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Abstract 
 

Recently, software has increased in complexity and been applied in various industrial fields. 
As a result, the presence of software bugs cannot be avoided. Various bug severity prediction 
methodologies have been proposed, but their performance needs to be further improved. In 
this study, we propose a novel technique for bug severity prediction in cross projects such as 
Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., 
KL-divergence). First, we construct topic models from bug repositories in cross projects using 
Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most 
numerous similar bug reports by using a new bug report. Next, we extract the bug reports 
belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) 
algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the 
performance of our approach and to verify the difference between cross projects and single 
project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi 
methodology, which is a well-known bug severity prediction approach; and an emotional 
similarity-based bug severity prediction approach. Our approach exhibits a better performance 
than the compared methods. 
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1. Introduction 

As the complexity of software has recently continued to increase, software faults 
inevitably occur. For example, in the Eclipse open source project approximately 300 bug 
reports are submitted per day [1]. A bug tracking system can be utilized to efficiently handle 
these numerous bug reports [2]. In general, software bug reports can be written by end users or 
developers. Subsequently, project managers read the bug reports manually and then assign 
them to developers, considering the severity of the bug reports. This severity level can provide 
a measure of whether the submitted faults need to be fixed quickly. In addition, the severity 
may be altered by an assigned developer in some cases. Therefore, owing to the different 
background knowledge of end users and developers the severity level can be subjective when 
bug reports are written [3].  

 
The motivations of this study are as follows. 

 
 In the bug severity selection phase, a subjective decision can occur because the 

background knowledge of end users and developers may be different [3]. If an automatic 
severity prediction tool is available, this can be resolved. 

 
 Owing to different background knowledge between end users and developers, there may 

be unnecessary information in the bug report for a discovered fault, and there may a lack 
of necessary information (e.g., the stack trace or detailed scenario) [4]. Therefore, the 
severity of the bug report may not be accurate. The cost of the bug fixing can be reduced 
by recommending or predicting the severity using an automatic severity prediction tool. 

 
For resolving these problems, in this study we propose an approach for predicting bug 

severity using topic modeling [5] and similarity (i.e., KL-divergence [6]) in cross projects, 
including Eclipse [7], Mozilla [8], WireShark [9], and Xamarin [10]. We first construct topic 
models from the bug repositories of the cross projects using Latent Dirichlet Allocation (LDA) 
[5]. Then, we extract the bug reports belonging to the selected topics and apply Naïve Bayes 
Multinomial [11] to these. Finally, we predict the severity of a new bug report. 

 
To verify our model and to verify the difference between cross projects and single project, 

we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi’s work [11, 12], 
which is a well-known prediction method; and an emotional similarity-based severity method 
[13]. Then, we show that our approach outperforms the methods. 

 
The original contributions of this study are as follows. 

 
 We effectively predict the bug severity of the report using topic modeling and the 

KL-divergence in cross projects including Eclipse, Mozilla, WireShark, and Xamarin. 
We show that our model is effective for the bug severity prediction task. 

 
 We compare our approach with the Naïve Bayes Multinomial approach; the Lamkanfi 

methodology, which is a well-known severity prediction approach; and an emotional 
similarity-based bug severity approach. We show that our approach outperforms the 
compared methods as well as the difference between cross projects and single project. 
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The remaining sections of this paper are organized as follows. Section 2 presents some 
background knowledge. We present our methodology in Section 3. We describe the 
experimental results in Section 4. We discuss these results in Section 5. Then, we discuss 
related work in Section 6. Finally, we conclude the paper and suggest directions for future 
work in Section 7. 

2. Background 

2.1 Software Bug Reports 
When end users or developers find a fault or functionality improvement, they may write 

some issues to submit to a bug repository. We present an example of a bug report [14] from 
Mozilla (#97777) in Fig. 1. 
 

 
Fig. 1. Example of a Bug Report (#97777 in Mozilla) 
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This bug report was first reported on Aug. 31, 2001 and modified on Mar. 1, 2007. The title 
of the bug report is “An absolutely positioned DIV with centered alignment adds extra space 
around the block elements it contains,” and it concerned the Layout component within the 
Mozilla Core product. The importance attributes shown in the figure are P1 and trivial, where 
P1 indicates the priority and trivial represents the severity of the bug report. In general (for 
Bugzilla), P1 is the highest priority, which means emergency, and P5 is the lowest priority. In 
this case, we focus on the severity importance attribute in the figure. In the Bugzilla case, the 
severity can be divided into seven levels [3] (i.e., Blocker, Critical, Major, Normal, Minor, 
Trivial, and Enhancement). Enhancement refers to an improvement of functionality issue, and 
so is excluded from this study. “Daniel BODEA” in the description refers to the reporter of the 
bug. From this description, developers can easily perform debugging if the reporter details the 
steps to reproduce the bug. However, in some cases these may not be provided or may be 
described in a freeform textual context. In addition, interested persons including reporters, 
developers, and users can freely post comments in the figure. Owing to the different 
background knowledge of end users and developers, the severity can be subjective when bug 
reports are written. In this study, we predict the severity (“trivial in Mozilla bug report # 97777) 
using the summary and description of the bug report. 

2.2 Topic Modeling  
We use LDA to build the topic models [5]. When the topic model is established, each topic 

is constructed using the word distribution and co-occurrence frequency. The LDA parameters 
can be divided into four types. Alpha describes the rate at which a document can be included in 
multiple topics. Beta is the rate at which many words can be included in classified topics. 
Gamma defines the number of times that the building of a topic model is repeated. Finally, N is 
the number of topics that will be constructed. In this paper, we extract the topics by using 
summary and description in the bug reports. The topics have word tokens related to the topic, 
and the word tokens have topic distribution scores. In details, we compare the word tokens 
between each topic and a new bug report. Then, we compute distribution score in each topic. 
Next, we find the similar topic related to a new bug report. 

3. Methodology 
We propose an approach for predicting bug severity using topic modeling [5] and similarity 

(i.e., the KL-divergence [6]) in cross projects including Eclipse [7], Mozilla [8], WireShark [9], 
and Xamarin [10], as shown in Fig. 2. 

 

 
 

Fig. 2. Overview of Our Approach 
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First, we apply a preprocessing technique [1] to the bug repository. Next, we construct a 
topic model using LDA from a bug repository for the cross projects. Then, we find similar 
topics from the cross projects, and determine the topics that have the most numerous similar 
bug reports by using a new bug report in any project. 

Next, we extract the bug reports belonging to the selected topics and input them into an 
NBM algorithm [11]. Finally, we predict severity of new bug report. 

3.1 Preprocessing 
In general, a bug report can be freely described (i.e., freeform textual contexts), and so we 

employ a preprocessing technique [1] including tokenization, stop-word removal, and word 
stemming. We present an example of this preprocessing for the Mozilla bug report #97777 
[14]. A summary of the bug report is given as “An absolutely positioned DIV with centered 
alignment adds extra space around the block elements it contains.” Upon applying the 
preprocessing technique, we obtain word tokens such as “position DIV center alignment add 
extra space around block element.”. 

3.2 Similar Topic 
In this paper, we use predefined fields (e.g., the summary and description) of a bug report 

to construct a topic model. The built-in topics are illustrated in Fig. 3. 
 
 

 
 

Fig. 3. Example of a Construction Topic 
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To find a similar topic, we first use a smoothed unigram model [6] for converting bug 

reports into probability vectors. The formula of the smoothed unigram model is given in 
Formula 1. 

 

𝑃𝑏𝑟𝑡(𝑤𝑣|𝑤𝑣𝑘��������⃗ ) = (1 − µ) 𝑤𝑣𝑘(𝑛)

∑ 𝑤𝑣𝑘(𝑛)�𝑅𝑘�
𝑛=1

+ 𝜇 ∑ 𝑤𝑣𝑙(𝑛)𝐾
𝑙=1

∑ ∑ 𝑤𝑣𝑙(𝑛)�𝑅𝑙�
𝑛=1

𝐾
𝑙=1(𝑙≠𝑘)

   (1) 

 
 𝑤𝑣 is a term and 𝑤𝑣𝑘��������⃗  is a weight vector for report k. 
 
 |𝑅𝑘| is the number of words in report k. 
 
 𝑤𝑣𝑘(n) is the occurrence frequency of the 𝑛𝑡ℎ vocabulary term in report k. 
 
 𝐾 is the total number of reports, and 𝜇 defines the different weights of the two parts in this 

formula.  
 
Then, using the KL-divergence [6], we compute the similarity between a new bug report 

and historical bug reports for the selected similar topic(s). The formula is given in Formula 2.  
 

SimilarityBRT�𝑤𝑣𝑞�������⃗ ,𝑤𝑣𝑘��������⃗ � = −KL �𝑃𝑏𝑟𝑡�𝑤𝑣�𝑤𝑣𝑞�������⃗ �,𝑃𝑏𝑟𝑡(𝑤𝑣|𝑤𝑣𝑘��������⃗ )� 

                         =  −∑ 𝑃𝑏𝑟𝑡�𝑤𝑣𝑖�𝑤𝑣𝑞�������⃗ � ∗  log 𝑃𝑏𝑟𝑡�𝑤𝑣𝑖�𝑤𝑣𝑞��������⃗ �
𝑃𝑏𝑟𝑡(𝑤𝑣𝑖|𝑤𝑣𝑘���������⃗ )

𝑖=|𝜔𝑖|
𝑖    (2) 

 
 𝑃𝑏𝑟𝑡�𝑤𝑣�𝑤𝑣𝑞�������⃗ � is the probability of term 𝑤𝑣 apperaring in query q.  

 
 𝑃𝑏𝑟𝑡(𝑤𝑣|𝑤𝑣𝑘��������⃗ ) is the probability of term 𝑤𝑣 apperaring in bug report k.  

 
As a result, we find similar topics from cross projects including Eclipse, Mozilla, 

WireShark, and Xamarin that are related to a new bug report. In detail, we suppose that similar 
topic(s) contains the most numerous similar bug reports. 

3.3 Applying Naïve Bayes Multinomial 
In this paper, to predict the severity of a bug we find similar topics from cross projects 

including Eclipse, Mozilla, WireShark, and Xamarin that are related to a new bug report and 
extract bug reports from these similar topics. Then, we input these into the Naïve Bayes 
Multinomial algorithm.  

 
Topic-Similar_BugReports =  
𝑆𝑖𝑚𝐵𝑅𝑡𝐸𝑐𝑙𝑖𝑝𝑠𝑒 ∪ 𝑆𝑖𝑚𝐵𝑅𝑡𝑀𝑜𝑧𝑖𝑙𝑙𝑎 ∪ 𝑆𝑖𝑚𝐵𝑅𝑡𝑊𝑖𝑟𝑒𝑆ℎ𝑎𝑟𝑘 ∪ 𝑆𝑖𝑚𝐵𝑅𝑡𝑋𝑎𝑚𝑎𝑟𝑖𝑛   (3) 
 

 Topic-Similar_BugReports are extracted and input into the Naïve Bayes Multinomial 
algorithm. 
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 𝑆𝑖𝑚𝐵𝑅𝑡𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑠  represents similar bug reports to a new bug in a given project using the 

KL-divergence. For example, 𝑆𝑖𝑚𝐵𝑅𝑡𝐸𝑐𝑙𝑖𝑝𝑠𝑒 is extracted from an Eclipse topic related to 
a given new bug. 

 
Finally, we can apply our model to predict the severity of a new bug. 
 

4. Experiment 

4.1 Dataset 
In this study, we collected bug reports from the Eclipse [7], Mozilla [8], WireShark [9], and 

Xamarin [10] open source projects. In detail, we extracted the bug reports that had the status 
"Fixed and Resolved," and excluded those with the severity of "Enhancement." The dataset is 
summarized in Table 1. 

 
Table 1. Summary of Our Dataset 

Projects Size Period 

Eclipse 5,000 2002-01-01 ~ 2016-02-20 
Mozilla 5,000 2002-09-27 ~ 2005-09-03 

WireShark 5,000 2005-04-06 ~ 2017-07-19 
Xamarin 5,000 2011-07-14 ~ 2014-11-19 

 

4.2 Evaluation Metrics 
To evaluate the bug severity prediction performance, we use the Precision [15], Recall [15], 

and F-measure [15], as defined in Formulas 4, 5, and 6, respectively. 
 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦) = 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑇𝑟𝑢𝑒𝑃

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑇𝑟𝑢𝑒𝑃+𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝐹𝑎𝑙𝑠𝑒𝑃
   (4) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦) =  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑇𝑟𝑢𝑒𝑃

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑇𝑟𝑢𝑒𝑃+𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝐹𝑎𝑙𝑠𝑒𝑁
   (5) 

 
𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦) = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦)∗𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦)+𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦)
   (6) 

 
 Severity is the severity of a bug report. 
 
 SeverityTrueP is the number of correct predictions of bug severities, and SeverityFalseP 

is the number of incorrect predictions. SeverityFalseN is the number of bug reports for 
which the severity status was not correctly predicted using our approach. 
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In addition, we apply 10-fold cross validation [16] to reduce the bias of the data. That is, we 

divide the bug reports into nine training sets and one test set, and this test set is not included in 
the training set. For a fair comparison, the cross validation is also applied to our baselines. To 
compare our approach with the baselines, we conduct the experiments of the baselines as 
follows. First, we perform the experiments of the baselines in each project. Next, we compute 
the average values of the baselines in all projects. Finally, we compare our study (e.g., cross 
projects) with the baselines (e.g., average values of all projects). For evaluating the bug 
severity prediction performance, we considered the Naïve Bayes Multinomial approach [11], 
the Lamkanfi methodology [12], and an emotional similarity-based bug severity prediction 
[13] method as baselines. 

 
 

 Naïve Bayes Multinomial [11]: This represents the existence of a term and its number of 
occurrences in documents. Lamkanfi et al. showed that the Naïve Bayes Multinomial 
approach achieved the best performance for bug severity prediction. 

 
 Lamkanfi [12]: This approach classifies bug reports using the meta fields (Product and 

Component) of a bug report. Then, the Naïve Bayes algorithm is employed to train the 
model and predict the severity of a new bug. 

 
 Emotional similarity-based bug severity [13]: This approach calculates the emotion 

similarity based on an emotion dictionary. By considering bug reports with a similar 
emotion, the authors applied the Naïve Bayes Multinomial algorithm and predicted the 
severities of new bugs. 

 
We address the following research questions in conducting the experiment: 

 RQ1. How accurate is the bug severity prediction performance for our approach? 
This question is considerably important, and should be addressed before comparing with 

other baselines. In answering this question, we can evaluate our model. 
 

 RQ2. Can the proposed methodology be adopted for the bug severity prediction task? 
We compare the effectiveness of our approach for predicting bug severity with those of 

other baselines as well as the difference between cross projects and single project. Then, we 
conduct a statistical test [17, 18, 19] to determine whether there is a difference between the 
proposed methodology and the baselines. 

 

4.4 Results 
 RQ1. How accurate is the bug severity prediction performance using our approach? 

The bug severity prediction performance of our approach is illustrated in Fig. 4. The x-axis 
represents the number of x-fold cross validations (1-fold, 2-fold, etc.), and the y-axis 
represents the average accuracy (e.g., all severity levels) in each cross validation. The average 
accuracy of our approach is 83.02% in terms of the F-Measure. 
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Fig. 4. Accuracy Results for Our Approach 

 
 RQ2. For the prediction of bug severity, can the proposed methodology be adopted? 

The bug severity prediction performances of our approach and the baselines are illustrated 
in Fig. 5. The x-axis represents the baseline name (e.g., Naïve Bayes Multinomial, Lamkanfi, 
and ES-Multinomial), and the y-axis represents the average of the 10-fold cross validation 
(e.g., average values in all projects including Eclipse, Mozilla, WireShark, and Xamarin). Our 
approach exhibits a better performance than the baselines. 

 
 

 
Fig. 5. Comparison of Results for Our Approach and the Baselines 

 
 

In addition, we provide the results for our baselines (Naïve Bayes Multinomial, Lamkanfi, 
and ES-Multinomial) in details as shown in Fig. 6, Fig. 7, and Fig. 8, respectively. The x-axis 
represents the project name (e.g., Eclipse, Mozilla, WireShark, and Xamarin), and the y-axis 
represents the average of the 10-fold cross validation (for each project). 
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Fig. 6. Accuracy Results for Naïve Bayes Multinomial in Details 

 

 
Fig. 7. Accuracy Results for Lamkanfi in Details 

 

 
Fig. 8. Accuracy Results for ES-Multinomial in Details 

 
Moreover, we conduct a statistical test [17, 18, 19] to verify whether there is a significant 

difference between our approach and the baselines. We establish the null hypothesis as 
follows. 

 
 𝐻10 , 𝐻20 , 𝐻30 , 𝐻40 : There is no difference between this method and Naïve Bayes 
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Multinomial in Eclipse, Mozilla, WireShark, and Xamarin, respectively. 
 

 𝐻50 , 𝐻60 , 𝐻70 , 𝐻80 : There is no difference between this method and Lamkanfi in 
Eclipse, Mozilla, WireShark, and Xamarin, respectively. 

 
 𝐻90 , 𝐻100 , 𝐻110 ,𝐻120 : There is no difference between this method and emotional 

similarity-based bug severity in Eclipse, Mozilla, WireShark, and Xamarin, respectively. 
 
The alternative hypothesis is established as follows. 
 

 𝐻1𝑎 , 𝐻2𝑎 , 𝐻3𝑎 , 𝐻4𝑎 : There is a difference between this method and Naïve Bayes 
Multinomial in Eclipse, Mozilla, WireShark, and Xamarin, respectively. 

 
 𝐻5𝑎, 𝐻6𝑎, 𝐻7𝑎, 𝐻8𝑎: There is a difference between this method and Lamkanfi in Eclipse, 

Mozilla, WireShark, and Xamarin, respectively. 
 
 𝐻9𝑎 , 𝐻10𝑎 , 𝐻11𝑎 , 𝐻12𝑎 : There is a difference between this method and emotional 

similarity-based bug severity in Eclipse, Mozilla, WireShark, and Xamarin, respectively. 
 
First, we conduct a statistical test on the average F-scores of the cross validations on our 

approach and the baselines. We verify the normality using the Shapiro–Wilk test [19] for each 
null hypothesis. If the normality is greater than or equal to 0.05, we run the T-test [17]. 
Otherwise, we run with the Wilcoxon signed-rank test [18]. The results of the statistical tests 
are presented in Table 2. 

For example, the score of the null hypothesis 𝐻10 is 5.483e-15 (0.000000000000005483), and 
because this is less than 0.05, we can conclude that our approach exhibits a difference from 
Naïve Bayes Multinomial, and we accept the alternative hypothesis 𝐻1𝑎. We note that all the 
alternative hypotheses are accepted. 

 
Table 2. Results of Statistical Tests 

Null Hypothesis P-Value Alternative Hypothesis 

𝐻10 5.483e-15 𝐻1𝑎: Accept 
𝐻20 2.2e-16 𝐻2𝑎: Accept 
𝐻30 3.811e-14 𝐻3𝑎: Accept 
𝐻40 2.695e-14 𝐻4𝑎: Accept 
𝐻50 6.141e-12 𝐻5𝑎: Accept 
𝐻60 7.256e-14 𝐻6𝑎: Accept 
𝐻70 8.466e-14 𝐻7𝑎: Accept 
𝐻80 2.675e-11 𝐻8𝑎: Accept 
𝐻90 2.185e-09 𝐻9𝑎: Accept 
𝐻100 1.063e-10 𝐻10𝑎 : Accept 
𝐻110 0.003906 𝐻11𝑎 : Accept 
𝐻120 6.447e-10 𝐻12𝑎 : Accept 
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5. Discussion 

5.1 Experiment Analysis 
 Performance of our approach: we predict the severity of a bug using topic modeling and a 

similarity (i.e., the KL-divergence) in cross projects including Eclipse, Mozilla, 
WireShark, and Xamarin. We achieve a better performance in terms of the precision, 
recall, and F-measure compared with our baselines, and exhibits a statistically significant 
difference. In addition, we verify the difference between cross projects and single project 
(from Fig. 5). We combine the projects (e.g., Eclipse, Mozilla, WireShark, and Xamarin) 
and then, we can achieve a better performance. In details, first, we construct the topic 
models from the cross projects. Then, we compare the words between each topic model in 
cross projects and a new bug report. Next, we not only find the similar topics related to the 
new given bug report, but also extract a large number of multiple word tokens from the 
similar topics by using KL-Divergence. Then, we utilize the Naïve Bayes Multinomial 
concept, considering the existence of a term and its number of occurrences in documents, 
to improve the performance of original Naïve Bayes Multinomial. In Fig. 5, we show that 
our approach has a better performance than the traditional algorithms (Naïve Bayes 
Multinomial and Naïve Bayes). Also, we have a higher performance than ES-Multinomial 
(Emotion Similarity-based Naïve Bayes Multinomial). In the future, we plan to improve 
the prediction performance using various attributes of bug reports. 

5.2 Threats to Validity 
 Internal threat: In this study, we set alpha to 0.01, beta to 0.01, gamma to 1500, and N to 

30 in the topic modeling process. In addition, we set a parameter of the smoothed unigram 
model to 0.7 and a threshold to 0 in the KL-divergence. However, we cannot conclude 
that these settings are appropriate for all other projects. In the future, we will investigate 
appropriate parameters considering various projects. 

 
 External threat: This study used Eclipse, Mozilla, WireShark, and Xamarin datasets for 

predicting bug severity. However, our approach may not be suitable for all other projects, 
such as business projects, because these may be different from our datasets. 

6. Related Work 
Many researchers have investigated approaches to predict the severities of software bugs. 

We present a qualitative comparison of bug severity prediction approaches in Table 3. 
 

Table 3. Qualitative Comparison of Related Approaches 

Study Methodology Project Type 

Yang [3, 13] Emotion Similarity, 
Emotion Score 

Single Project Zhang [20] LDA, BM25, KNN 

Yang [1] LDA, Meta Fields, 
KL-Divergence 
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Tian [21] BM25F, KNN 

Yang [22] Feature Selection 

Lamkanfi [11, 12] 
Traditional Machine 

Learning Algorithm, Meta 
Fields 

Our Approach LDA, KL-Divergence Cross Projects 

 
Yang et al. (2018 & 2017) [3, 13] proposed an approach for predicting bug severity using 

emotion words in a bug report. In the first study, an emotion score for a bug report was 
computed using an emotion dictionary, and Naïve Bayes Multinomial was applied. In the 
further study, emotion dictionary-based emotional similarity was executed and Naïve Bayes 
Multinomial was applied using similar emotion bug reports.  

Zhang et al. (2016) [20] used the LDA, BM25, and K-nearest neighbors (KNN) algorithms 
to predict bug severity. First, similar bug reports are obtained using a topic model and the meta 
fields of bug reports, and then the KNN algorithm is applied. In addition, the authors applied a 
tuning process to determine an appropriate KNN parameter. 

Yang et al. (2014) [1] proposed a bug severity prediction approach by using LDA, 
predefined meta-fields, the KL-divergence, and the KNN algorithm. In details, the authors 
constructed a topic model using LDA, compared the words in a new bug report with those in 
the topics, and assumed that the most often matched topic terms correspond to a similar topic. 
They applied the meta fields to extract bug reports, and finally predicted the bug severity using 
the KNN algorithm. 

Tian et al. (2012) [21] noted the problem of the computation time for the existing BM25 
approach, and proposed a new methodology called BM25F. In order to improve the bug 
severity prediction performance, they determined an appropriate K value for KNN. 

Yang et al. (2012) [22] proposed the bug severity prediction using feature selection. In 
detail, the information gain (IG) and correlation coefficient (CC) were used to compute a score, 
and Naïve Bayes Multinomial was applied. 

Lamkanfi et al. (2011 & 2010) [11, 12] used the meta fields of bug reports to predict bug 
severity. In the latter study, they showed that Naïve Bayes Multinomial achieved a better 
performance than Naïve Bayes, KNN, and Support Vector Machines (SVM) in predicting bug 
severity. 

7. Conclusion 
In this study, we proposed a novel technique for bug severity prediction in cross projects. In 

detail, we first construct topic models by using LDA from bug repositories in cross projects 
including Eclipse, Mozilla, WireShark, and Xamarin. Then, we find topics in each project that 
contain the most numerous similar bug reports by using a new bug report. Next, we extract the 
bug reports belonging to the selected topics, and input them into the Naïve Bayes Multinomial 
algorithm. Finally, we predict the severity of a new bug report. For evaluating the performance 
of our model and to verify the difference between cross projects and single project, we 
compared it with Naïve Bayes Multinomial; the Lamkanfi methodology, which is a 
well-known bug severity prediction approach; and an emotional similarity-based bug severity 
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prediction approach. We showed that our model achieved a better performance than the 
compared methods as well as verified the difference between cross projects and single project. 
In addition, we conducted a statistical test with null hypotheses and accepted all alternative 
hypotheses. From our motivation, a subjective decision of bug severity selection can occur 
because of the different background knowledge between end users and developers. In the 
future, we will use additional bug report attributes to improve the bug severity prediction 
performance and to make an automatic bug severity prediction tool for helping the reporters.  
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