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Abstract 
 

Digital shadow puppet has traditionally relied on expensive motion capture equipments and 
complex design. In this paper, a low-cost driven technique is presented, that captures human 
pose estimation data with simple camera from real scenarios, and use them to drive virtual 
Chinese shadow play in a 2.5D scene. We propose a special method for extracting human pose 
data for driving virtual Chinese shadow play, which is called 2.5D human pose estimation. 
Firstly, we use the 3D human pose estimation method to obtain the initial data. In the process 
of the following transformation, we treat the depth feature as an implicit feature, and map body 
joints to the range of constraints. We call the obtain pose data as 2.5D pose data. However, the 
2.5D pose data can not better control the shadow puppet directly, due to the difference in 
motion pattern and composition structure between real pose and shadow puppet. To this end, 
the 2.5D pose data transformation is carried out in the implicit pose mapping space based on 
self-network and the final 2.5D pose expression data is produced for animating shadow 
puppets. Experimental results have demonstrated the effectiveness of our new method. 
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1. Introduction 

Shadow play has a long history in China, Indonesia, India, Greece, etc. As a form of 
entertainment for children, adults and old people, shadow play is popular in many other 
countries around the world. We focus on Chinese shadow puppet in this paper. Chinese 
shadow play contains rich cultural elements, which is one of the most famous folk arts. Flat 
structure shadow puppet consists of several parts and its joints are connected by threads. 
Puppeteers manipulate the shadow puppets through sticks and the shadows are projected on a 
simple illuminated cloth screen to create moving pictures [1].  

Because of the need for operational skills and experience, Chinese shadow play is becoming 
less known to the public. New techniques are required urgently to give new life to the Chinese 
shadow puppet. Fortunately, digital shadow puppet can help solve this problem. The most 
common approaches to driving digital shadow puppet include 1) controlling the puppet with a 
digital glove [2], 2) using computer vision for tracking marks in some objects that controls the 
shadow puppets [3], 3) using a multi-touch surface for direct manipulation of bi-dimensional 
shadow puppets [4], and 4) using body gestures to control the puppets with Kinect sensor [5]  
[6], etc. These researches contributed to greater knowledge on digital shadow puppet, however, 
some of them are complex to use or difficult to implement, and others need expensive 
equipment. In contrast, our motivation is to propose an easy method to generate interactive 
shadow puppet animation by real human pose data.  

Human pose estimation in video is common in 2D plane or 3D scene. However, such type of 
human pose data extracted from these dimensions cannot be directly applied to drive shadow 
puppets. As shown in Fig. 1, the puppets body component adopts the frontal view of the human 
body (the 3/4 sides of the body) and is a rigid plane component in shadow play scene, which is 
a special scene between 2D and 3D scenes. The movement of shadow puppet is limited in 2D 
space, but it cannot be considered the traditional 2D space, it is the compression of the 
movement of human body in the side direction in the 3D space, so we call the scene as 2.5D. 
The 2.5D pose is a simplified 3D ( ), ,x y z  surface representation that contains at most one 
depth ( )z  value for every point in the ( ),x y  plane. 

The extracted human pose data by directly using 2D pose estimation method cannot better 
control shadow puppet, because the method might lose the number of detailed information, 
such as texture and depth cues. By contrast, the 3D pose estimation method contains a number 
of useful depth information. However, 3D human pose data can not be applied for shadow 
puppet control, because there is difference in movement and composition structure between 
human pose data of real scenario and shadow play. Some extraction methods can be 
generalized. The first one is to estimate human pose based on 2D scene, and then perform 
some depth recovery from depth dimension. The pose estimation is carried out from 2D pose 
methods and recovery from depth data. This is the process of increasing the dimension once 
again from the simplified data. This will lead to detail loss of the gesture form the process of 
simplification, which will have a serious impact on subsequent mapping operations. The 
second one is to estimate human pose in the 3D scene, and then restrain in depth dimension 
and map 3D pose into the 2.5D space built by difference information between real scenario 
and shadow puppet scene. However, training a network to obtain highly accurate 3D human 
pose estimation will cost a huge amount of computation. Some research work combines the 
two projects. For example, Tekin et al. [7] proposed a method of human pose estimation based 
on Convolutional Neural Network (CNN) for 2D and 3D human pose data fusion. In addition, 
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Tekin et al. [8] also used the structured relationship between body parts to improve the 
accuracy and speed of 3D human pose estimation on their own research. 

To maintain the performance pattern of Chinese shadow play during the shadow play 
manipulation process, we need to simulate all the confining actions in the puppet style. There 
are several basic puppet motion patterns, such as walk, fight, nod, laugh, wave, etc. Beside, the 
real puppet is controlled with three sticks which are fixed on the puppet’s neck and two hands 
separately, and the motion pattern of other puppet parts is affected by gravity. Recently, there 
are some research works on shadow puppets focusing on the user body interaction with the 
virtual shadow play, i.e., the puppet’s motion imitates the user action [9] [10] [11]. But this 
method can not maintain some puppet’s specific action style. For manipulation, we identify 
lots of motions for the animation and collect instances from a set of shadow puppetry videos. 
The conversion guideline is constructed by the collected instances. In the end, we train the 
self-organizing network by the conversion guideline, and then obtain the final 2.5D pose data. 

 

 
Fig. 1. Example of the real performance scene of Chinese shadow play 

 
In this paper, different from conventional 2D and 3D human pose estimation methods, 

we combine the advantages of these two methods for human pose estimation for driving 
characters in Chinese shadow play. Specifically, we consider human pose data from the 3D 
human pose estimation method as baseline features, and map the baseline features into the 
2.5D space according to the conversion guideline built by difference between real human pose 
and shadow puppet. Finally, we obtain some special limited human pose data that can better 
drive shadow puppet. In addition, we propose some operations to optimize human pose 
estimation network to get accurate and robust human pose data, such as spatio-temporal 
consistency, self-organization and HOG3D feature, etc. In dealing with the appearance feature 
of video frames at the same time, we generate clue information in time domain, and complete 
the 3D pose estimation from single images. Then, the constraint mapping of the 3D pose data 
is performed according to difference guide information. Our contributions are two-fold: 

(1) We propose a new method to obtain 3D human pose data as baseline data, which 
combines the advantages of 2D human pose estimation methods and 3D human pose 
estimation methods. 

(2) We design a special translation scheme for mapping pose trajectory to 2.5D space. We 
first constrain the 3D pose data into the 2.5D scale space, and then train a transformation 
network according to conversion guideline to get the final 2.5D data. Beside, some 
optimization schemes are also designed to make the translation pose data more stable, quick 
and accurate in driving shadow puppet. 
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2. Related Work 

2.1 Puppet Animation 

Recently, some research works have been conducted on digital puppetry. As a visualization 
tool for traditional cinematic animation, digital shadow puppetry transforms the movements of 
a performer to the actions of an animated character to provide live performance. Producing an 
animated film with shadow puppets by puppeteers is laborious and time-consuming. Recently, 
the solution of animation performed by human pose data emerges. Fu et al. [12] designed a 
skeletal structure for driving digital shadow play. Leite et al. [13] proposed an anim-actor 
technique, which is a real-time interactive puppets control system using low-cost motion 
capture based on human body movements of non-expert artists. Lin et al. [14] proposed a 
method based on semantic tagging script to create the drive data of shadow puppets in the 
Kinect environment. Hsu et al. [15] introduced a motion planning technique which 
automatically generates the animation of 2D puppets. Tan et al. [16] presented a method for 
interactive animation of shadow play puppets by real-time visual simulating using texture 
mapping, blending techniques and blurring effects. Kim et al. [17] presented a 2D shape 
deformation of the triangulated cartoon which is driven by its skeleton and the animation can 
be obtained by re-targeting the skeleton joints to the shape. However, this method based on 2D 
pose might lose the micro-depth information and some special action pattern, such as the entry 
exit, the horizontal rotation of the body and arm waving. 

Recently, the solution of puppet animation performed by 3D appears. Robert Held et al. [18] 
presented a method that allows users to quickly create a animations by performing the motions 
with their own familiar puppets. Shin et al. [19] proposed to transfer motion capture data to 
animated characters using the notion of dynamic importance of an end effecter. Theses 
methods are memory and time consuming. In this paper, we focus on constrained compression 
of 3D human pose data and mapping guideline from 3D to shadow puppet. 

2.2 Human Pose Estimation 

In the extraction of human pose data, the key step is human pose estimation. The 3D human 
pose estimation method is mainly based on image and single feature. Traditional methods [20] 
[21] [22] [23] rely on manual feature engineering to construct the posture of the human body. 
Manual features of human pose were aggregated into pose sets, and then the method of 
generating model search was used to obtain a reasonable inference corresponding to the parts 
of the body. The traditional methods of 3D pose estimation based on graph structure to get the 
estimation accuracy are less satisfactory. The deep learning framework is becoming the 
mainstream method. A powerful automatic functional network is built by the deep learning 
framework. Abundant low levels of expression characteristics is regressed to construct a 
mapping from image to 3D human pose, and using a variety of pose characteristics of joint 
prediction estimation of 3D human pose data in principle return or detection [24] [25] . 
Shotton et al. [26] proposed a method to predict 3D positions of body joints from a single 
depth image. They take an object recognition approach, designing an intermediate body parts 
representation that maps the difficult pose estimation problem into a simpler per-pixel 
classification problem. Finally, they generate confidence scored 3D proposals of several body 
joints by re-projecting the classification result and finding local modes. However, this method 
relied on single image feature, and the estimation error occurs in some fuzzy situations such as 
self-occlusion, mirror image and distortion caused by projection.  
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On the basis of the further integration of body parts information structured encoding, Li and 

Chan [27] and Ionescu et al. [28] took into account the global location information at the same 
time, and the structural features of parts of the human body, improving the 3D human pose 
estimation accuracy. Yasin et al. [29] proposed a method of RGB image based on single input 
dual pose data combined with 2D and 3D pose data, because only considering the global 
location information, the actual match is not accurate.  
Later studies have found that the addition of global or structured logical features to the deep 
learning network makes the results of the 3D human pose estimation more accurate. It is 
means that researcher need utility 2D poses to predict 3D poses [30] [31] [32] [33] [34]. These 
approaches usually generalize better poses estimation since these methods can benefit from 
the state-of-the-art 2D pose estimators or methods. For example, Chen and Ramanan [31] 
proposed a method to predict 3D pose based on 2D pose. They handle the 2D pose estimation 
considering the camera coordinates and then the estimated poses are matched to 3D 
representations by means of a nonparametric shape model. Martinez et al. [34] proposed a 
simple fully connected residual network to directly regression 3D coordinates from 2D 
coordinate. 

However, the above method has certain dependence on the 2D human pose data processing 
depth information, but the information may be missing some of the camera’s perspective, 
resulting in the actual matching is not accurate, and only consider the location information of 
the feature in the whole process, so there are the problems of instability of the result of pose 
estimation inaccuracy and time on the domain. Therefore, the method of combining the global 
location information regression and the joint detection with other additional features, namely 
the method of 3D human pose estimation using multiple features is proposed. In the 3D pose 
estimation of video, we also use the method of maintaining the inherent consistency of space 
and time, and combine the 3D pose estimation method with multiple features. Tekin et al. [35] 
used structured characteristics of the relationship between body parts to improve the precision 
of 3D human pose estimation, but before the work is carried out in a single image above, also 
considering the 3D human pose estimation in consecutive video frames, and is added on the 
basis of the motion characteristics of human body image method 3D pose estimation, the 
image cube from short sequences extracted from the spatial and temporal characteristics, and 
the degradation of 3D pose, to capture the temporal information. Theobalt [36] proposed a new 
method combining 2D and 3D real-time attitude motion estimation, this method not only 
considers the global location information, but also considered to use motion features to make 
the spatio-temporal domain more stable overall detection. 

In the paper, we focus on human pose data for driving virtual Chinese shadow play in 2.5D 
mapping scene obtained from real scenario. We consider the use of 3D human pose estimation 
method, while considering the actual difference between real scene and shadow play scene. 
The depth feature of 3D human pose estimation method is classified into an implicit feature, 
and the implicit feature is mapped in 2.5D space according some rule studied from difference 
between real scene and shadow play scene, and the stereo and effect drive data is obtained. 
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Fig. 2. The workflow of the main method with two stages for 2.5D pose data 

3. Overview 
As shown in Fig. 2, our method can be divided into two stages. The first stage is mainly used to 
obtain the initial 3D pose estimation data as the baseline, and the second stage is designed for 
3D pose data constraint mapping to 2.5D pose from the 3D baseline data. In order to 
compensate for the loss of data features in the previous step for constraint, the skip scheme is 
proposed, and this branch contains pose trajectory of human in the time domain. The scheme 
compensates continuity of motion avoiding action fusion. The motion data is rectified by the 
HoG3D feature. Finally, relying on difference between real human motion pose and shadow 
puppets motion, the 2.5D pose driving data is generated. Technically, in the first stage, we 
obtain the 2D human pose data on single video frame by the method based on global 
appearance features and structured human body part features. And then the roughly 3D human 
pose data is obtained by the CNN framework from the 2D pose data and the original global 
appearance features. We build the network by using the multi-class network and the 
self-organizing feature map network. After obtaining the 3D pose data, it is transformed into 
the 2.5D scene by mapping guidelines. In order to improve the fluency of puppet’s movements 
driven by 2.5D pose data, we will track the pose data by motion compensation and rectify the 
2.5D pose data by a skip branch. Finally, the animation of the shadow motion effect of the 
shadow play model is obtained. In the next section, we will describe each step in detail. 

4. Main Method 

4.1 Initialization of 3D Pose Estimation Data 

 
Fig. 3. Example of 2D pose data acquisition. The processing combines the global image appearance 

features and human structure features. 
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Fig. 4. Multiclass classifier module. Note that b is the confidence score feature map of each joint part. 
 
The acquisition of the initial 3D pose data needs the help of the 2D pose data. With the 
assistance of 2D pose data, the joint data is extracted from the known 2D position of joint 
points by regression, which includes three ingredients, namely 2D pose estimation, 
self-organization, and regression for 3D pose data. 

2D pose estimation: In order to obtain the 2D human pose data, we use the procedure as 
shown in Fig. 3. The overall network [37] can be divided into two parts, and the training 
process is also carried out separately. The first part is a multi-classifier module [38]. As shown 
in Fig. 4, the output definition of this multi-classifier module is ( )g  . This multi-classifier is 
designed for prediction of each body joint parts, and getting the confidence scores. Here we 
use the Gaussian peak function to represent the confidence map of the body joint part 

{ }1,2, ,12p∈  . And the Gaussian peak function is defined as follows: 

( )
( ) 2
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i
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 − = −  
 

                                                (1) 

where iy  denotes the ground-truth position of body joint part p , and σ  controls the spread of 
the peak. We assume that 1-stage has J  confidence maps ( { }1,2,J ∈  ) and use 2L  distance 
as the loss function 1f : 
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where ( )W p  denotes the penalty item in the training process and it makes the loss function 
converge better. The structured features S  are obtained after the structured spatial consistency 
learning process [39]. The second part of the training process also uses 2L  distance. The only 
difference is that there is an original input to reduce the vanishing of the feature gradient: 
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where t  is the prediction over successive stages, { }1, ,t T∈  . The 2D pose data of each body 
joint part will have a confidence score feature map, which is derived from 

( ) ( ); ;p
zb p g x G= Φ                                                        (6) 

SOM extraction: Self-organized feature map (SOM) is a feature extracted by 
self-organizing network automatically [40]. And we use it to get abundant low-level pose data. 
SOM network is a fully connected self-organizing network. It can fulfill automatic 
unsupervised learning, which is similar to an auto-encoder network. In the whole process of 
the network, it can automatically extract the image features. It adopts the principle idea of 
sparse coding. The high order characteristics are sparsely coded and the features are 
reconstructed to achieve the goal of constructing rich low-level abstract image features. The 
operation principle of the self-coder is similar to the principle of principal component analysis 
(PCA), focusing on the principal component features of the image, which can realize the 
function of noise removal. And then we use the self-organization network in deep 
convolutional neural networks to obtain the initial 3D pose data by regression. 

Regression Method for 3D Pose Data: In the previous steps, we have obtained 2D pose 
data and low-level features abstracted from SOM self-organizing features. So we can combine 
2D human pose data to generate 3D human pose data based on the underlying features. In 
order to obtain 3D human pose data, we need to perform two steps, that is to obtain 2D human 
pose data, and then combine it with 3D human pose estimation network to obtain 3D pose 
estimation. The 3D pose estimation network consists of two parts, namely SOM network and 
location regression network.  

Let Y  be encoded as 3D pose position coordinate vector, X  is the feature vector of the 
image. We use X  to infer Y  by regression methods [41] [42] [43], so the regression model 
function is: 

( )i iY f X=                                                            (7) 
where i  represents the thi  body joint point. We optimize the 2L  distance of the 3D pose 
vector directly using the predicted results and the ground-truth results by the training 
procedure. The optimization formula is to minimize it by 

2*
2

arg min i i
i

Y Y−∑                                                    (8) 

where *
iY  indicates the thi  ground-truth body joint part position data. The model parameters of 

the regression network are trained. However, there are some difficulties in the actual 3D 
human pose estimation due to the problem of self-occlusion or mirror ambiguity in the image. 
So here we only get a rough initial 3D human pose estimation data. 

4.2 Data Mapping and Rectification in 2.5D Space 

2.5D Space Data Constraint Mapping: The initial 3D pose data we get is similar to 
coordinate ( ), ,x y z  of each joint. Then, we are going to map it to the 2.5D space scene 
according to difference between real scene and shadow play scene. First, we would map it to a 
2.5D space scene, so the data on the z  dimension of the 3D point coordinate is limited to a 
certain range. Here, we restrict the range of depth dimension z  between [ 10, 10]− by 
standardization : 

( )min' 10 ki iz z z= − + −                                                     (9) 
where k  denotes the normalization coefficient calculated by 

( )max min20k z z= −                                                      (10) 
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Fig. 5. A visual example of pose estimation data. (a), (b), (c), and (d) denote the original image, 2D pose 

estimation data ,3D pose estimation data, and constrained 2.5D pose estimation data, respectively. 
 

As shown in Fig. 5, our 3D human pose estimation data is obtained based on 2D human pose 
estimation and some low-level features. Through the constraint normalization, the axis data 
can be constrained to [ 10, 10]− . In order to establish the coordinate mapping relationship 
between the joint points of the real human pose data and the shadow puppets, we need 
establish the 2.5D scene of shadow play according to the distribution of the joints of the real 
human pose. In addition, we need to consider the movement of shadow puppets, because the 
shadow puppet is driven by the joints in the puppet model skeleton. In short, the structure and 
movement of shadow puppet strictly follow programming norms, so we should design the 
standard according to the analysis of difference between real human pose and shadow puppet. 
The body structure of shadow play is divided into eleven components and twelve components 
based on literary and martial arts, respectively. In this paper, we take the twelve component 
puppet as an example. And then we learn the difference mapping between real human pose and 
shadow puppet by auto-encoded network with conversion guideline. 

Action of conversion guideline: It is easy to control the puppet with 2.5D pose data. 
However, this is only true for simple human movements, such as moving legs, jumping, 
waving hands, etc. Those stereoscopic turn and complicated actions, e.g., back flips, splits and 
turn, could not be performed by the normal 2.5D pose data. We should define the puppet 
motion patterns. We show the part conversion guideline in Table 1. 

 
 

Table 1. The conversion guideline list for puppet 
Motion pattern of the 

puppet 
Real human pose 

To walk left Moving the leg step to right (including the side and the front) 
To walk right Moving the leg step to left (including the side and the front) 

To roll left Sharply preparatory action of rolling left or forward 
To roll right Sharply preparatory action of rolling right and backward 

Left somersault Arms stretching up-left or up-forward 
Right somersault Arms stretching up-right or up-backward 

Splits Splitting two legs with an angle of ≥  60 degrees 
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Rectification: The pose data obtained by the above method would suffer from unnatural 
phenomena, so it is necessary to further performing the process of rectification. So we will 
manipulate the overall data in the time domain of the video. Motion compensation is 
performed on the shadow play video frames to counteract the unnatural movement caused by 
data constraints and data mapping. we use the calculation features for analyzing 3DHoG 
feature [44] [45] [46], because it has the appearance of encoding information and motion 
information of human body in the image, which is composed of a group of equally spaced fine 
grained data cells, and calculate the gradient of each 3D spatiotemporal characteristics and the 
histogram. The characteristics of the overall space division are divided into a plurality of cube, 
and each cube is an independent unit. Then for the same partition, we will select a small cube 
which is divided into smaller units. The HoG features can be described as a polygon and can 
be used to calculate the final average gradient in this small unit. We will apply this feature to 
rectify the final driving data. 

5. Experiment and Discussion 
Based on the above algorithm, we conducted various experiments. All experiments were run 
on a computer configured as follows: Intel Core i5-4460 3.20 GHz CPU, NVIDIA GeForce 
GTX745 GPU, 8 GB RAM. In our experiment, we created Chinese version models with the 
software of 3DS Max.  
 

5.1 Datasets 
We ran our method on several datasets, including YouTube Pose, Human Eva-I [48], 

Outdoor Pose [49], MPII Human Pose Dataset [50], and Leeds Sports Pose Dataset [51] etc. 
Our experimental process is divided into three parts including the 2D human pose estimation, 
3D human pose estimation, and the 2.5D scene after constraint and mapping. We focus on 
experimental analysis and comparison on Human Eva-I and Outdoor Pose datasets. Finally, 
we will show a series of visual data in 2.5D scene, and compare the results with 3D real human 
pose estimation results.  

5.2 Experiments and Analysis 
Experiment 1: 2D human pose estimation 

In this section, we compared and analyzed some state-of-the-art methods of 2D human pose 
estimation. As shown in Fig. 6 and Fig. 7, we have compared with methods of Park and 
Ramanan [52], Ramakrishna et al. [49], Chen and Yuille [53], Zhang and Shah [54] on two 
datasets of Human Eva-I and Outdoor Pose.  From the visualization, we can find that previous 
methods have some pose estimation errors on two datasets. When the human limbs are 
occluded or articulated, the pose estimation error of the comparison methods would be easily 
generated. And the quantitative analysis on Outdoor Pose Dataset is shown in Table 2. It can 
be seen that our method outperforms existing methods and can achieve an average PCP score 
of 0.984. These results demonstrate that our methods can greatly improve the accuracy in 
some parts, and some of self-occlusion pose case can be better inferred. 
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Fig. 6. 2D pose estimation comparisons with the state-of-the art methods for the Human Eva I. The red 

circle on the image is an apparently error estimation. 
 

 
Fig. 7. 2D human pose estimation comparisons with the state-of-the-art methods for the Outdoor Pose 

Dataset. The red circle on the image is an apparently error estimation. 
 

Table 2. Precision comparison on Outdoor Pose Dataset with methods the state-of-the-arts 
Method Head Torso U.L L.L U.A L.A Average 

Park and Ramanan [52] 0.99 0.83 0.92 0.86 0.79 0.52 0.82 
Ramakrishna et al. [38] 0.99 0.86 0.95 0.96 0.86 0.52 0.86 
Chen and Yuille [53] 1.00 1.00 0.98 0.94 0.94 0.85 0.95 
Zhang and Shah [54] 1.00 1.00 0.97 0.98 0.95 0.88 0.96 

Li and Liu [55] 1.00 1.00 0.98 0.98 0.96 0.98 0.98 
Our method 1.00 1.00 0.98 0.98 0.96 0.96 0.98 

 
Experiment 2: 3D human pose estimation 

In this experiment, we first present some qualitative results. Fig. 8 shows the results on 
challenging examples from the Outdoor Pose Dataset. We choose examples with 
self-occlusion. To demonstrate the accuracy of the 3D human pose estimation predictions, we 
visualize with novel viewpoints. It can be seen that our method can produce valid results for 
challenging images with self-occlusion and other challenging poses. This implies that our 
method can reliably estimate 3D human pose estimation. 
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Fig. 8. 3D pose estimation results on the Outdoor Pose Dataset 

 

 
Fig. 9. Visual results of 3D pose estimation and 2.5D pose estimation on the Outdoor Pose Dataset. The 

bottom row is the 2.5D pose estimation results. 
 

 
Fig. 10. Visual results of 3D pose estimation on the Human Eva I dataset. The bottom row is the 2.5D 

pose estimation results. 
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Comparison with state-of-the-art 3D pose estimation methods:  

Different from the network structure in [27], our network replaces the front part of the 
network in [27] with two parallel networks, i.e., a new 2D pose feature network and a SOM 
network. The time complexity of our network is ( )2 2

in outO M K C C⋅ ⋅ ⋅ , where M  is the output 
feature map, K  is the length of the side kernal, inC is the channel of every convolution kernal 
and outC  is the output channel. If the time complexity is too high, the training and prediction 
of the model will consume a lot of time. In comparison with [27], we adopt abundant 1 1×  
convolution kernals to extract features. Therefore, our method can obtain real-time 
performance and better accuracy as shown in Table 3.  

Compared with the methods in [29] and [31], our structure has no advantages in accuracy. 
However, our goal is to drive virtual Chinese shadow play in a 2.5D scene, we not only need to 
take accuracy into consideration, but also account for speed and the number of parameter. 
Both the methods in [29] and [31] use a large of 3D pose dataset to assist structure in matching 
3D pose. And the method in [29] still does not achieve real-time performance when the 
number of main parameter K reaches the minimum. In contrast, we only use human Eva-I 3D 
motion capture data to train our extraction of data network and the parameter will obviously 
reduce by introducing smaller convolution kernal such as 3 3×  and 1 1× . 

 
 

Table 3. Comparison among state-of-the-art 3D pose estimation methods and our method 
Methods Training 

time 
Prediction 

time 
Prediction 
accuracy 

Training dataset 

[27] slow Non-real time low Large(human 3.6M) 

[29] slow Non-real time high Large(human 3.6M and 
human evaI) 

ours fast Real-time medium Little(human eva I) 
 
 
Experiment 3: 2.5D pose estimation by pose data constraints and mapping 

This experiment aims to demonstrate the effectiveness of our final 2.5D driving pose data 
from 3D human pose estimation data. We show the results based on Human Eva-I, Outdoor 
Pose, and Human3.6M dataset. As shown in Fig. 9 and Fig. 10, the 2.5D driving pose data 
constraints and mapping from 3D human pose estimation data is more suitable for the special 
2.5D scene of shadow play. In this paper, we adopt the nine-part puppet design, i.e. the digital 
puppet consists of nine parts linked by eight joints and in total joints has 12 degrees of freedom. 
The eight joints are named according to their positions: neck, left and right shoulder, left and 
right elbow, waist and front and rear knee. These joints are rotation joints. Note that the waist 
has an additional prismatic joint along vertical axis of the upper body. The puppet parts are 
different from real human body. For driving shadow puppet, we should map the pose data 
according to mapping guideline. As shown in Fig. 11 and Fig. 12, this is some image sequences 
that are captured from shadow play animation controlled by pose estimation data. 
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Fig. 11. Motion control results of shadow puppet example 1. 

 

 
Fig. 12. Motion control results of shadow puppet example 2. 

5. Conclusion and Future Work 
This paper has proposed a new method to drive virtual Chinese shadow play in 2.5D mapping 
scene using human pose data obtained from real 3D scenarios. In order to obtain the 2.5D 
control data to drive the shadow puppets, we use the 3D human pose estimation method to 
obtain the initial data. In the following process of transformation, we constrained the initial 
data in a fixed range to shadow puppet side phenomenon. The feature transformation was 
carried out according to difference between real human pose data and shadow puppet driving 
data. Then, we can get the driving and mini stereoscopic expression data. In addition, we used 
the process of motion compensation and correction to maintain the optimization of overall 
pose trajectory flow and the optimization makes the pose trajectory data more smooth and 
stable to insure shadow play fluency. The 2.5D driving data were used in shadow puppets 
control and other special scenes. The automatic control animation of shadow play models were 
obtained by this method. The method of pose data extraction has reached higher estimation 
accuracy and shadow puppets movement is more fluent driven by 2.5D pose data. However, 
our method also has room for improvements. Our method consumes a lot of time in the 
extraction of pose data, because it can not automatically obtain the 2.5D pose data, which 
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needs two steps to process and optimize to get the final driving data. In the future, we would 
like to take more consideration to the effect of real-time estimation and control of shadow 
puppets. 
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