
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 3, Mar. 2019 1659
Copyright ⓒ 2019 KSII

A Probabilistic Test based Detection
Scheme against Automated Attacks
on Android In-app Billing Service

Heeyoul Kim1

1 Department of Computer Science, Kyonggi University
Republic of Korea

[e-mail: heeyoul.kim@kgu.ac.kr]
*Corresponding author: Heeyoul Kim

Received September 28, 2018; accepted February 4, 2019; published March 31 2019

Abstract

Android platform provides In-app Billing service for purchasing valuable items inside mobile
applications. However, it has become a major target for attackers to achieve valuable items
without actual payment. Especially, application developers suffer from automated attacks
targeting all the applications in the device, not a specific application. In this paper, we propose
a novel scheme detecting automated attacks with probabilistic tests. The scheme tests the
signature verification method in a non-deterministic way, and if the method was replaced by
the automated attack, the scheme detects it with very high probability. Both the analysis and
the experiment result show that the developers can prevent their applications from automated
attacks securely and efficiently by using of the proposed scheme.

Keywords: In-app Billing, automated attack, probabilistic test, Android, security

A preliminary version of this paper was presented at APIC-IST 2018, and was selected by the conference review
process.

http://doi.org/10.3837/tiis.2019.03.031 ISSN : 1976-7277

1660 Heeyoul Kim: A Probabilistic Test based Detection Scheme against Automated Attacks on
Android In-app Billing Service

1. Introduction

With the widespread use of smartphone, the markets for mobile applications have changed
the way people purchase interested applications [1]. They can easily find, install and update
various useful applications via Apple’s App Store or Google’s Play Store. Moreover, various
mobile payment methods using smartphone have been popular in recent years. One of
important business models related to these markets is to encourage users to purchase valuable
contents such as game items or premium features within mobile applications. A user first tries
out an application with limited feature and if he wants, he can purchase additional virtual
goods such as premium items or additional features such as extra contents. He can also
subscribe to regular content delivery service inside the application. This approach allows users
to experience the functionality of valuable services before purchasing. Apple introduced
In-app Purchase service for this business model in 2011 [2], and Google also has provided
similar In-app Billing service since 2011 [3]. The application developers can improve
profitability through these in-app payment services.

The importance of security has been emphasized in mobile ecosystems, and lots of
research have been presented to prevent mobile applications from various attacks [4-5].
However, the attacks targeting the In-app Billing service should be considered from a different
viewpoint than other attacks. These attacks mainly focus on bypassing legitimate billing
process to purchase valuable items, and the user himself rather than an external attacker
attacks his own device with full access right, which makes it more vulnerable than other
traditional systems. The recompile attack is a simple billing crack attack. The attacker
decompiles the apk file of the application installed on the device, modifies the source code to
make an invalid payment or to bypass the payment check routine, then re-installs the cracked
code. However, this attack has an inconvenience of decompiling and source modification for
each target application, and some countermeasures such as code obfuscation technique [6]
have been applied.

Automated attacks resolving this inconvenience have been emerged in a more advanced
manner. These kinds of attacks do not target a specific application, but they target all the
installed application using the In-app Billing service. VirtualSwindle [7] was presented in the
literature, and Freedom [8] is another representative automated attack tool working well up to
now. The attack obtains the list of applications using the In-app Billing service in the target
device. Whenever a purchase is requested within an application, it bypasses the normal
payment process and thus it succeeds in purchasing without actual payment.

In this paper, we propose a novel scheme detecting automated attacks on In-app Billing
service with probabilistic tests. The key part of the automated attack is bypassing the signature
verification with a fake signature generated by the attack. For this purpose, the attack replaces
the original signature verification method in the application side to the attack’s malicious
function returning true always. The proposed scheme detects this replacement by performing
multi-round probabilistic tests. Each test is done in a non-deterministic way to check whether
the verification works correctly with a valid public key of the application or a fake key
generated for the test. We also provide both the analysis and the experiment result of the
proposed scheme to show that it efficiently succeeds in detecting both current automated
attacks and more sophisticated attacks with very high probability.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 3, March 2019 1661

The paper is organized as follows. In Section 2, we explain the Android In-app Billing
service and then we analyze the mechanism of automated attacks. In Section 3, we propose our
detection scheme against automated attacks with the analysis of the scheme. Section 4
describes the implementation of the scheme with a technique for performance improvement.
Also, both the experiment result and performance analysis are provided. Finally, Section 5
concludes the paper.

2. Analysis of Android In-app Billing and Automated Attacks

2.1 Android In-app Billing Service
The In-app Billing service in Android platform enables a developer sell digital content inside
his mobile application. This service consists of four components as shown in Fig. 1. The
Google Play server is responsible for performing the actual financial transactions remotely
requested, and it uses the same checkout backend service as is used for application purchases.
The Google Play application installed on the user’s smartphone conveys billing requests and
responses between the application and the Google Play server. The application on the device
accesses the In-app Billing service using the IInAppBillingService interface exposed by the
Google Play application. It is worth noting the application does not communicate with the
Google Play server directly. Instead, it communicates with the Google Play application over
interprocess communication (IPC) for purchase. The fourth component is the application
server, which is optional depending on the developer’s choice. The application may
communicate with its own server to enhance payment verification and to provide additional
digital content to the application.

Fig. 1. Components of Android In-app Billing Service

The application developer has to perform registration process via the Google Play

Developer Console [9] before publishing an application using the In-app Billing service. The
application and related digital contents that are available for purchase from the application are
registered in the Developer Console. Then a cryptographic public/private key pair is generated
for the application. The private key is registered in the Google Play server for signing and
confirming purchase transactions. The corresponding public key is located inside the

1662 Heeyoul Kim: A Probabilistic Test based Detection Scheme against Automated Attacks on
Android In-app Billing Service

application to verify the purchase confirmation later during the In-app Billing service. Google
recommends that the public key is not hard-coded in the application. Instead, some
obfuscation techniques can be utilized.

A simplified process between the application and the Google Play application when a user
purchases something inside the application is shown in Fig. 2. The application sends
isBillingSupported request for supported version check. Then the application makes
getBuyIndent request including the product ID of the item to be purchased. This request is sent
to the Google Play application, and then a corresponding response Bundle containing a
PendingIntent which will be used to start the checkout UI is returned. The application
launches this Intent by calling the startIntentSenderForResult method, and the user inputs his
billing information such as credit card number. After verifying the billing information with the
Google Play server, the Google Play application sends a response Intent containing the
detailed information about both the purchased item and the purchase transaction. The Intent
also contains the signature of the purchase data which is signed by the Google Play server with
the application’s private key registered in advance. The application must to verify this
signature with the corresponding public key inside the application to check whether a valid
payment has been made. This verification is the key process to ensure a legitimate purchase
has been completed and to avoid malicious purchase attempts on the application. In addition,
the In-app Billing service provides another APIs for querying product details or consuming
purchased items. Recently Google released the Google Play Billing library [10] which
simplifies the development process for In-app Billing, and it still utilizes the In-app Billing
service explained above to manage in-app billing transactions.

Fig. 2. A Simplified process between application and Google Play in the In-app Billing Service

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 3, March 2019 1663

2.2 Automated Attacks on In-app Billing Service
As the use of In-app Billing service is becoming widespread, various billing cracks have
appeared [7, 8, 11]. The goal of these attacks is to find the way to bypass legitimate payment
process and for obtaining valuable items without payment. It is very attractive to the attacker
because the success of the attack will give huge financial benefit to him. For example, some
expensive items obtained by the attack can be traded in the black market to make money.

This kind of attacks on the In-app Billing service should be considered from a different
viewpoint than other security threats on the mobile device. In general, the user owning a
mobile device is assumed in a defensive position to prevent his sensitive data from malicious
outside attacks. However, in this case, the user himself becomes an attacker and tries various
attempts on his device to find vulnerability of the In-app Billing service. Moreover, he can
easily attack his device with full access right by performing rooting on the device.

A simple billing crack attack is the recompile attack. The attacker decompiles the apk file
of the application installed on the device to get the source code, then he modifies the code to
make an invalid purchase transaction or to bypass the payment routine. The cracked code is
re-installed on the device and the attack succeeds in cracking.

The dangerousness of this attack has been already recognized. In the security and design
guidelines for In-app Billing service [12], Google recommends that the developer should
obfuscate the codes in order that it is difficult for the attackers to reverse engineer security
protocols and other application components. Using obfuscation tools such as Proguard and
using method inlining are also recommended. Obfuscation is effective as it imposes
time-consuming burdens on the attacker. Moreover, this recompile attack has the
inconvenience of decompile and code modification for each target application, which makes
obfuscation more effective.

However, automated attacks resolving this inconvenience have emerged in a more
advanced manner. Instead of taking the manual approach of trying to reverse engineer
individual application, these attacks automatically try to bypass the purchase verification
process of all the applications on the device using In-app Billing service. VirtualSwindle is the
first and excellent automated attack in the literature against the In-app Billing service on
Android. The attack code runs in the background, and when invoked, attacks every application
that performs signature verification on the device itself (not on the remote server). It allows the
attacker to access digital content and services without paying for them by subverting the
signature verification process. According to the authors, among the 85 popular applications
using the In-app Billing, 60% of them employed on-device signature verification, and
therefore they were easily attacked successfully. Here we analyze the detailed mechanism of
the VirtualSwindle and we also discuss why this kind of attack successes in most applications.

The attack flow of VirtualSwindle is shown in Fig. 3. The attack emulates and subverts the
part responsible for the IInAppBillingService interface in the Google Play app on the device. It
works like a proxy between the application using In-app Billing and the Google Play app, and
it generates a fake response Intent that makes the calling application believe the payment
process was performed normally. In the victim application side, to bypass the signature
verification of the purchase data, the attack replaces the standard Dalvik library method
java.securty.Signature.verify() with its own function. The replaced function returns true
indicating success if the input is the fake signature, and otherwise it redirects this call to the
original method in order to avoid detection of this attack.

This attack utilizes a dynamic Dalvik instrumentation approach [13], which is
implemented as a libddi library, enabling to replace any Dalvik method to an alternative native

1664 Heeyoul Kim: A Probabilistic Test based Detection Scheme against Automated Attacks on
Android In-app Billing Service

function by abusing the Java Native Interfaces (JNI) layer. In the first step, the
com.android.vending process responsible for the Google Play application is hijacked by
injecting the libddi library. Then the prepared Dalvik classes for acting as a proxy are loaded
into the vending process. The attack also injects a native library into the zygote process to
bypass the signature verification in the application side. This library then manipulates the
method struct of java.security.Signature.verify so that the attack’s malicious function is called
through JNI instead of the original method. It is worth noting that once the library is injected
into the Zygote it is automatically propagated to all processes running on the device.

When the victim application sends a purchase request through the getBuyIntent call, the
proxy intercepts and redirects it to the original Google Play app to get a valid PendingIntent.
The response generated by the Google Play app is then passed back to the victim application.
The victim application launches this PendingIntent for checkout, and the proxy also intercepts
this request. Because the actual payment is not made at this time, the proxy itself generates a
JSON object containing purchase information such as the order ID, instead of receiving it from
the remote Google Play server. The proxy then returns the JSON object including a fake
signature. After receiving it, the victim application performs signature verification generally
by calling java.security.Signature.verify method for on-device verification. But, the replaced
attack function is actually called as mentioned above. The function returns true as the fake
signature is provided, and finally the attack succeeds.

Fig. 3. Attack flow of VirtualSwindle

Freedom is another automated attack tool which is very popular among the black market

users. Though the detailed mechanism of has not been discovered, it looks very similar to
VirtualSwindle above at least in the way to bypass the signature verification. This tool obtains
the list of all applications using the In-app Billing service in the target device, then whenever a
purchase request happens it bypasses the normal payment process and consequently succeeds
in purchasing without actual payment. A lot of game applications have been cracked by
Freedom up to now.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 3, March 2019 1665

Fig. 4. A screenshot of the list of applications cracked by Freedom [8]

As the damage caused by the automated attacks increases, there has been research to
prevent or detect this kind of attacks. One way is to block applications running with root
privilege because both VirtualSwindle and Freedom need to get root privilege to access other
application processes. However, it has a bad influence on normal applications requiring root
privilege and the users hesitate to apply it to their device. Another practical way discussed
among application developers is to check whether these attacks exist or not in the device based
on the list of installed application names. However, it is not a sufficient and fundamental
solution as it is very hard to detect various and unknown attacks.

3. Proposed Detection Scheme against Automated Attacks
Here we present a novel scheme detecting automated attacks on In-app Billing service with
probabilistic tests. In section 3.1, we first explain the basic idea to check whether the signature
verification method is replaced to the attack’s malicious function or not. Then, in section 3.2
we consider the possible countermeasure that improved attacks may take to avoid this
checking routine. Finally, in section 3.3 we present a robust scheme to detect even these
attacks with very high probability.

3.1 Checking signature verification method
The key part of automated attacks is bypassing the signature verification process in the
application side. When the attack is performed via the In-app Billing service, a valid signature
for the purchase cannot be generated because a legitimate payment is not provided and the
attack cannot discover the victim application’s private key in any way. Instead, by the attack,
the call for java.security.Signature.verify() method is redirected to the attack’s malicious
function returning true always with the fake signature.

If we can detect the replacement of verification method, we can also detect and thus
prevent the attack. One possible way is to monitor the integrity of the application process at
runtime. However, runtime monitoring imposes a heavy burden on the system and it requires
modification of Android kernel codes. Here we present a simple but effective idea to detect the
replacement, which is deduced from inspecting the verification method. We proposed a
preliminary version of this idea in [14].

Let us assume that the call for java.security.Signature.verify() method was replaced to the
attack function verify’(). The signature verification utilizes three input parameters: the
purchase data to be verified(data), the victim application’s public key(pub) and the
signature(sig). Among them, the signature is in fact a fake signature generated by the proxy.
Thus, the function can easily check whether the input signature is equal to the fake signature.

1666 Heeyoul Kim: A Probabilistic Test based Detection Scheme against Automated Attacks on
Android In-app Billing Service

The purchase data is known to the proxy and then it also can be known to the function through
a covert channel between the proxy and the function. However, differently from these
parameters, the application’s public key is not known to the function unless reverse
engineering the target application. Because we are dealing with automated attacks not
performing reversing manually, this argument is reasonable.

The check routine for the verification method is as follows. A new fake public key(pub’) is
generated, and instead of the original public key it is inputted with other parameters to the
verification method. If the attack is not in progress, the call returns false as the provided public
key is invalid. On the other hands, if the attack is in progress, the call is redirected to verify’()
and this function returns true because the fake signature is provided as planned. Therefore, by
checking the return value, we succeed in detecting automated attacks. If true is returned, the
application stops without providing items. Otherwise, the application calls the verification
method again with the valid public key to verify a legitimate payment was processed before
providing corresponding items. The pseudocode of the check routine is provided in Fig. 5.

Fig. 5. A pseudocode of check routine for signature verification

3.2 Improving automated attack against checking routine
The above checking routine is useful to detect current automated attacks. We experimented on
Freedom with the routine, and we successfully detected it. However, if this routine is widely
applied, the attackers will seek to find some ways to avoid the routine. Here we discuss
possible countermeasures that more sophisticated attacks can take.

One possible approach is to cope with each step of the checking routine after careful
analyzing the sequence of the routine. Specifically, the above routine calls verify() method
twice: the former is with a fake public key, and the latter is with a valid public key. Let us
assume that the attack function verify’() knows recent fake signatures through a covert channel
with the proxy. The function is modified so that it returns false if the call is the first call with
the fake signature and otherwise it returns true if the call is the second call. This improvement
makes the attack pass the checking routine.

The checking routine can be enhanced to defend against this approach. For example, it can
be modified to call verify() method three times where the former two calls are with a fake
public key. However, this kind of variation will also become the target of attacker’s analysis
and it is not difficult to make sophisticated attacks against even this enhanced routine. It is
worth pointing out that such a checking routine having a fixed and deterministic sequence is
vulnerable to the attacks specialized to the routine.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 3, March 2019 1667

Another approach is to randomly choose the return value of the attack function instead of
coping with the checking routine. Current attack function always returns true if a fake
signature is provided. This approach modifies it so that the return value is randomly chosen
between true and false if a fake signature is provided. Obviously, it does not guarantee that the
attack always succeeds, and in the case where the checking routine is not applied, the success
probability decreases to 50%. However, in the case where the above checking routine is
applied, this approach provides a reasonable success probability. To pass the checking routine,
the attack has to return correct answers for the two function calls. Since the probability that it
returns a correct answer for each call is 50%, the success probability of the attack becomes
25%. From the viewpoint of the attacker, this probability satisfies him as he can gain sufficient
financial benefit by attempting the attack several times. It is worth pointing out that this
approach does not require deep analysis of the routine and it operates successfully against
various checking routines.

3.3 Detecting automated attacks with probabilistic tests
Here we present a novel detection scheme against even sophisticated automated attacks.

This scheme is located in the application side as in Fig. 6, and it is responsible for both
detecting automated attacks and verifying the signature for the purchase. It is based on the idea
in Section 3.1 using a fake public key to check the signature verification method, and it
performs multiple probabilistic tests to have a non-deterministic property which defends
against sophisticated attacks explained in Section 3.2.

Fig. 6. The relation of proposed scheme with the In-app Billing service

The scheme consists of n rounds, where n is adjustable in consideration of both required
security level and performance. For each round, the scheme decides whether to test it with a
fake public key or with the application’s valid public key. If the former is chosen, the scheme
randomly generates a fake public key and then it calls the verification method with the key. If
the result is true, the scheme finishes with returning false meaning that some attack was
detected. Otherwise, it is regarded as passing the test of this round and it goes to the next round.
If the latter is chosen, the scheme calls the verification method with the application’s valid
public key. If the result is false, the scheme finishes with returning false meaning that the
signature is invalid or some attack is undergoing. Otherwise, it is regarded as passing the test
of this round and it goes to the next round. The scheme performs this test n times, and if all the

1668 Heeyoul Kim: A Probabilistic Test based Detection Scheme against Automated Attacks on
Android In-app Billing Service

tests are passed it finally returns true meaning that no attack was detected. The pseudocode of
the proposed scheme is provided in Fig. 7.

Fig. 7. A pseudocode of the proposed detection scheme

Now let us analyze the proposed scheme and calculate the probability that an automated
attack passes the scheme. Suppose an automated attack is being performed. Whenever the
signature verification method is called by the scheme, the attack function perceives that the
fake signature is inputted as expected. Then, it has to make an appropriate result instead of
redirecting it to the original verification method. However, as explained earlier, it cannot
determine whether the inputted public key is valid or not. Thus, the attack function has to
choose between true and false as return value, and the choice would at best be not much better
than flipping a coin.

Let 1()P pass denote the probability that an automated attack passes the one round test. Let

fT denote the event that the scheme tests with a fake public key, and let oT denote the event
that the scheme tests with the original public key. Then,

 1 1(|) 1 / 2, (|) 1 / 2f oP pass T P pass T= = , (1)

and 1()P pass is

 1 1 1 1 1() (|) () (|) () 1 / 4 1 / 4 1 / 2f f o oP pass P pass T P T P pass T P T= ⋅ + ⋅ = + = . (2)

Let ()nP pass denote the probability that the attack successfully passes the scheme. Since it
must pass all the n round tests,

 () () 1 / 2n n
n iP pass P pass= = . (3)

The success probability is very low for sufficiently large n. For example, if n=20 the
probability is

 . (4)
Therefore, the proposed scheme succeeds in detecting automated attacks with very high
probability.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 3, March 2019 1669

4. Implementation and Analysis

4.1 Implementation
The most time-consuming part of the proposed scheme is to generate fake public keys. For n
rounds test, the scheme generates n/2 public keys on average, and such generation is slow
especially in mobile devices having limited computing power. We applied a novel trick to
overcome this problem. Let us assume a 1024-bits RSA [15] key pair is utilized in the In-app
Billing. An RSA public key consists of two numbers (N, e) where N is the multiplication of
two 512-bits large prime numbers. Such large prime numbers can be efficiently found using a
primality test such as Miller-Rabin test [16], but it is still not sufficient for our scheme
requiring a lot of keys. So, we generate N by multiplying eight 128-bits prime numbers instead
of two 512-bits prime numbers. Obviously, the value N is not suitable for RSA algorithm and
the RSA operations do not work correctly with it. However, from the viewpoint of the attacker,
he must factorize N to discover this trick and the factorization of such N requires several hours
and days. Since the attacker must factorize n times to pass our scheme with n rounds, it is
impractical in nature. We could reduce a large amount of consumed time by using of this trick.

By using of the proposed scheme, the mobile applications using the In-app Billing service
can ensure safe and trustworthy purchase process against automated attacks. One possible way
to apply the scheme easily and widely is to put the implementation of the scheme into the
In-app Billing service codes, for example with the method name detectionTest(). However, the
method itself can be the target of more sophisticated attacks. Specifically, the attacker can try
to replace the detectionTest() method instead of verify() method to the attack function in order
to bypass the probabilistic test. Therefore, we suggest the detection scheme is located in the
application codes by the application developer with different method name respectively.

We implemented and applied our detection scheme to the sample application TrivialDrive
provided by Google to show the correctness of the scheme. We tried to purchase an item after
launching the Freedom, and consequently the scheme successfully detected the automated
attack. Then the application stopped the purchase process with a warning message as can be
seen in Fig. 8.

Fig. 8. A screenshot of detection success of Freedom attack by the proposed scheme

1670 Heeyoul Kim: A Probabilistic Test based Detection Scheme against Automated Attacks on
Android In-app Billing Service

4.2 Performance Analysis
We evaluated the performance of the proposed scheme by performing experiments with smart
devices of two categories: low-performance smartphone and mid-range smartphone. The most
important factor of performance in the In-app Billing service is the waiting time during the
purchase process. If the user has to wait long time to purchase an item, he feels uncomfortable
and withdraws the purchase. Moreover, Android limits the ANR(Application Not
Responding) time to 5 seconds. So, we measured the elapsed time for testing with the
proposed scheme according to the number of rounds to deduce appropriate value in the aspect
of both security level and performance.

We performed an experiment with a mid-range smartphone having 1.7GHz quad core CPU
and 2GB RAM, and the result is shown in Table 1 and Fig. 9. The number of rounds varies
from 10 times to 30 times, and per each number of rounds the elapsed time was measures six
times to obtain the average elapsed time. In consideration of the ANR time, the reasonable
threshold of the elapsed time is 2 seconds. In this experiment, even the elapsed time of 30
rounds does not exceed 2 seconds. And the probability of attack success is extremely low
(). Therefore, the proposed detection scheme with 30 rounds is
recommended for such a mid-range smartphone environment.

Table 1. Estimated elapsed time of the proposed scheme with a mid-range smartphone
round # Exp. #1 Exp. #2 Exp. #3 Exp. #4 Exp. #5 Exp. #6 Average

10 0.4321 0.5023 0.4884 0.5460 0.4498 0.5892 0.5013

12 0.6879 0.5379 0.5880 0.7056 0.3058 0.6219 0.5745

14 0.8214 0.7892 0.7622 0.6088 0.8457 0.7316 0.7598

16 0.8925 0.8933 0.8149 0.7615 1.1659 0.7978 0.8876

18 1.1679 0.9487 1.0297 0.8972 1.3460 1.0490 1.0731

20 1.3252 0.8103 1.4827 1.5338 1.0949 1.1917 1.2398

22 0.9313 1.0655 1.2647 1.4894 1.3547 1.3657 1.2452

24 1.3616 1.5650 1.5499 1.0232 1.2199 1.4452 1.3608

26 1.3225 0.8734 1.6949 1.4266 1.8019 1.2783 1.3996

28 1.2670 1.5593 1.3763 1.5932 1.7046 1.4702 1.4951

30 1.4777 1.5649 1.4775 1.4134 1.3364 2.3067 1.5961

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 3, March 2019 1671

Fig. 9. Average elapsed time of the proposed scheme with a mid-range smartphone

We also performed another experiment with a low-performance smartphone having 1.4GHz

dual core CPU and 1GB RAM, and the result is shown in Table 2 and Fig. 10. The number of
rounds also varies from 10 times to 30 times, and per each number of rounds the elapsed time
was measures six times to obtain the average elapsed time. In this experiment, the elapsed time
of 30 rounds exceeds 2 seconds, however, the elapsed time of 22 rounds does not exceed 2
seconds. And the probability of attack success is very low (7

22 () 2 10P pass −×) which is very
acceptable in comparison with the benefit of attack success. Therefore, the proposed detection
scheme with 22 rounds is recommended for such a low-performance smartphone environment.

Table 2. Estimated elapsed time of the proposed scheme with a low-performance smartphone
round # Exp. #1 Exp. #2 Exp. #3 Exp. #4 Exp. #5 Exp. #6 Average

10 0.6520 0.7217 1.4322 1.3206 1.4236 0.9846 1.0891

12 0.8977 1.5179 0.9220 1.2165 1.3135 1.4565 1.2207

14 1.4239 1.4085 0.8325 2.1790 1.8166 1.6577 1.5530

16 1.3550 1.2365 1.9213 1.8805 1.7622 2.0217 1.6962

18 1.2672 1.5892 1.7981 2.0160 1.7981 1.8850 1.7256

20 1.4776 1.5665 2.2865 2.0149 1.7613 1.7217 1.8048

22 1.1101 1.7704 2.4368 1.6650 2.0249 2.3532 1.8934

24 1.5314 1.7218 3.8597 1.8283 2.3109 1.7261 2.1630

26 1.7954 3.0345 3.2519 3.0335 2.4427 2.6262 2.6974

28 2.3216 2.9253 2.3392 3.8683 2.4329 3.0301 2.8196

30 2.8479 2.8162 1.4265 4.4032 2.4231 3.4340 2.8918

1672 Heeyoul Kim: A Probabilistic Test based Detection Scheme against Automated Attacks on
Android In-app Billing Service

Fig. 10. Average elapsed time of the proposed scheme with a low-performance smartphone

5. Conclusion
Recent automated attacks on Android In-app Billing service enable to get valuable contents
and items without paying for them legitimately. In this paper, we presented a novel scheme to
prevent applications from these attacks by detecting the attempts to replace the signature
verification process. We firstly analyzed the mechanism of automated attacks that bypass the
signature verification process. Then we presented a basic idea to check whether the signature
verification method is replaced to the attack function or not. We then considered more
sophisticated attacks that may avoid the idea although it is effective currently. Finally, we
proposed a scheme succeeding in detecting even sophisticated attacks with very high
probability.

This scheme consists of multiple rounds where a probabilistic test is performed per each
round. The test is done in a non-deterministic way to check whether the verification works
correctly with a fake public key of the application. For a sufficiently large number of rounds,
the scheme efficiently succeeds in detecting automated attacks with very high probability. The
experiment results show that current smartphones can perform 22~30 round tests within 2
seconds, and the probability that an attack passes the detection scheme is very low (from 10-7
to 10-9). The experiment also shows it successfully detects the representative Freedom attack.

The proposed scheme is targeted on detecting automated attacks against Android In-app
Billing service, but it can be further applied to other areas where the signature verification
routine is suspected. For example, it can be extended to detect malware installation disguising
itself as a normal firmware update code. As a future work, we will study on efficient and
secure firmware verification scheme in IoT environment based on the proposed scheme.

Acknowledgment
This work was supported by Kyonggi University Research Grant 2016.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 3, March 2019 1673

References
[1] Li Ma, Lei GU and Jin Wang, “Research and Development of Mobile Application for Android

Platform,” International Journal of Multimedia and Ubiquitous Engineering, vol. 9, no. 4, pp.
187-198, 2014. Article (CrossRef Link)

[2] “In-App Purchase for Developers – Apple Developer,”
https://developer.apple.com/in-app-purchase/

[3] “Use In-app Billing with AIDL,” https://developer.android.com/google/play/billing/api
[4] Aditya Kurniawan, Doni Nathaniel Pranama, Junius, and Martina Megasari, “Droidglance:

Network Topology Generator and Device Security Assessment Application on Android Mobile
Device,” International Journal of Software Engineering and Its Applications, vol. 8, no. 5, pp.
189-204, 2014. Article (CrossRef Link)

[5] Sujit Biswas, Wang Haipeng and Javed Rashid, “Android Permissions Management at App
Installing,” International Journal of Security and Its Applications, vol. 10, no. 3, pp. 223-232,
2016. Article (CrossRef Link)

[6] Wang, Pei, Qinkun Bao, Li Wang, Shuai Wang, Zhaofeng Chen, Tao Wei and Dinghao Wu,
"Software Protection on the Go: A Large-Scale Empirical Study on Mobile App Obfuscation," in
Proc. of the 40th International Conference on Software Engineering (ICSE 2018). 2018.
Article (CrossRef Link)

[7] Mulliner, Collin, William Robertson, and Engin Kirda, "Virtualswindle: An automated attack
against in-app billing on android," in Proc. of the 9th ACM symposium on Information, computer
and communications security, pp. 459-470, 2014. Article (CrossRef Link)

[8] “Freedom APK v3.0.1+Officially 2018,” https://freedomapk.info/
[9] “Google Play Console,” https://developer.android.com/distribute/console/
[10] “Use the Google Play Billing Library,”

 https://developer.android.com/google/play/billing/billing_library_overview
[11] Reynaud, Daniel, Dawn Xiaodong Song, Thomas R. Magrino, Edward XueJun Wu, and Eui Chul

Richard Shin, "FreeMarket: Shopping for free in Android applications," in NDSS, 2012.
[12] Google, “In-app Billing Security and Design,”

http://developer.android.com/google/play/billing/billing_best_practices.html, 2016.
[13] R. Xu, H. Saidi and R. Anderson, “Aurasium: Practical Policy Enforcement for Android

Applications,” in USENIX Security Symposium, August 2012.
[14] H. Kim and S. Kim, "Securing Android In-app Billing Service against Automated

Attacks," International Journal of Security and Its Applications, vol. 10, no. 7, pp. 259-268, 2016.
Article (CrossRef Link)

[15] R.L. Rivest, A. Shamir and L. Adleman, "A method for obtaining digital signatures and public-key
cryptosystems," Communications of the ACM 21, vol. 21, no. 2, pp. 120-126, 1978.
Article (CrossRef Link)

[16] M. Rabin, “Probabilistic algorithm for testing primality,” Journal of Number Theory, vol. 12, no. 1,
pp. 128-138, 1980. Article (CrossRef Link)

Heeyoul Kim received the B.E. degree in Computer Science from KAIST, Korea, in 2000,
the M.S. degree in Computer Science from KAIST in 2002, and the Ph.D. degree in computer
science from KAIST in 2007. From 2007 to 2008, with the Samsung Electronics as a senior
engineer. Since 2009 he has been a faculty member of Department of Computer Science at
Kyonggi University. His major research interests include cryptography, security and
blockchain.

https://doi.org/10.14257/ijmue.2014.9.4.20
https://developer.apple.com/in-app-purchase/
https://doi.org/10.14257/ijseia.2014.8.5.15
https://doi.org/10.14257/ijsia.2016.10.3.21
https://doi.org/10.1145/3180155.3180169
https://doi.org/10.1145/2590296.2590335
https://freedomapk.info/
https://developer.android.com/distribute/console/
https://developer.android.com/google/play/billing/billing_library_overview
http://developer.android.com/google/play/billing/billing_best_practices.html
https://doi.org/10.14257/ijsia.2016.10.7.23
https://doi.org/10.21236/ADA606588
https://doi.org/10.1016/0022-314X(80)90084-0

