_ci)2
®)
N — N,
where x; is a sample in the OOB data and C, is the class label of the sample x;. It can be

seen from the formula: the smaller MSE of a tree, the higher accuracy is. Hence, we only retain
trees whose MSE are below the predetermined threshold. Thus, the prediction accuracy of our
random regression forests is increased.

MSE =

4.3.3 SDC proneness prediction

Once the random forest is built from training data-set, we can use it to estimate the SDC
proneness of each instruction of the testing programs. The higher SDC proneness indicates
higher SDC probability and greater importance. Therefore, the instructions with high SDC
proneness should be given high priority. According to the importance of the instruction, the
instructions selective duplication algorithm designs the detector to protect the most
SDC-prone instructions for the user-specified overhead bound.

4.3.4 Choose the instructions to protect and design detector

Based on the instruction’s SDC proneness, we then select instructions to maximize the SDC
coverage for the user-specified overhead bound through a standard dynamic programming
algorithm [29]. To protect these protected instructions, we need to insert duplicated
instructions and check instructions, which we called detectors. These instructions are inserted
immediately after the protected instructions. Our detectors use new registers and memory
spaces and do not interfere with the original program semantics. By comparing the original
value computed by the protected instruction with the value computed by the duplicated
instructions, detectors can detect the errors occurred in protected instructions. If they match, it
means that no errors occurred; otherwise, it means that an error has been detected and the
control flow of program will be transferred to error handling routine.

5. Experimental evaluation

In this section experiments are designed to evaluate the effectiveness of the proposed approach,
we choose five programs, namely Gzip, Ferret, Queens, CG and LBM, which are chosen form
SPEC benchmarks [21], NAS parallel benchmarks [22], Stanford benchmarks [23], Parboil
benchmarks [24] and PARSEC benchmarks [25] mentioned in section 4.2.

We compile these benchmarks using LLVVM compiler and provide and run them in a single
threaded mode. It should note that the proposed approach is not only applicable to single
threaded mode. We conduct the evaluation experiment on an Intel i7 machine, with 8 GB of
RAM and 400 GB Hard drive running Debian Linux Version 6.0.

SDC proneness accuracy, SDC coverage and time efficiency are important metrics for
evaluating our approach. Therefore, we carry out a detailed test and analysis to these metrics.

5.1 SDC proneness accuracy

Prediction the SDC proneness of instructions is the key of machine learning based selective
protection technique. The prediction accuracy determines the error detection rate. To acquire
an accurate prediction effect, parameters of prediction model need to be tuned. For random
regression forests model, three parameters play determinative roles in improving the prediction
accuracy: (1) maximum number of features in individual tree, and (2) number of trees, and (3)
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minimum sample leaf size of an individual tree. Setting a reasonable value for the first
parameter can maintain the diversity of the trees and increase the generalization ability of

prediction model. We set it to the recommended value\/ﬁ , where n is the total number of
features. The second parameter is a decisive parameter for the prediction accuracy. In order to
find the optimal value, we gradually increased it from 50 with a step-size 2 until the prediction
accuracy becomes stable or decreasing. Finally, we set the optimal value to 215. Setting a
reasonable value for the third parameter can avoid over-fitting problem. According to our
experimental scene, we set the value to 100.

We evaluate the predicting accuracy of our prediction model by calculating the average
squared errors of testing data-set and the accuracy (the percentage of the samples whose SDC
proneness estimation error is less than 10%) of SDC proneness estimation.

Table 4. The MSE and accuracy of the testing programs.

Program MSE Accuracy
Gzip 0.00548 88.77%
Ferret 0.00249 94.55%
Queens 0.00179 95.29%
CG 0.00362 91.65%
LBM 0.00428 90.13%

The MSE and accuracy are shown in Table 4. From the Table 4 it can be seen that our
model achieve high prediction accuracy of SDCs proneness. The high accuracy benefits from
the following aspects. Firstly, we give different selection probability to features with different
weight. This enhances the generalizing ability of each tree of random forests. Besides, we
create training data set with the help of faults injection experiments which acquires
high-quality training samples. In addition, the process of optimizing parameters improves the
prediction accuracy. More importantly, the extended features such as data propagation
distance and the type of SDC-masked instructions included in the successor instructions make a
great contribution to the prediction accuracy. Therefore, the proposed approach can guide
error detection mechanism to make the best detector placement.

5.2 SDC coverage

In this paper we define the SDC coverage as the rate of errors detected by our error detection
technology. We apply our approach to predict the SDC proneness for each instructions of a
program. Under the user-specified overhead bound, we select these instructions with the
highest SDC proneness, and expand the set of protected instructions under the performance
overhead constrains. We inject faults into these protected instructions with the aid of statistical
fault injection like Relyzer [11], and then collect the number of errors detected by our error
detection technology. Finally, we calculate the SDC coverage according the results calculated.
We also compare our results with the work [15] and SDCAuUto presented in work [16]. We use
our approach to maximize SDC coverage under the user-specified performance overhead.

By computing the SDC coverage of each program under the same performance overhead
bound, we compare our method with work [15] and SDCAuto. We select three performance
overhead bounds: 10%, 20% and 30%. Fig. 4 shows the statistical results obtained by our
approach (SCDPredictor), work [15] and SDCAuto for each benchmark. As it can be seen in
Fig. 4, the averages SDC coverage for SCDPredictor, Work [15] and SDCAuto are 34.68%,
25.84% and 32.3% respectively for the 10% performance overhead bound, the corresponding
averages SDC coverage are 51.4%, 40.4% and 47.8% for the 20% performance overhead
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bound, and 69.0%, 56.04% and 62.16% for the 30% performance overhead bound. It can be
seen that the SCDPredictor acquires highest SDC coverage at the same performance overhead
bound. That came out of work [15] uses genetic algorithm (GA) to identify the most
vulnerable blocks of a program. However, not all the instructions of vulnerable blocks make
contributions to the outputs of program and need to be protected. Protecting these instructions
will incur high performance overhead. The models of SCDPredictor and SDCAuto are built
using machine learning approaches.

[ sDCPredictor ] Work[15) [ SDCAuto 70% I SOCPredictor [ work{15) I SDCAuto
0
50%- 60%
&, 40% & 50%
z g
ﬂg 30% g 40%
o] 20% U 30%-
. 2 20%
7 10% ? 10%
0%+ 0%
Gzip Ferret  Queens G LBM Gzip Ferret  Queens G LBM

(a) SDC coverage under the 10% performance overhead bound (b) SDC coverage under the 20% performance overhead bound

[ SDCPredictor [ work[15] I SDCAuto
80%-
70%-+

&) 60%

£ 50%

é 40%

U 30%

2 20%]
10%-

0%-

Gzip Ferret  Queens CG LBM
(c) SDC coverage under the 30% performance overhead bound
Fig. 4. The comparison of SDC coverage under different performance overhead bounds: 10%, 20%
and 30%

These models can predict the SDC proneness of each instruction. Instructions with highly
SDC proneness are duplicated and protected. Thus, SCDPredictor and SDCAuto obtain higher
SDC coverage than work [15]. Since SDCAuto is built using CART, which is easy to cause the
over fitting, it is lack of prediction robustness and stability. Unlike SDCAuto, SCDPredictor is
built using random regression forests, which hardly cause over-fitting and are insensitive to
noisy data due to it constructs a number of weak learners. More importantly, SCDPredictor can
obtain higher accuracy in predicting the SDCs proneness than SDCAuto. Therefore,
SCDPredictor acquires highest SDC coverage.

5.3 Time efficiency

In this subsection, the time efficiency of the proposed method is evaluated. The time efficiency
is defined as the time consumed for identifying the program instructions which need to be
protected. We record the consuming time for identifying instructions of each benchmark under
a user-specified overhead bound. The results in Fig. 5 show that the average consuming times
for SCDPredictor, Work [15] and SDCAuto are 0.67h, 1.60h and 0.6h respectively for the
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10% performance overhead bound, the corresponding average consuming times are 0.86h,
2.63h and 0.79h for the 20% performance overhead bound, and 1.14h, 3.32h and 1.09h for the
30% performance overhead bound.

We observe that the SCDPredictor model performs worse than the SDCAuto model, but still
manages to outperform Work [15] in terms of time efficiency. For SCDPredictor and
SDCAuto, most of the times are spent on the feature extraction, SDC proneness prediction and
selection algorithm. Feature extraction needs to traverse all instructions of application. Some
features also need to execute application multiple times. Thus, the complexity of feature
extraction can be approximated asO(mn) , where m is the total number of features and n is

the total number of instructions. The prediction model of SDCAuto is built using CART, which
has a complexity of O(n), where nis the depth of tree. While, the prediction model of
SCDPredictor is built using random forests. The complexity of random forests is O(kn) , where
k is the total number of trees and n is the depth of tree. The complexity of selection algorithm
can be approximated as O(n).Therefore, the consuming time gap between SCDPredictor and
SDCAuto is mainly due to the process of SDC proneness prediction.

Work [15] exploits the genetic algorithm (GA) to identify the most vulnerable blocks of a

program. In Work [15], the BB subsequence in code execution path which is selected in the
control flow graph is treated as a chromosome.

6] I SDCPredictor [ Work[15] I SDCAuto [ SDCPrecictor = Work(15] r——
i\ 5
3.51
3.0 44
~2.54 —_
=3 £ 3
EZ‘O — ps
=151 E 2]
1.0 o8
1
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3 0-
Gzip Ferret Queens CG LBM Gzip Ferret  Queens CG LBM
(a) Time consumed under the 10% performance overhead bound | (b) Time consumed under the 20% performance overhead bound

I SDCPredictor [0 Work[15] I SDCAuto

Gzip Ferret Queens CG LBM

(c) Time consumed under the 30% performance overhead bound

Fig. 5. The comparison of time efficiency under different performance overhead bounds: 10%, 20% and
30%
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In order to evaluate the fitness of a chromosome, BBs of the chromosome are executed several
times. Thus, the complexity of Work [15] can be approximated as O(nInn), where nis the

total number of BBs. Therefore, the Work [15] is the most time-consuming.

6. Conclusions and Future Research

In order to overcome the shortcomings of instruction selective recalculation, such as huge time
cost and low error coverage, a prediction model named SDCPredictor based on random forests
is proposed. SDCPredictor does not need to perform fault injections to predict the SDC
proneness of each instruction. In order to strengthen the generalization error of SDCPredictor,
we choose features according to their weights when building the individual tree of random
forests. To acquire high-quality training samples, we create training data set with the help of
faults injection experiments. Besides, for better prediction accuracy, we screen all trees by
evaluating their quality. Those trees whose accuracy is lower will be discarded. Only those
trees whose accuracy is high enough will be kept. Thus, SDCPredictor obtains higher
prediction accuracy of SDC proneness for each instruction.

We assess the effectiveness of SDCPredictor from three metrics: SDC proneness accuracy,
SDC coverage and time efficiency. The experimental results demonstrate that SDCPredictor is
highly accurate in predicting the SDCs proneness. It can achieve higher fault coverage than
previous similar technigques in a moderate time cost.

Invariant based detection techniques incur lower overhead than duplication-based detection
techniques. Existing invariant based detection techniques have drawbacks in terms of false
alarm and low error coverage, which have affected their application. Therefore, developing
efficient invariant based detection techniques are the further research directions for our research

group.
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