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Abstract 
 

Location-aware networks are of great importance for both civil lives and military 
applications. Methods based on line-of-sight (LOS) measurements suffer sever performance 
loss in harsh environments such as indoor scenarios, where sensors can receive both LOS and 
non-line-of-sight (NLOS) measurements. In this paper, we propose a data association (DA) 
process based on the expectation maximization (EM) algorithm, which enables us to exploit 
multipath components (MPCs). By setting the mapping relationship between the 
measurements and scatters as a latent variable, coefficients of the Gaussian mixture model are 
estimated. Moreover, considering the misalignment of sensor position, we propose a 
space-alternating generalized expectation maximization (SAGE)-based algorithms to jointly 
update the target localization and sensor position information. A two dimensional (2-D) 
circularly symmetric Gaussian distribution is employed to approximate the probability density 
function of the sensor's position uncertainty via the minimization of the Kullback-Leibler 
divergence (KLD), which enables us to calculate the expectation step with low computational 
complexity. Moreover, a distributed implementation is derived based on the average 
consensus method to improve the scalability of the proposed algorithm. Simulation results 
demonstrate that the proposed centralized and distributed algorithms can perform close to the 
Monte Carlo-based method with much lower communication overhead and computational 
complexity. 
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1. Introduction 

Wireless sensor networks (WSNs) consist a large number of power-limited sensors that use 
wireless transmission to communicate with neighbors [1]. They can collaboratively estimate 
the position and state of a target with limited power and computational capabilities. WSNs 
localization has been employed in many applications such as habitat monitoring, customers 
tracking, and control of appliances [2]-[5]. 

For line-of-sight (LOS) propagation scenarios, existing algorithms for cooperative 
localization [6], object tracking [7], [8] and simultaneous localization and mapping (SLAM) 
[9] have been well studied. However, for the applications in commercial shopping malls, 
urban canyons and jungles with various obstacles, these algorithms designed for LOS signals 
result in severe performance loss due to the multipath components (MPCs) in the received 
signal, which are a mixture of LOS and a bunch of non-line-of-sight (NLOS) components 
[10]-[12]. Therefore, studies on how to deal with MPCs in WSNs localization is interesting 
and challenging. An iterative method is proposed in [10] to estimate the MPCs' ranging 
probability density function (pdf) based on a Gaussian mixture model. However, the 
assumption that all the received measurements are a mixture from both LOS and NLOS paths 
may lead to performance loss, especially when sensors only receive one kind of measurement. 
A method based on detection and elimination of NLOS components in MPCs is proposed in 
[13]. Moreover, [14] and [15] use plentiful LOS components to replace NLOS measurements. 
However, the performance of these methods become very poor when sensors cannot receive 
enough LOS components. In [16], it is proved that single reflections of NLOS components 
contain additional position information which can effectively improve the localization 
accuracy. For convenience, we use NLOS to represent the single reflection in the remaining 
part. 

Cooperative localization algorithms based on TOA measurements have been studied in 
[17], [18], in which the NLOS measurements are also taken into consideration. Given the map 
of layout, a TOA based localization algorithm that utilizes NLOS measurements is proposed in 
[19]. Although superior performance can be observed, the requirement of detailed map 
information is impractical. To solve this problem, methods based on the main scatter's number 
and heading angles are proposed in [20]-[23], which do not need layout information. 
Meanwhile, considering sensors and target may be noncooperative, an RF localization method 
is proposed in [22], using both the time-difference-of-arrival (TDOA) and angle-of-arrival 
(AOA) measurements, which makes great contributions to the availability of localization 
system. Nevertheless, this method relaxes layout constraint by a strong assumption that each 
sensor only receives one NLOS path with known data association (DA) information, which 
may have poor performance in complex multipath environments. Moreover, the above 
researches do not consider the misalignment or movement of sensors in WSNs, which may 
also impact the location performance [24]-[26]. In this paper, we first propose a method to 
solve the DA problem by giving the number of main scatters and their heading angles. Then 
we extend our algorithm by considering the position uncertainty of sensors. 

Practically, sensors are often randomly distributed with limited power. In a centralized 
implementation, the raw measurements obtained by sensors have to be transmitted to a data 
fusion center (FC) which is probably far away. The stability of such centralized algorithms can 
not be guaranteed. Alternatively, a consensus-based [27]-[29] distributed implementation 
without FC is proposed in this paper. 
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In this paper, we focus on a 2-D target localization problem based on TDOA 
measurements with inaccurate collaborative sensors in a multipath environment. Expectation 
maximization (EM)-based DA process is proposed based on the Gaussian mixture model. We 
propose our centralized space-alternating generalized expectation maximization (SAGE) 
-based [31] algorithm to locate the target and remove the effects of inaccurate sensors [32], in 
which the minimization of Kullback-Leibler Divergence and Taylor expansions have been 
employed to reduce the complexity and derive a closed-form expression in the E-step. Finally, 
a consensus-based distributed implementation of the proposed algorithm is given. The main 
contributions of this paper can be summarized as follows: 

• We propose a novel EM-based DA process using a Gaussian mixture model in 
multipath environments based on the TDOA and AOA measurements. Therefore, both 
LOS and NLOS components can be utilized in target localization. 
• A centralized SAGE-based algorithm is proposed to jointly estimate the target 
position and update the position information of inaccurate sensors. The distribution of 
sensor uncertainty is approximated to a 2-D circularly symmetric Gaussian distribution 
via KLD minimization. Taylor expansion is employed to linearize the nonlinear confluent 
hypergeometric function. Accordingly, a closed-form expression can be derived in the 
E-step and the complexity of the proposed algorithm can be significantly reduced. 
• To further improve the scalability of the target localization in complex scenarios, a 
beneficial distributed implementation of the proposed algorithm is given based on the 
average consensus. 
The remainder of this paper is organized as follows. Section II introduces the system 

model and the problem at hand. Section III gives the proposed EM-based DA method on a 
Gaussian Mixture model. Section IV elaborates the centralized algorithm for joint 
considerations of localization and sensor position uncertainty and derives the distributed 
implementation of the proposed algorithm based on average consensus. Comprehensive 
simulations are shown in Section V. Finally, concluding remarks are made in section VI. 

2. System Model 
We consider a 2-D target localization in a multipath environment, as shown in Fig. 1. 

Assume that the number of scatters L  and the orientations of scatters are known. There are a 
total of N  sensors, in which each sensor may receive signals of a target from LOS and/or 
NLOS paths. The number of signal paths (i.e., measurements) received by sensor i  (i.e., iS ) 
is denoted as iM . Using ultra-wideband technologies, these signals can be distinguished. We 
define LOSi∈  if iS  received signal from LOS path; otherwise, \LOSi∈ . We denote 

{1,2,...N}=  as the set of the indexes of sensors, where \ LOS LOS= ∪   . 

Since the target is non-cooperative, all the sensors have to resort to the TDOA. Without 
loss of generality, the first measurement of sensor 1, i.e., 1S , is used as the reference. Then, the 

j -th TDOA measurement received by the i -th sensor ,
ˆ

i jd∆  is given as follows 

'
,, , 1,1 1,1 1

ˆ g( , ) ( ) g( ) ( ,, )
~

q p q pT T
i ji j i j k id nq g q g∆ = − − − +                            (1) 
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where [ ]q T
q qx y=  is the ground-truth position of the target. [ ]p T

i i ix y=  is the recorded 

position of iS  for i∈ . ,i jq  is the AOA of the j -th signal path at iS . kg  is the orientation 

of the k -th scatter, which is associated to the measurement ,
ˆ

i jd∆ , for {1,...,L}k∈ . '
1,1g  is 

assumed to be known as the orientation of the scatter associated to sensor 1, which is explained 

and proved in [22]. ,

~

i jn  is the TDOA measurement noise, which is a zero-mean Gaussian 
random variable with variance 2

,i jσ . The function ,g( , )i j kq g  is given by 

,
,

cos1g( , ) ,
sincos( )

k
i j k

ki j k

g
q g

gq g
 

=  −  
                                      (2) 

which can be derived by projecting distance along the direction between the target and iS . 

Besides, the AOA measurement ,î jq  is contaminated by noise, which can be modeled as 

, , ,î j i j i jq q η= + , where ,i jη  is the noise with uniform distribution. 

 
 

Fig. 1. An example of the NLOS and LOS paths from the target to different sensors. 
 

In (1), besides the target position q , the scatter index k  associated to the measurement 

,
ˆ

i jd∆  can not be directly observed. Moreover, the ground-truth position of sensor ip  might 
not be available due to misalignment of sensors. We further model the two types of uncertainty 
in the following subsections. 

2.1 The Uncertainty of Model Coefficients 
Generally, the uncertainty of model coefficients of the range measurement includes two 

questions: (i) Is the ranging measurement coming from LOS or NLOS signal path? (ii) If a 
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NLOS path exists, which scatterer is the signal reflected from? In the data association problem, 
we treat the scatter index k  in (1) as an unknown variable. The first measurement in each 
sensor has the probability that can come from the LOS path or the NLOS path from the scatter 
k , the first measurement ( 1j = ) of each sensor has L 1+  submodels in Gaussian mixture 
model; for the remaining measurements, there are L  submodels. We denote the number of the 
submodels ,i jK  from the j -th measurement of the i -th sensor as 

,

1, 1
, 1 .i j

L j
K

L j
+ =

=  ≠
                                                (3) 

We define a latent variable for the mapping information , ,i j kρ . When the j -th 

measurement comes from the k -th model, , , 1i j kρ = . Otherwise, , , 0i j kρ = . Since the 

measurement ,
ˆ

i jd∆  in (1) follows Gaussian distribution, without other information, the 
likelihood function of each sensor becomes a Gaussian mixture model [33]. Here, we define 

i , jK
, , 1 1 1{{{ } } }iM N

i j k k j iρ = = ==ρ  and i,jK
, , 1 1 1{{{ } } }iM N

i j k k j iα = = ==α , where iM  is the number of 
measurements at the i -th sensor. Then we have 

,

, , 1,1 , , , , , , 1,1
1

ˆ ˆ( | , , , , ) [ ( | , , )],q ρ α q
i jK

i j i j i j k i j k i j i j
k

p d dq q α ρ q q
=

∆ = Φ ∆∑                   (4) 

where , ,i j kα  is the weight, 
i , jK

, , , ,
1

0, 1i j k i j k
k

α α
=

≥ =∑ . In (4), the first path includes L+1 

possible modes, and the other path includes L possible modes at each sensor. 

Moreover, we have 
2

, ,
, , 1,1 2

ˆ( )1ˆ( | , , ) exp( ) ,
22

i j i j
i j i j

d
d

µ
q q

σpσ

∆ −
Φ ∆ = −q                          (5) 

with 
'

, , 1,1 1,1 1
ˆ ˆg( , ) ( ) g( , ) ( ).q p q pT T

i j i j k iµ q g q g= − − −                                (6) 

Here, for 1j = , the ( 1)L + -th submodel corresponds to the measurement coming from the 
LOS path. Therefore, in this case, we treat 1 ,1L ig q+ = . Based on the model in (4), the problem 
of the detection of LOS or NLOS path and that of the estimation of the signal reflected from 
which scatter are transferred into the estimation of weight , ,i j kα , by introducing a latent 

variable , ,i j kρ . 

2.2 The Uncertainty of Sensor Positions 
In practice, the position of sensors could be inaccurate due to the misalignment of sensors. 

We denote the position uncertainty of the i -th sensor as [ ]p T
i i ix y∆ = ∆ ∆ . The ground-true 

position of sensor i  is [ ]p T
i i ix y= , which can be written as p p pi i i= + ∆ . Then, we have 
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,, , 1,1 1,1 1
ˆ ˆ ˆg( , ) ( ) g( , ) ( ) .

~
q p p q pT T

i ji j i j k i id nq g q q∆ = − −∆ − − +                       (7) 

The sensor's position uncertainty pi∆  is modeled as a 2-D Gaussian distribution with 
zero mean and covariance matrix pΣ

i∆ , i.e., 

T 1
1

2 2

1 1( ) exp ,
2(2 ) | |

{ }p

p

p p Σ p
Σ

i

i

i i ip
p

−
∆

∆

∆ = − ∆ ∆                            (8) 

with a covariance matrix 
2

p 2 ,i i i

i

i i i

x x y

x y y

σ ωσ σ

ωσ σ σ
∆ ∆ ∆

∆
∆ ∆ ∆

 
=  
  

Σ                                               (9) 

where 
ixσ∆  and 

iyσ∆  are the standard deviations on x-axis and y-axis, respectively, and ω  is 
the correlation between x-axis and y-axis.  

3. Expectation Maximization-based Data Association 

In this section, we first assume sensor positions are accurate, i.e., p pi i= . In the 

proposed DA process, we are interested in parameters [ ]Tx = q,θ,α . The log-likelihood 
function is given by considering the mapping information , ,i j kρ  as follows 

i,j

i , j

i , j

K
, , 1 1 , , 1 1 1

KN N

, , , , , , ,
1 1 1 1 1

KN

, , , , , ,
1 1 1

ˆˆ ˆˆln ( , , | ) ln ({{ , } } ,{{{ } } } | )

ˆln ( | ) ln ( | , , )

ˆln ( | , , ,

d θ ρ x x

q

q

i i

i i

i

M MN N
i j i j j i i j k k j i

M M

i j i j i j k i j i j k
i j i j k

M

i j i j i j k i j k
i j k

p p d

p p

p d

q ρ

q q ρ q α

q α ρ

= = = = =

= = = = =

= = =

∆ = ∆

= +

+ ∆

∑∑ ∑∑∑

∑∑∑ ),

          (10) 

where 
, , , , , , , , , , , ,( | , , ) ( | , , ) ( ).i j k i j i j k i j k i j i j k i j kp p pρ q α ρ q α ρ∝q q                          (11) 

Since the space of possible target location is restricted to the area spanned by the 
direction of the AOA at the sensor and the direction opposite to the angle of departure (AOD) 
at the target [22], we have , , , , ,( | , , ) 1i j k i j i j kp ρ q α =q  in (11). As each model has a certain 

weight , ,i j kα , the prior of , ,i j kρ  can be written as 
, , , ,(1 )

, , , , , ,( ) ( ) (1 ) .i j k i j k
i j k i j k i j kp ρ ρρ α α −= −                                        (12) 

1) E-step: The E-step is to account for the mapping information. Here, we have 
1 1ˆ ˆˆ ˆ( , ) ( | , , ) ln ( , , | ),

ρ
x x ρ d θ x d θ ρ xl lp p− −= ∆ ⋅ ∆∑                           (13) 

where l  is the number of iteration and 
1 1 1ˆˆ ˆ( | , , ) ( | , ) ( | ).ρ d θ x d x ρ ρ xl l lp p p− − −∆ ∝ ∆ ⋅                                   (14) 
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 2) M-step: The M-step is to maximize 1( , )x xl−  with respect to x , i.e., 
1arg max ( , ) .

x
x x xl l−=                                                  (15) 

The E-step and M-step will repeat for iterN  times until the estimation of target location q  

converges. Then, based on , ,
l
i j kα  for i, j1, ,Kk =  , we can perform DA to determine the 

model coefficients. We set *, ,
1

i j k
ρ = , with *

, ,arg max l
i j kk

k α= ; otherwise, , ,i j kρ  is zero in 

the Gaussian mixture model. 

4. Target Localization with Inaccurate Collaborative Sensors 
The position of sensors may be inaccurate in practice due to the misalignment of the 

sensors. In this case, the position error 1{ }p N
i i=∆  should be considered to improve the 

performance of target localization. However, when N  is large, using the above EM algorithm 
directly will lead to huge computational complexity and low convergence rate. To solve this 
problem, we first approximate the posterior distribution of p∆  by a 2-D circularly symmetric 
Gaussian distribution via Kullback-Leibler divergence minimization [34]. Then, we propose a 
SAGE framework to update the target position estimate q . Since the sensor's processing 
ability is limited, we consider both the centralized and the distributed network 
implementations of the proposed algorithms in the following subsections. We will show that 
the distributed algorithm can attain the performance of the centralized algorithm by using only 
the local information at each sensor.  

4.1 Centralized SAGE with Sensor Position Uncertainty 
Based on the DA process, the uncertainty of model coefficients related to α  is solved. 

Here, we define the parameters of interest as [ , ]x q θ= . Since the measurements are 
independent of each other, the likelihood function can be expressed as 

, , ,
1 1

ˆˆ ˆˆ( , , | , ) ( , , | , , ) .d θ p x p p q p
iMN

i j i j i i i j
i j

p p d q q
= =

∆ ∆ = ∆ ∆∏∏                        (16) 

Then, we have 
1 1 ˆˆ ˆ( , ) ( | , , ) ln ( , , , | ) ,

~
x x p d p x d θ p p x pl l

i i i i ip p d− −= ∆ ∆ × ∆ ∆ ∆∫                (17) 

where 

, , ,
1 1 1 1

ˆˆ ˆˆln ( , , , | ) ln ( | ) lnp( , , | ) .d θ p p x p p x
i iM MN N

i i i j i j i j i i
i j i j

p p dq q
= = = =

∆ ∆ = + ∆ ∆∑∑ ∑∑          (18) 

Since the first term in (18) does not depend on x , it can be dropped during the 

maximization of 1( , )
~

x xl− . Therefore, 1( , )
~

x xl−  can be reformulated as 

1 1ˆ ˆ( , ) ( | , , ) ln p( , , | ) .
~

x x p d p x d p p x pl l
i i i i ip d− −= ∆ ∆ × ∆ ∆ ∆∫                    (19) 

Using Bayes' rule, 1ˆ( | , , )p d p xl
i ip −∆ ∆  in (19) can be expressed as 

1ˆ ˆ( | , , ) ( ) ( | , , ),p d p x p d p x pl
i i i i ip p p−∆ ∆ ∝ ∆ ∆ ∆                               (20) 
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where ˆ( | , , )d p x pi ip ∆ ∆  is the likelihood function corresponding to the j -th measurement 

of iS . Since 1ˆ( | , , )p d p xl
i ip −∆ ∆  is in general not Gaussian, no closed-form expression of 

(19) can be obtained. To solve this problem, we approximate 1ˆ( | , , )p d p xl
i ip −∆ ∆  by a 2-D 

circularly symmetric Gaussian distribution, with zero mean and variance 2
pi

σ∆ , i.e., 
2

1
2 2

|| ||1ˆ( | , , ) exp( ) ,
2 2p p

pp d p x
i i

l i
i if

pσ σ
−

∆ ∆

∆
∆ ∆ = −                                  (21) 

The parameters in (21) can be optimized by minimizing the KLD, i.e., 
( )( || ) ( ) ln .
( )

pp p
p

i
KL i i

i

fD f p f d
p
∆

= ∆ ∆
∆∫                                         (22) 

By substituting (20) and (21) into (22), we have (23). More details are shown in Appendix A. 
1 1

1

1
, , ,

ˆ ˆ( || ) ( | , , ) ln ( | , , )

ˆ( | , , ) ln ( )

ˆ ˆˆ( | , , ) ln ( , | , , , )

p d p x p d p x p

p d p x p p

p d p x q p p p
i

l l
KL i i ii i

l
i i ii

l
i i j i j i i j ii i

j M

D f p f f d

f p d

f p d dq q

− −

−

−

∈

= ∆ ∆ ∆ ∆ ∆

− ∆ ∆ ∆ ∆

− ∆ ∆ × ∆ ∆ ∆

∫
∫

∏∫

      (23) 

1) NLOS Case: For sensors that do not have LOS component to the target, by combining 
(46)-(49) in Appendix A, we obtain (24). 

2 2 2 2
2

2 2 2

2 2 2 2 2 2
, , , , , ,2

1

21( || ) ln
2(1 )

1 2 2 2 ( ) ( )
2

[ ]

[ ]

p p
p

p

i i

i i

i i i

i

i i

i i i i
KL y

x y x

M

i j i i j i i j i j i i i j i i j x i
j i

x y x yD f p

E x F y a b x y a x b y

σ σ
σ σ

ρ σ σ σ

σ σ
σ

∆ ∆
∆ ∆

∆ ∆ ∆

∆ ∆
=

+ +
= − + + −

−

− + − − + − +∑



      (24) 

where  is a constant.  
Then the global pl∆  can be expressed as 

1 1ˆ ˆarg min ( ( | , , ) || ( | , , )) .{ }p p d p x p d p xl l l
p KL i iD f f− −

∆∆ = ∆ ∆ ∆ ∆             (25) 
The solution of (25) can be obtained by setting the partial derivatives of 

1 1ˆ ˆ( ( | , , ) || ( | , , ))p d p x p d p xl l
KL i i i iD f f− −∆ ∆ ∆ ∆  with respect to ,i ix y  and 2

pi
σ∆  to zeros. 

After this, we have ( , )pl l l
i ix y∆ = ∆ ∆ . And more details are shown in Appendix B. 

For the i-th sensor containing only NLOS components, we obtain (26). 

1 2 2 2 2
,\ , 0 , 0 , 0 ,2

1

, 0 , ,

1( ) ( ) ( ) 2( )H
2

2( )H 2K

[

]

~
q,q

iM
l

i LOS i j x i j y i j i j x
j i

i j i j y i j x y

a a q b b q a a q

b b q q q

σ
−

=

∝ − − + − − −

− − +

∑
      (26) 

2) LOS Case: Since the LOS component is much reliable than the NLOS ones, we drop 
the other MPCs in this case. Then, for sensor i  we have ( || )KLD f p  as 
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2 2 2 2
2

2 2 2

11
, 1
2 1 1

2 1 2
2

21( || ) ln
2(1 )

|| ||
|| || || ||

1 2 || ||
2

[ ]

( )

( )

p p
p

p

p q
p q p q

p q

i i

i

i i i i

i

i i i i
KL

x y x y

ll
i j i yl i x

i i il l
i i i

l
i

i

x y x yD f p

D y qx q x y

σ σ
σ

ρ σ σ σ σ

σ

σ
σ

∆ ∆
∆

∆ ∆ ∆ ∆

−−
−

− −

−
∆

+ +
= − + + −

−

−−
− − + +

− −

+ + − + �

                   (27) 

Similar to the NLOS case, we have ( , )l l l
i ix y∆ = ∆ ∆p , which is shown in Appendix B. Then, 

we can obtain the closed form of (26) as (28), 

, , , ,1 2
, , ,22

1 2
1 2

1 1 2

ˆ( | ) 1( , ) ln ( ) 2 ( )
2 22

|| ||1 ;1; 2 || ||
2 2

[

( ) ]

~

p

p
p

q q q q

p p q p p q

i

i

i

i j i j i j kl
i LOS i j i j

ii

l
li i

i i

p
D D

F

q q α pσ
σpσ

σ
σ

−
∆

−
−

∆
∆

∝ − −

+ ∆ −
× − − + + + ∆ −



   (28) 

where 1 1( ; ; )F a b c  is the first kind confluent hypergeometric function [35]. 
Since this hypergeometric function has a complex expression for analysis and calculation, 

we rely on the first order Taylor expansion around the previous estimation 1ql−  to obtain an 
approximated estimation. We adopt similar operations to [32] but we use the first order Taylor 
series to estimate [ , ]ql l l

x yq q= , i.e., 
1 1 1 1 1( ) ( ) ( )( ) ( ) , ( )q q q q

x y

l l l l l
q x x q y yf f f q q f q q− − − − −′ ′≈ + − + −                   (29) 

where 
2

1 1 2

|| ||1( ) ;1;
2 2

( )
p

p p qq
i

l
i if F

σ∆

+ ∆ −
= − − , then we have the following derivations [36]. 

2
1

12 2
1

( ) || ||1( ) ;2;
2 2 2

( )
p p

p p qq
x

i i

l l
l x i i i i

q
q x xf F

σ σ
−

∆ ∆

− ∆ + + ∆ −′ = −                  (30) 

2
1

12 2
1

( ) || ||1( ) ;2;
2 2 2

( )
p p

p p qq
y

i i

l l
y i il i i

q

q y y
f F

σ σ
−

∆ ∆

− ∆ + + ∆ −′ = −                 (31) 

Then (28) can be formulated as (32) by dropping the irrelevant terms.  
2

1 2
, , , 1 12 2

2

|| ||1 1( , ) ( ) 2 ( ) ;1;
2 2 2 2

|| ||

[ ( )

]

~

p
p

p p qq q q q

p p q

i

i

l
l i i

i LOS i j i j
i

l
i i

D D Fpσ
σ σ

−
∆

∆

+ ∆ −
∝ − − × − −

+ + ∆ −


(32) 

By substituting (26) and (32) into (17) and dropping the irrelevant terms, we have 

\

1 1 1
,\ ,( , ) ( , ) ( , ).

~ ~ ~
q q q q q q

LOS LOS

l l l
i LOS i LOSi i

− − −
∈ ∈= +∑ ∑                    (33) 

4.2 Distributed SAGE with Sensor Position Uncertainty 
The centralized method needs a fusion center which may involve high operating costs 

and increase the risk of failure if the fusion center break down [37]. To this ends, we propose a 
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distributed implementation of the proposed method. Specificially, an average consensus 

scheme is proposed to acquire the conditioned expectation of 1( , )
~

q ql
i

−  locally at each 

sensor. As 1( , )
~

q ql
i

−  are independent to each other, each sensor can calculate 
~

i  locally, 

i.e., 1 1
,\( , ) ( , )

~ ~
q q q ql l

i i LOS
− −=   or 1 1

,( , ) ( , )
~ ~

q q q ql l
i i LOS

− −=  . Then the global 

1( , )
~

q ql−  can be obtained as (33) to calculate the interested parameters in vector  [q , q ]T
x y . 

It is clear that average consensus aims for exchanging the conditioned expectation of the local 

log-likelihood functions 1( , )
~

q ql
i

−  between neighboring sensors. For the proposed 
distributed algorithm, we use p  to represent the iteration index of the consensus algorithm 
among sensors, and the update process can be written as 

( ) ( 1) ( 1) ( 1)
1 1 1 1

( 1) ( 1)
1 1

( , ) ( , ) ( ( , ) ( , )

( , ) ( , ),

( )~ ~ ~ ~

~ ~

q q q q q q q q

q q q q

i

i

p p p p
l l l l

i i k iki
k

p p
l l

i kii ki
k

ξ

ξ ξ

− − −
− − − −

∈

− −
− −

∈

= + −

= +

∑

∑





   

 

              (34) 

which includes the metropolis update rate as 
1/ max(| |,| |), for ,
1 , for ,

i

i k

ki ik k i
k

i k
i kξ ξ ξ ′

′∈

≠= =  − =


∑


 
 

where i  and k  denote the index sets of neighboring sensor of the sensor i  and k , and 

| |i  and | |k  stand for the numbers of neighboring sensors. After N iter
′  iterations, all 

sensors achieve consensus locally, i.e., 
(N ) (N )

1 1( , ) ( , )
~ ~

q q q q
iter iter

l l
i j

′ ′

− −=  . Finally, all sensors 
are able to update positions information simultaneously, i.e., 

(N )
1 1( , ) N ( , ).

~ ~
q q q q

iter
l l

i

′

− −= ⋅                                                 (35) 
The convergence of average consensus has been proved for connected sensor networks in [38]. 

As 1( , )
~

q ql
i

−  is continuous and sensors communicates with each other by wireless 

channels, particle-based methods are typically used to broadcast the 1( , )
~

q ql
i

−  among 
sensors. To obtain precise localization, a large amount of particles are required, which 
increases the complexity significantly. As a quadratic polynomial form exists in both (26) and 

(32), we can approximate 1( , )
~

q ql
i

−  as follows. For sensor i  which obtains LOS/NLOS 
signal, we can unify the expression as 

2 2
1

2 2

( ) ( )
( , ) .

~
q q i i

i i

i i

x x y yl
i x y x y

x y

q m q n
o q q

σ σ
− − −

≈ − − −                          (36) 

According to the quadratic polynomial approximation, in the average consensus operation, 
only the mean and variance of q  and the coefficient 

i ix yo  of x yq q  should be exchanged 
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among sensors, which reduces the communication overhead significantly. 
Referring to the metropolis update rate, the local likelihood function at the p -th iteration 

of the consensus algorithm can be given as 
2( ) 2

1
2 2

( ( ))( ( ))( , ) ( ) ,
( ) ( )

~
q q

i i

p
y il x i

i i x y
x y

q n pq m p o p q q
p pσ σ

− −−
≈ − − −                        (37) 

where 2 2( ), ( ), ( ), ( )l l
i i

l l
i im n

m p p n p pσ σ  and ( )l
io p  are updated as 

2
2 2

( 1) ( 1)( ) ( 1) ,
( ) ( 1)

( )l
i

l i ki

l l
l ii i ki i
i m

k xm

m p m pm p p
t p

ξ ξσ
σ σ∈

− −
= − +

−∑


                      (38) 

2
2 2

( 1) ( 1)( ) ( 1) ,
( ) ( 1)

( )l
i

l i ki

l l
l ii i ki i
i n

k yn

n p n pn p p
t p

ξ ξσ
σ σ∈

− −
= − +
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                          (39) 

2 1
2 2( ) ,

( 1) ( 1)
( )l

i
l i ki

ii ki
m

k xm

p
p p
ξ ξσ

σ σ
−

∈

= +
− −∑



                                          (40) 

2 1
2 2( ) ,

( 1) ( 1)
( )l

i
l i ki

ii ki
n

k yn

p
p p
ξ ξσ

σ σ
−

∈

= +
− −∑



                                           (41) 

( ) ( 1) ( 1).
i

l l l
i ii i ki i

k
o p o p o pξ ξ

∈

= − + −∑


                                                  (42) 

1) NLOS case: For the sensors which obtain NLOS components only, we adjust the 
1

,\ ( , )
~

q ql
i LOS

− 's expression and approximates it as follows 
22

1
,\ 2 2

ˆˆ

ˆ( )( ) ˆ( , ) ,
2 2

ˆ~
q q

l l
i i

ll
i li

i
m

yl x
i LOS x y

n

m q nq o q q
σ σ

− −−
≈ − − −                         (43) 

where ˆ,ˆ l l
i im n  and ˆl

io  are expressed as , 0 , 0ˆI / ( ), H / (ˆ ),l l
i ii i j i i jm a a n b b= − = −  

2 2 2 2
, 0 , 0ˆˆ / ( ), / ( )l l

i i
i i i j i i i jnm

M a a M b bσ σ σ σ= − = −  and 2

Kˆ
/

i

i

l
i

i

o
Mσ

= . 

2) LOS case: For sensors which obtain LOS components, as the nonlinear term exists, we 
adopt the first order Taylor expansion in (32), which becomes 

22
1

, 2 2

( )( )( , ) .
2 2

~
q q

l l
i i

ll
y il lx i

i LOS i x y
m n

q nq m o q q
σ σ

− −−
≈ − − −                          (44) 

For the i -th iteration, the local function 1( , )
~

q ql
i

−  is initialized based on (43) and (44). 

After several iterations, each sensor gets the global function 1( , )
~

q ql− . We maximize 

1( , )
~

q ql−  to obtain q 's final estimate, which can be written as 
[ (N ), (N )] .ql T

i iter i iterm n′ ′=                                          (45) 
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5. Performance Evaluation 

5.1 Simulation Setup 
We evaluate the performance of our proposed DA algorithm and localization algorithms 

in both centralized and distributed implementation. Without loss of generality, we adopt 
2100 100m×  space with one target q  and four sensors 1 4, ,S S . The important parameters 

related to the simulations are summarized in Table 1. Sensors' positions are 

1 2 3 4[20 20] , [80 30] , [60 90] , [70 70]p p p pT T T T= = = =  and the standard deviation pi
σ∆  

in Table 1 is assumed from 1 3m m∼ . The number of scatters is set to 8L =  in Fig. 1. The 
corresponding orientations are [0 ,86 ,150 ,90 ,111 ,55 ,135 ,11 ],g ° ° ° ° ° ° ° °= which hold 
smooth surfaces and long enough to reflect signals compared with other scatters. Furthermore, 
the ground-truth AOAs are [ 35 135 ;168 60 ;30 ; 155 152 ],° ° ° ° ° ° °= − − − −θ which 
corresponding to 1S  to 4S , as illustrated in Fig. 1. In this simulation scenario, the number of 

measurements ( 1 4| |~| |  ) that sensor nodes ( 1 4~S S ) received are set to [2, 2,1, 2]T  
respectively.  

 
Table 1. Important Parameters 

Parameter Note Value 
L×W Simulation space 100 100m m×  

1p  Reference node 1S  [20 20 ]Tm m  
q  Object node [40 50 ]Tm m  

, ,i j kα  Weights of the submodel 
i, j1 / K  

i∆p  Sensor i 's uncertainty ~ 0,( )
ii N σ∆∆ pp  

d
σ

∆
 Std. deviation for d∆    1m 

,i jη  Std. deviation for AOA 
, ~ Unif[ 3 ,3 ]i jη ° °−  

,i jK  
The number of submodels for first MPC 

The number of submodels for other MPCs 1, 9jK =  

i, jK 8, 1j= >  

 

5.2 Localization Performance 
We perform Monte Carlo simulations with 1,000 independent trials. A coarse localization 

of the proposed algorithm is evaluated according to the proposed DA method in section III, 
without considering sensor position uncertainty as in (10). The performance of the method in 
[10] is also plotted for comparison. It is seen in Fig. 2 that the localization error of the method 
in [10] is significantly greater than that of the proposed algorithm with DA. This is due to the 
fact that [10] does not perform the DA process, which makes the assumption that all 
measurements are mixture of LOS and NLOS. On the other hand, without considering the 
uncertainty of sensor position, the values of each submodel's weights become inaccurate, 
which increases the risk of mismatch in the DA process. Accordingly, we can see in Fig. 2 that 
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the localization performance of the proposed DA method becomes worse when increasing 
sensor position uncertainty. By comparing the results in Fig. 2, the proposed algorithm with 
small sensor position uncertainty outperforms the method in [10] and performs close to the 
ideal one, which demonstrates the effectiveness of DA process. 

 

 
Fig. 2. Coarse localization performance with different uncertainty of sensor position. 

 
We evaluate the localization performance by taking into account sensors' uncertainties 

with (33) and (45) in Fig. 3, which corresponds to the proposed centralized and distributed 
SAGE methods, respectively. Comparing the results in Fig. 2 and Fig. 3, we can observe that 
the proposed SAGE algorithm shows superiors performance by jointly updating the target and 
the sensors' positions simultaneously. Moreover, it is seen in Fig. 3 that the distributed 
implementation performs very close to the centralized method, which demonstrates the 
effectiveness of the quadratic polynomial approximation and the averaged consensus 
employed in the distributed implementation. 

 

 
Fig. 3. Localization performance of the proposed centralized and distributed implementations. 
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Fig. 4. The MSE performance of different estimators 

 
In Fig. 4, the mean square error (MSE) performance of the proposed centralized 

algorithm is compared with the state-of-the-art methods, such as the coarse localization 
estimator, the approximate maximum-likelihood (AML) estimator [39], and a Monte Carlo 
(MC)-based estimator with 2000 particles, where we assume that the standard deviation of 
sensors position uncertainty is 1

i
σ∆ =p m. Without considering sensors uncertainties and DA 

process, the coarse localization estimator gives the worst performance. Since the AML 
estimator treats the sensors position uncertainties as Delta functions after DA process, it shows 
larger MSE than the proposed algorithm. The MC-based estimator takes samples from sensor 
i 's position uncertainty's distribution, which transforms the intractable integration into the 
cumulative sum of finite terms. However, the superior performance of the MC-based estimator 
is at the cost of huge computational complexity. The proposed SAGE algorithm can perform 
close to the MC-based estimator with much lower complexity. 

 
Fig. 5. Localization performance with different numbers of measurements combination. 

 
Since the number of LOS and NLOS components may vary for different locations. In Fig. 

5, we evaluate the impact of different number of LOS and NLOS components on the 
localization performance. We assume the standard deviation of sensors position uncertainty is 

1
i

σ∆ =p m. The four positions (90 40), (40 50), (40 10), (80 20) are named as 
• Case 1, a relatively ideal scenario: 4 LOS signals and 5 NLOS signals at (90 40). 
• Case 2, a general situation of the complex scenario: 1 LOS signal and 5 NLOS signals at 

(40 50). 
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• Case 3, a severe NLOS situation: with 5 NLOS signals at (40 10). 
• Case 4, an extreme scenario: 1 LOS signal and 2 NLOS signals at (80 20). 

It is observed in Fig. 5 that both the centralized and distributed implementation of the 
proposed algorithm can work with different combinations of measurements. The localization 
performance of Case 4 is worse than that of Case 3, although the former has 1 LOS 
measurement. This indicates that enough number of measurements are useful for localization 
and the utilization of the NLOS MPCs can be beneficial. Comparing Case 3 with Case 2, it is 
seen that the LOS signals can further improve the performance since the LOS signal has no 
AOA measurement error. When increasing the number of LOS measurements, e.g., from Case 
2 to Case 1, localization performance can be improved. However, the improvement becomes 
marginal when giving sufficient number of NLOS signals. 

6. Conclusion 
In this paper, a novel expectation maximization (EM)-based data association process was 

proposed to solve the target localization problem in multipath environments. Considering the 
position uncertainty of sensors, we proposed a SAGE-based algorithm using TDOA and AOA 
measurements to jointly locate the target and update the position of sensors. The KLD 
minimization was employed to approximate the distribution of sensor uncertainty by a 2-D 
circularly symmetric Gaussian distribution. Then, Taylor expansion was used to linearize the 
specific nonlinear term induced by the first kind confluent hypergeometric function in E-step. 
Accordingly, a closed-form expression was derived with low computational requirements. To 
improve the scalability of the proposed algorithms in complex scenarios, we further derived a 
distributed implementation based on the average consensus. Simulation results showed that 
the proposed algorithms performed close to the Monte Carlo-based algorithm with much 
lower communication overhead and complexity. The distributed implement achieved an 
accuracy close to the proposed centralized SAGE-based algorithm. 

Appendix A 
In this appendix, we give a further derivation of the KLD in (23). Here, we have 

1 1

2 2

2 2 2 2 2

ˆ ˆ( | , , ) ln ( | , , )

|| || || ||1 1 1exp( ) ln ln 1.
2 2 2 2 2

( )
p p p p p

p d p q p d p q p

p p p p
i i i i i

l l
i i i i i i i

i i i
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f f d
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pσ σ pσ σ pσ

− −

∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆

∆ −∆ ∆
= − × − ∆ = −

∫

∫
    (46) 

The latter part can be derived as 
1

2

2 2 22

2 2

2 2

ˆ( | , , ) ln ( )

|| ||1 1 1exp( ) ln
2 2 2(1 )2 1

2 .

{

[ ]}

p p

p d p q p p

p

p

i i x yi i

x y x yi i i i

l
i i i i i

i

i i i i
i

f p d

x y x y d

pσ σ ρpσ σ ρ

ρ
σ σ σ σ

−

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆
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−−

∆ ∆ ∆ ∆
× + − ∆

∫

∫             (47) 

The last part can be formulated as 
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1 1
, , ,
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, , , , 2

, ,2 2 22
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ˆ ˆˆ( | , , ) ln ( , | , , , )

ˆ( | )|| ||1 1 ˆexp( ) ln
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where 
1

, , 1,1 1,1 1
ˆ g( , ) ( ),q pT l

i j i jD d q g −′= ∆ + − ( , ),pi i ix y∆ = ∆ ∆ ( , ),pi i ix y= 1 1 1( , ).ql l l
x yq q− − −=   

Depending on the LOS or NLOS components, we further express (48) in the following 
subsections. 

1) NLOS case: For the NLOS components in sensor i , ,i jd  equals the item in (43). Then 
the integration in (48) can be calculated after some mathematical operations as 
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                       (49) 

where  
2 1 1 1 1 2 1 1 1

, , , , , , , ,  ,( ) ( ) , ( ) ( q p q p q p qi i i

l l l l l l l
i j i j i j i j i j i j i j i j i jE a x x a b y y D F b y y a b x− − − − − − −= − + − − = − +  

1
,) .pi

l
i jx D−− −   

2) LOS case: For sensor i  which obtains LOS signal, we will process as (28). As the 
integral in (48) includes nonlinear terms, we use the approximation of the first-order Taylor 
expansion. So, the integration in (48) can be calculated after some mathematical operations as 
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Appendix B 

In this appendix, we give the detail of ( , )pl l l
i ix y∆ = ∆ ∆ , 
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where 

, , , , 0 0 0 0 ,ˆHi j i j i j i i j id a x b y a x b y= ∆ + + − −                                           (52) 

, , , 0 , , 0 0 0K .i j i j i j i j i ja b a b a b a b= + + +                                                    (53) 

As for the LOS cases in the centrialized algorithm, we have ( , )pl l l
i ix y∆ = ∆ ∆  as 
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