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Abstract 
 

Global data center IP traffic is expected to reach 20.6 zettabytes (ZB) by the end of 2021. 
Intra-data center networks (Intra-DCN) will account for 71.5% of the data center traffic flow 
and will be the largest portion of the traffic. The understanding of traffic distribution in Intra-
DCN is still sketchy. It causes significant amount of bandwidth to go unutilized, and creates 
avoidable choke points. Conventional transport protocols such as Optical Packet Switching 
(OPS) and Optical Burst Switching (OBS) allow a one-sided view of the traffic flow in the 
network. This therefore causes disjointed and uncoordinated decision-making at each node. 
For effective resource planning, there is the need to consider joining the distributed with 
centralized management which anticipates the system’s needs and regulates the entire 
network. Methods derived from Kalman filters have proved effective in planning road 
networks. Considering the network available bandwidth as data transport highways, we 
propose an intelligent enhanced SDN concept applied to OBS architecture. A management 
plane (MP) is added to conventional control (CP) and data planes (DP). The MP assembles 
the traffic spatio-temporal parameters from ingress nodes, uses Kalman filtering prediction-
based algorithm to estimate traffic demand. Prior to packets arrival at edges nodes, it 
regularly forwards updates of resources allocation to CPs. Simulations were done on a 
hybrid scheme (1+1) and on the centralized OBS. The results demonstrated that the 
proposition decreases the packet loss ratio. It also improves network latency and 
throughput—up to 84 and 51%, respectively, versus the traditional scheme. 
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1. Introduction 

The high demand and perpetual growth of bandwidth driven by social networks, cloud 
computing, online gaming, and bandwidth-hungry video services constrain modern 
communication protocols. Internet extended from thousands of professional users to billions 
of consumers. This expansion of connected machines resulted in an explosion of traffic flow, 
that was still north-south (users to data centers traffic). The future of data center IP traffic 
flow includes intra-data center traffic (71.5%), inter-data center traffic (14.9%), and data 
center to user traffic (13.6%) [1]. More bandwidth has been allocated to help data center 
networks cope with this rapid evolution. This improves the capacity but not the efficiency. 
Effective data analysis combined with intelligent routing decisions and transport strategies 
are required to solve the explosion of data processing within data centers [2 - 4]. 
   Moreover, due to the abundance of optical bandwidth and low power consumption, data 
center network architectures are being upgraded to all-optical-networks (AON). This change 
comes with the development of new transport strategies that fit the main optical domain. 
Much attention has however been allocated to design optical counterparts of existing 
electronic strategies such as Optical Circuit Switching (OCS) [5] and Optical Packet 
Switching (OPS) [6], with mixed results.  
   Optical Burst Switching (OBS) [7] is a hybrid electronic and optical transport strategy that 
exists on distributed and centralized architecture. It highlights the advanced logic of 
electronic components together with the low power consumption, large bandwidth, and high 
transmission speed of optical devices. However, both OBS architectures statically allocate 
resources based on the aggregation algorithm. The choice of the aggregation parameter 
influences the waiting time required for incoming packets in the assembly unit. The three 
popular techniques (timer, burst-length, mixed) [8], set a fixed time and burst-length 
parameter. Despite positive aspects, these three techniques tend to be static and reactive. 
They induce static waiting time and minimum burst-length regardless of the present demand 
per destination. These procedures lead to an unbalanced use of wavelengths, which creates 
congested points in the network. Central management can theoretically decrease the waiting 
time spent by incoming data in the assembly unit, since it enables a global view of the 
network. However, it requires a longer time to process all data when it is used continuously.       
   Artificial intelligence techniques can be of great support in the planning of Intra-DCN. 
Their implementation has allowed an optimization of infrastructures use. However, machine 
learning techniques still produce a fairly high error rate, raising questions on the use of other 
methods, including statistical methods. Kalman filtering is a statistical technique which has 
proven to be effective in tracking positioning and in road networks, where it showed abilities 
to plan in advance the behavior of vehicles even in some infrequent cases. 
   In this work, we use Kalman filter-based algorithm to evaluate in advance short-term 
traffic demand in each direction of an Intra-DCN. The assessment is then involved in 
centralized and coordinated allocation of all network resources (prior to the arrival of traffic 
at each node), taking into account the current traffic demand per destination. It is important 
to note that this does not require any additional waiting time at the edge nodes, the 
processing being done in background. Our proposition limits bursts waiting time in the 
assembly unit. Subsequently, we will implement this new planning on two hybrids 
(centralized and distributed) OBS architectures and one purely centralized OBS. Section 3 
gives more details about the proposed architecture and operation. 
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2. Related Work 
Optical burst switching (OBS) [9] is a candidate to carry future Internet traffic. In OBS 
networks, packets are aggregated at electronic ingress nodes and forwarded as bursts to egress 
nodes. The OBS uses burst control packets (BCPs) to improve resource utilization, relieve the 
use of buffering, and reduce costs. Scheduling algorithms such as LAUC-VF [10] and Min-SV 
[11] estimate the arrival time of bursts from BCPs and reserve network resources from the 
estimated start time. Sometimes, data bursts do not arrive at intermediate nodes at the 
estimated time, and these bursts might be stored in optical caches, which increases the use of 
buffering. Traditional OBS is a distributed-based OBS schemes, it does not have a 
comprehensive view of the network. In the distributed OBS scheme (see Fig. 1), there is no 
single point where all of the traffic flow can be viewed at any moment. To address the 
traditional OBS shortcomings, the time-domain wavelength interleaved networks (TWIN) 
protocol [12] proposes a centralized scheduling technique where resources can be allocated 
based on traffic demands. The TWIN uses a central controller to schedule incoming traffic and 
reduces packet contention. However, even in its most updated versions [13,14], TWIN 
allocation of sub-wavelengths resources is quasi-static. It is slow to adapt to the change in 
traffic behavior. TWIN abilities to learn incoming traffic behavior are still sketchy—this can 
induce latency due to significant waiting time in the assembly unit and unequal load sharing.  
   Artificial intelligence methods advocate more dynamic concepts to solve this issue [15-17]. 
Recent studies favor a predictive approach to traffic distribution in order to anticipate its 
behavior and thus improve the global performance of the network. In [18], Li et al. use the 
wavelet transform and artificial neural network (ANN) to improve congestion in inter-data 
center networks. They make predictions on sublink information, elephant flow, and manage to 
limit the error rate by 5 to 30% compared to existing methods. In [19], Cao et al. perform a 
statistical analysis of the traffic received by the virtual machines (VMs) and deploy a resource 
allocation strategy based on the usage history of each VM. Using the Autoregressive Integrated 
Moving Average (ARIMA) model, the authors are able to increase the bandwidth utilization 
rate in a cloud data center. In [20], Alvizu et al. propose a routing algorithm for software-
defined mobile carrier networks. They use ANN to effectively predict traffic behavior, improve 
routing decisions and lower power consumption by up to 31% compared to existing standards. 
In [21], X. Cao et al. propose a mixed prediction model using Convolution Neural Networks 
(CNN) to study the spatial characteristics of traffic and the Gated Recurrent Unit (GRU), for 
the temporal factor. The authors manage to improve the error rate, up to 14.3% compared to 
these methods taken independently. 
   In Intra-DCN, input data used to evaluate the future behavior of the system (and therefore the 
allocation of resources) are incomplete. They reflect the measurement of the state of the system 
during well-defined time intervals. However, according to real-world experiments carried out 
by T. Benson et al. [31-33], the traffic distribution in Intra-DCN varies greatly over time, 
highlighting the difficulty to predict the long-term behavior of traffic in Intra-DCN. It partly 
explains the high error rate of machine learning methods, for both supervised and unsupervised 
techniques. On the other hand, methods based on Kalman filters have proved effective in areas 
where the data to be processed presents a great deal of uncertainty. In intelligent transportation 
systems (ITS), they demonstrated strength in tracking spatio-temporal characteristics of input 
variables. In [22], Wang et al. use data collected from the ring road of Amsterdam city, in a 
real-time and large-scale environment. The authors are able to predict 30 min in advance, the 
occupancy rate of motorways, with a marginal error rate. In addition, the filling rate of on-
ramps, leading to these motorways is also predicted with accuracy. In [23], Yuan et al. use 
Ensemble Kalman Filter to predict traffic in Dutch roads. The authors are able to make 
accurate estimations of traffic flow compared to other stochastic methods. Their algorithm is 
able to successfully predict some of unusual scenarios. In [24], Mir et al. emphasized on the 
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prediction of the speed of motorists. They use the Kalman filter technique to predict the real-
time speed of vehicles.   
   If we consider the available bandwidth, CPU and memory as communication resource pool, 
then Kalman filtering technique can be used for resource allocation problems in data centers. In 
[25], Jain et al. use dual Kalman filter to efficiently allocate communication resources, 
including network bandwidth and memory. The authors are able to highlight the high 
efficiency of Kalman filters in stream management, especially in terms of algorithmic 
complexity and their applications in various environments. In [26], Kalyvianaki et al. propose 
an adaptive resource allocation mechanism in data center environment. The authors use 
Kalman filtering to efficiently allocate CPU resources to virtual machines (VM). The results 
are highly effective in dealing with uncertainties in the distribution of data over time. From 
applications in wireless sensor networks and spacecraft position estimates [27,28], it is 
established that the technique increases its performance with a large amount of available data, 
as is the case in Intra-DCN. Our proposition uses Kalman Filtering prediction-based algorithm 
to make short-term traffic destination estimates. We aim to quickly adapt to change of traffic 
behavior and improve network congestion in Intra-DCN. The bandwidth use will not be 
addressed in this paper. 

DISTRIBUTED OBS ARCHITECTURE
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  Fig. 1. Distributed OBS Architecture 

3. Traffic Prediction 

  3.1 Proposed Framework 
The proposition is a SDN-based network architecture. The proposed model has a global view 
of network traffic in the entire network. It evaluates traffic distribution to make accurate 
prediction of future flow destinations. It coordinates resources allocation throughout the 
network, reducing network congestion (see Fig. 3). Each distributed node only receives 
relevant updates. Updates are sent at fixed or varied time interval. The remainder of this 
section describes in more detail the operation of each layer (see Fig. 2).  
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   Ingress traffic are assembled in the assembly unit of the control plane (CP), based on 
logical destinations–Virtual eXtensible Local Area Network (VXLAN) [29], with the 
objective to be allocated available resources such that they can efficiently reach their 
physical destinations. Aggregated bursts will then follow a pre-scheduled framework sent by 
the management plane (MP). Two frameworks are considered in this proposition, including 
hybrid and centralized scheme. For the hybrid implementation, packets arriving at ingress 
nodes—and which are not scheduled to leave for the maximum waiting time—can be 
redirected to special channels allocated to traditional OBS.  They will be dropped when the 
new centralized framework is running alone. 
 The MP is built on a predefined network node. This is a layer that records and processes 
information from the CP, such as the destination and length of each burst. This processing is 
performed in parallel with the operation of the other layers, which has the advantage of not 
inducing any additional waiting time at the arrival of the next incoming bursts in a given 
node. The MP evaluates the directional delay for each traffic flow and uses the Kalman 
filter-based algorithm to estimate the optimal amount of resources to allocate in each 
direction for a time cycle. It computes the percentage of full paths to be allocated per 
intended burst destinations for fixed or varied time periods. A resource allocation frame is 
built and only sent to CP if it satisfies the update condition. Each distributed node only 
receives relevant information with respect to its directly connected neighbors. New updates 
overwrite the current ones at the end of a time cycle. 
 Update condition: If the period of time T is fixed, then the timer of T should expire before 
any new updates are sent to CP. When T is variable, new updates are sent when the 
traditional OBS resource utilization rate (hybrid systems) or packet loss ratio (centralized 
systems), has reached a predefined threshold (system health).  
  The Data Plane (DP) will transfer data in the optical domain. It receives aggregated bursts 
and guarantees fast forwarding without any buffering along the path. 
   Here, the system health is defined as a measure of the ability of the proposed model to 
efficiently forward network traffic using the current MP configurations. System health is 
only evaluated when the time period (T) is variable. Two different measures of system health 
are being defined. In the hybrid architecture, the reconfigurations are immediately required 
from the MP if the links allocated to traditional OBS are in high demand (protection line). 
Second, the system health is measured using the packet loss ratio for the newly centralized 
architecture. 

3.2 Kalman Filtering-based Algorithm 
In this section, the stochastic system is used to evaluate the optimal or near-optimal prediction. 
Comprehensive estimations are formulated through linear and time-invariant systems. Kalman 
filtering prediction algorithm, which is well-known for its efficiency in data fusion is used to 
extract short-term patterns. Dynamic input data will be logical traffic destinations and burst 
lengths that are parameters used to target the resource allocation problem. 
   We assume to have knowledge of the number of logical end points. The maximum burst-
length will also be set during the experiments. Here, we present the optimal estimate in one 
destination. The same procedure is repeated in the MP to include all of the logical 
destinations. 
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ENHAHANCED SDN-BASED OBS ARCHITECTURE
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A linear and discrete time-invariant system is represented by: 
 

    �
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + Ω𝛼𝑡
𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 + 𝛽𝑡

�      (1) 

 
where A, B, C, D  and Ω  are known constant matrices, respectively, with 1 ≤ 𝑚,𝑝, 𝑞 ≤ 𝑛 . 
{𝑢(𝑡)}, a known deterministic control input sequence of m-vectors. {𝛼(𝑡)} and {𝛽(𝑡)} are 
system and observation noise sequences, respectively, with zero-mean Gaussian white noise, 
and respective variance,   𝑉𝑎𝑟�𝛼(𝑡)� =𝑄𝛼,𝑉𝑎𝑟�𝛽(𝑡)� =𝑅𝛽, positive definite matrices.   
We will assume that:  𝐸(𝑔0𝛼𝑡𝑇) = 0 and 𝐸(𝑔0𝛽𝑡𝑇) = 0. 
   Equation (1) describes the linear deterministic and stochastic system which can be divided 
into purely deterministic and stochastic systems.  
 
The stochastic system is represented by:      
 

�𝑔𝑡+1 = 𝐴𝑔𝑡 + Ω𝛼𝑡
𝑚𝑡 = 𝐶𝑔𝑡 + 𝛽𝑡

�                (2)  

 
While the deterministic system is described as:     
 

             � 𝑓𝑡+1 = 𝐴𝑓𝑡 + B𝑢𝑡
    𝑠𝑡 = 𝐶𝑓𝑡 + 𝐷𝑢𝑡

�               (3) 

 
  with         𝑥𝑡 = 𝑓𝑡 + 𝑔𝑡                             (4)  
  and          𝑦𝑡 = 𝑠𝑡 +𝑚𝑡                                       (5) 
    
and the transition equation:   
 
                     𝑓𝑡 = (𝐴𝑡−1 …𝐴0)𝑥0 +∑ (𝐴𝑖 …𝐴𝑖−1)𝑡

𝑖=1 𝐵𝑖−1𝑢𝑖−1  (6) 
   
We use (2) to derive the stochastic optimal estimate 𝑔�𝑡  of  𝑔𝑡  so that 𝑔�𝑡−1 = 𝑔�𝑡−1|𝑡−1.  

From data vector   �
𝑧0
⋮
𝑧𝑘
�,  

 
the linear stochastic system can be written as:    
 
                  𝑧�̅� = Π𝑡,𝑘 𝑔𝑡 + 𝜀−̅𝑡,𝑘 
 

   with     Π𝑡,𝑘 = �
𝐶0Ψ0,𝑡
⋮

𝐶𝑘Ψ𝑘,𝑡

�         and   𝜀−̅𝑡,𝑘 = �
𝜀−̅𝑡,0
⋮

𝜀−̅𝑡,𝑘

�. 

 
Ψ𝑙,𝑡 are transition matrices defined as:     
 

                 Ψ𝑙,𝑡 = �𝐴𝑙−1 …𝐴𝑡          𝑖𝑓 𝑙 > 𝑡,
𝐼                          𝑖𝑓 𝑙 = 𝑡

�  
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            For     𝑙 < 𝑡,       Ψ𝑙 ,𝑡 = Ψ𝑡,𝑙

−1       
   
   then,       𝜀𝑡,𝑙 = 𝛽−𝑙 − 𝐶𝑙 ∑ Ψ𝑙𝑖Ω𝑖−1𝛼𝑖−1𝑡

𝑖=𝑙+1  (7) 
  
    thus,       𝑔𝑡 = Ψ𝑡,𝑙𝑔𝑙 +∑ Ψ𝑡𝑖Ω𝑖−1𝛼−𝑖−1𝑡

𝑖=𝑙+1  
 
it follows:   𝑔𝑡 = Ψ𝑡,𝑙𝑔𝑡 +∑ Ψ𝑗𝑖Ω𝑖−1𝛼−𝑡−1𝑡

𝑖=𝑙+1  
 
leading to: 
 

Π𝑡,𝑘 𝑔𝑡 + 𝜀−̅𝑡,𝑘 = �
𝐶0Ψ0𝑡
⋮

𝐶𝑘Ψ𝑘𝑡
� 𝑔𝑡 +

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝛽0 − 𝐶0�Ψ0𝑖Ω𝑖−1𝛼𝑖−1

𝑡

𝑖=1
⋮

𝛽−𝑘 − 𝐶𝑘 � Ψ𝑘𝑖Ω𝑖−1𝛼𝑖−1

𝑡

𝑖=𝑘+1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

                           = �
𝐶0g0 + 𝛽0

⋮
𝐶𝑘g𝑘 + 𝛽𝑘

� 

 

                           = �
𝑧0
⋮
𝑧𝑘
� = 𝑧�̅�                           

 
Through this experiment, we consider the recursive formula only including data information 
about: 𝑔�𝑡−1 = 𝑔�𝑡−1|𝑡−1to make predictions of 𝑔�𝑡 = 𝑔�𝑡|𝑡 . 
We can derive the recursive formula, which is the real-time estimate of the stochastic 
problem   
 

            �
        𝑔�𝑡|𝑡 = 𝑔�𝑡|𝑡−1 + 𝐺𝑡(𝑧𝑡 − 𝐶𝑡  𝑔�𝑡|𝑡−1)
𝑔�𝑡|𝑡−1 = 𝐴𝑗−1 𝑔�𝑡−1|𝑡−1                      

�          (8) 

 
Where 𝐺𝑡 are Kalman gain matrices, and 𝑔�0 will be an unbiased estimated of the initial state 
𝑔�0. We can now compute the optimal least-squares estimate 𝑔�𝑡|𝑘  of  𝑔𝑡 .  

By defining the weight  𝑊𝑡,𝑘 = �𝑣𝑎𝑟�𝜀−̅𝑡,𝑘��
−1

, 
 
thus, 
 

          𝑊−1
𝑡,𝑡−1 = �

𝑅0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅𝑡−1

�+ 𝑉𝑎𝑟 �
𝐶0 ∑ Ψ0𝑖Ω𝑖−1𝛼𝑖−1𝑡

𝑖=1
⋮

𝐶𝑘 ∑ Ψ𝑘𝑖Ω𝑖−1𝛼𝑖−1𝑡
𝑖=𝑘+1

� 

          𝑊−1
𝑡,𝑡−1  = �𝑊

−1
𝑘,𝑘−1 0

0 𝑅𝑘
�  
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then,  
                    𝑔�𝑡|𝑘 = (Π𝑡,𝑘 

𝑇 𝑊𝑡,𝑘 Π𝑡,𝑘)−1Π𝑡,𝑘 
𝑇  𝑊𝑡,𝑘 𝑧�̅�   

 
  
Let’s now define:     
                        𝐺𝑡 = (Π𝑡,𝑡−1 

𝑇 𝑊𝑡,𝑡−1 Π𝑡,𝑡−1 + C𝑡  
𝑇 R𝑡  

−1𝐶𝑡)−1  C𝑡  
𝑇 R𝑡  

−1 
                            = (Π𝑡,𝑡−1 

𝑇 𝑊𝑡,𝑡  Π𝑡,𝑡)−1 C𝑡  
𝑇 R𝑡  

−1 
                                     
We can then write:   
                     𝑔�𝑡|𝑡 = 𝑔�𝑡|𝑡−1 + 𝐺𝑇�𝑧𝑡 − 𝐶𝑡𝑔�𝑡|𝑡−1� ,  with 
               𝑔�𝑡|𝑡−1 = 𝐴𝑡−1 𝑔�𝑡−1|𝑡−1 
  
We can now compute: 
                       𝐺𝑡 = 𝑃𝑡,𝑡−1 𝐶𝑡𝑇 (𝐶𝑡  𝑃𝑡,𝑡−1𝐶𝑡𝑇 + 𝑅𝑡)−1 (9)     
                      𝑃𝑡,𝑡 = (Π𝑡,𝑡 

𝑇 𝑊𝑡,𝑡  Π𝑡,𝑡)−1 
                  𝑃𝑡,𝑡−1 = (Π𝑡,𝑡−1 

𝑇 𝑊𝑡,𝑡−1 Π𝑡,𝑡−1)−1 
 
It follows that: 
                     𝐺𝑡 = 𝑃𝑡,𝑡−1 𝐶𝑡𝑇 (𝐶𝑡  𝑃𝑡,𝑡−1𝐶𝑡𝑇 + 𝑅𝑡)−1 
                      𝑃𝑡,𝑡 = (𝐼 − 𝐺𝑡𝐶𝑡)𝑃𝑡,𝑡−1, 
                 𝑃𝑡,𝑡−1 = 𝐴𝑡−1 𝑃𝑡−1,𝑡−1 𝐴𝑡−1𝑇 + Ω𝑡−1𝑄𝑡−1Ω𝑡−1𝑇   
                                   
Moreover,   
                𝑃𝑡,𝑡−1 = 𝐸�𝑔𝑡 − 𝑔�𝑡|𝑡−1��𝑔𝑡 − 𝑔�𝑡|𝑡−1�

𝑇
                

                           = 𝑉𝑎𝑟�𝑔𝑡 − 𝑔�𝑡|𝑡−1� 
                    𝑃𝑡,𝑡 = 𝐸�𝑔𝑡 − 𝑔�𝑡|𝑡��𝑔𝑡 − 𝑔�𝑡|𝑡�

𝑇
                                        

                           = 𝑉𝑎𝑟�𝑔𝑡 − 𝑔�𝑡|𝑡�  (10) 
                   𝑃0,0 = 𝑉𝑎𝑟(𝑔0)            
  
                            
We can summarize this procedure as follows: 
 
                  𝑃0,0 = 𝑉𝑎𝑟(𝑔0)        
              𝑃𝑡,𝑡−1 = 𝐴𝑡−1 𝑃𝑡−1,𝑡−1 𝐴𝑡−1𝑇 + Ω𝑡−1𝑄𝑡−1Ω𝑡−1𝑇   
                    𝐺𝑡 = 𝑃𝑡,𝑡−1 𝐶𝑡𝑇  (𝐶𝑡  𝑃𝑡,𝑡−1𝐶𝑡𝑇 + 𝑅𝑡)−1 
                  𝑃𝑡,𝑡 = (𝐼 − 𝐺𝑡𝐶𝑡)𝑃𝑡,𝑡−1    
                𝑔�0|0 = 𝐸(𝑥0) 
            𝑥�𝑡|𝑡−1 = 𝐴𝑡−1 𝑥�𝑡−1|𝑡−1 + 𝐵𝑡−1 𝑢𝑡−1 
                 𝑥�𝑡|𝑡 =  𝑥�𝑡|𝑡−1 + 𝐺𝑡�𝑧𝑡 − 𝐷𝑡𝑢𝑡 − 𝐶𝑡  𝑥�𝑡|𝑡−1� 
                   𝑡 = 1, 2, 3, … 
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Algorithm 1: Resource Allocation Process -  Management Plane 
 
 1: Initialize the clock 
 2: Set a time cycle for T 
 3: If {T is fixed},  
          While {T > 0} 
           No updates will be sent; step 3 will be repeated. 
       else {//T is variable//}, call the function systemhealth ( ) 

  % The function systemhealth ( ) permanently evaluates the current 
state of wavelength use of traditional OBS (hybrid scheme) and compares 
it to a preset threshold or it instead evaluates the packet loss ratio 
(centralized scheme). The function will always return a Boolean%. 
              If {systemhealth ( ) returns 0},  
                   No Updates will be sent; step 3 will be repeated. 
              else {//systemhealth ( ) returns 1//}   
4: Call the function kalmanpredict ( ) 
     It evaluates the ratio of traffic per VXLAN destination. 
5: Resource Allocation      

     Here, the algorithm assigns resources at predefined central point and 
distributes information to every electronic ingress nodes in respect to their 
needs. 

 
 
Algorithm 1 describes the process of dynamic resource allocation in the MP. 
   First, a mode of operation is selected for the time cycle T. The mode will be defined as 
fixed or variable. 
   Second, updates are made differently depending on whether the selected time cycle is fixed 
or variable. In the case of a fixed mode, an initial value is assigned to T. The value of the 
time cycle will be decremented, and the CP will not receive any updates from the MP until 
this value is equal to 0 (the time cycle has elapsed). If, however, the chosen mode is variable, 
an initial value is no longer necessary. The reception of the updates is conditioned by the 
result of the system health function.  
   Third, the function system health works as follows: if the protection line utilization rate or 
packet loss ratio, reaches a certain threshold set in advance, then it is time for the MP to 
provide CP with further updates. Hybrid systems (1 + 1) use the protection line utilization 
rate to assess the overall health of the system. In purely centralized systems (not having a 
protection line), the packet loss ratio is used. This function returns a boolean. If the boolean 
is 1, new updates can be sent to the specific CP. If the boolean is 0, the current updates are 
considered to be optimal. 
   Finally, the updates sent by the MP to the CP of a specific node, derive from the Kalman 
filter estimates made from the input data, such as the destination and the length of the bursts. 
The MP build a resource allocation framework for each node in the network. 
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4. Simulation Results and Discussions 

  4.1 Simulation Platform 
Hybrid and Centralized OBS were evaluated here. The results were compared to the 
traditional distributed scheme. In Hybrid OBS (1+1), the Centralized OBS is implemented as 
main line for traffic forwarding, while the distributed OBS will be used for protection. To 
maintain unscheduled full paths in the hybrid architecture, running the traditional OBS as 
protection can acknowledge the inability of the proposed algorithm to reach 100% successful 
traffic estimation. The expectation over hybrid architectures is to provide the maximum QoS 
with a flexible network architecture.  
   The C++ programming language was used to build our network model in OMNET++ 
simulation platform. Three-tier data center network architecture with 100 Gbps links, is used 
(see Fig. 4). 
   We assumed that most servers can run different applications at the same moment. VMs 
running the same application are grouped together following the concept of VXLAN, which 
can theoretically support up to 16 million logical networks. A network link originates at the 
electronic ingress nodes and ends at the electronic egress nodes (except intra-rack paths). 
This is the name of the full path. There is one path per wavelength from the ingress node A 
to the egress node B. The topic of sub-wavelengths is out the scope of this paper. 
   The Software-defined concept here refers to the use of the 3 levels of traffic management, 
namely the DP for transmission by optical fibers, the CP for aggregation / disaggregation of 
data in the assembly units and finally the MP for the prediction and coordinated planning of 
resources. In this work, this concept does not refer to the use of tools such as Openflow. 
 
 

Core

Aggregation

Access

 
Fig. 4. Data Center Network Architecture 

 
 

A- Traffic distribution 
We acknowledge the superiority of real-world dataset over simulation data. but their great 
disparity from one data center to another hardly guarantees their absolute reliability for this 
experiment. However, according to Benson et al. [33], Weibull and lognormal traffic 
distribution might better describe data center traffic. Lognormal distribution will be used 
here to simulate traffic flow, since it is simple to be put together with Kalman filters. If X is 
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log normally distributed, then Y=ln(X) is normally (Gaussian) distributed.  
 

B- Simulation Parameters 
 Our simulation model includes a set of 100 racks—each includes 50 servers. Buffers of edge 
nodes can store up to 2500 packets of different sizes. The aggregated value of incoming 
packets is set to 1 µs. Packets are aggregated to have a maximum burst-length of 40 KB. 
Bursts that exceed the predefined 40 KB length have not been considered because they can 
easily be divided, forwarded, and reassembled at the receiving node following the TCP 
process. The maximum waiting time of bursts in the assembly unit is 2 µs, which is quite 
low compared to tens or hundreds of microseconds for the traditional OBS. Bursts that 
exceeds the maximum waiting time are immediately redirected to the protection channel 
(traditional OBS). Maximum electronic switching time per burst is 1 µs while the optical 
domain only produces an overhead of 300 ns. 
   From ingress to egress nodes, each link capacity is set to 100 Gbps for ease of management 
and implementation. TOR switches are connected to intra-rack servers. We allocate 1 Gbps 
to each VM. 
   The speed of computation, in microseconds, is far less than the period T of sending updates 
from MP to CP (in seconds). Our algorithm runs in background and does not directly induce 
additional waiting time. However, algorithm complexity is O log (n), which keeps the 
performance of the algorithm for higher scale of data. 
 

Table 1. KEY SIMULATION PARAMETERS 

Symbol            Quantity                 Value 
R Racks                  100 
S Servers/Rack                  50 

TOR TOR Switches                  100 
VM VM Bandwidth                  1 Gbps 
FP Full Path Bandwidth                  100 Gbps 

 
MPO MP Overhead                 100 ms 

elecT  
 

Electronic Switching       
Time 

                 1 µs 

optT  
 

Optical Switching Time 
   

                 200 ns 

bcpT    BCP Processing Time-
Traditional OBS 

                 1 µs 

propT    Propagation Time                   2 µs 

BS Burst Size                   2500 Packets 
L Length                   40 KB 
W Wavelength/Link                  80 

queueT  Maximum Waiting Time 
(Queue) in CP 

                 2 µs 

assT   Assembly Time                 40 µs 
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4.1 Results and Discussions 
 
To evaluate the performance of the proposed framework, we compared the throughput, 
latency, and packet loss ratio aspects with the traditional OBS network. Our results include 
three scenarios of OBS implementation. The first is a hybrid architecture including the 
traditional model and the new model with the proportion 80/20—here, 80% of the available 
resources are dedicated to the proposed model and 20% were allocated to the traditional 
OBS. Second, we modify the proportions to 90/10 with 90% for the proposed model and 10% 
for the traditional OBS. Third, experiments are carried out on the pure proposed model (100). 
 

A- Latency 
We evaluate the average full path (from electronic ingress to electronic egress nodes) 
network latency of the proposition. Full path traffic flow includes inter-rack (TOR switch-to-
TOR switch), rack-to-router, and router-to-router traffic flow—this creates more latency and 
congestion. Although intra-rack traffic represents a significant amount of traffic flow, this 
therefore causes a delay of only nanoseconds. 
   We used the following equation to evaluate the network delay: 
     
      𝐷𝐸𝐿𝐴𝑌 = 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑤𝑎𝑖𝑡 + 𝑇𝑒𝑙𝑒𝑐 + 𝑇𝑜𝑝𝑡  
 
where 𝑇𝑝𝑟𝑜𝑝   is the full path propagation delay of the burst, and  𝑇𝑤𝑎𝑖𝑡    is the accumulated 
waiting time induced by CP at every node that includes burst assembly/disassembly time, 
maximum burst departure waiting time, and packet processing delay. 𝑇𝑒𝑙𝑒𝑐 and  𝑇𝑜𝑝𝑡  are 
electronic and optical switching times, respectively.  It should be noticed that MP does not 
add additional delay to the network, since it runs in the backend. New updates overwrite the 
old ones. 
   The simulation results for network latency are presented in Fig. 5. Fig. 5.a which shows an 
80/20 channel allocation. The proposed hybrid model performed better than the traditional 
OBS in every aspect excluding two scenarios. First, when T=100 s, the graph was unstable. 
Sometimes it performed very well, and sometimes it performed very badly compared to the 
traditional OBS. This zigzag behavior is due to the time period set for network updates, 
which was too long. This confirmed the hazardous estimates when T is relatively long. When 
the traffic distribution suddenly changes, we wait too long before resource reallocation. The 
situation worsened when T increased. Second, simulations have limitations in the hybrid 
schemes with a fixed T. The initial resource allocation in the MP uses an equal cost multi-
path (ECMP), but the lognormal distribution generates unequally distributed traffic. Time is 
needed to close the gap. The hybrid architecture with a varied T benefits from the traditional 
OBS strength at the start. The traffic that waits more than 2 µs is immediately reallocated to 
the traditional OBS. This triggers reallocation of resources if resource utilization in the 
protection line reaches a predefined threshold of 50% of available resources—this is a very 
low rate and provides ample room for further improvements.  
   In Fig. 5.c, the proposed centralized model is implemented alone; these results were 
surprisingly very close to the scenario of 90/10 (Fig. 5.b), which is globally the best in terms 
of network latency. We think that this strange behavior might come from the accuracy of 
traffic estimates in the MP, which limits the use of a protection channel. This centralized 
framework does not have a protection line. It only relies on the accuracy of traffic estimates, 
which seems to be very precise in this case. Studies about the confidence interval of traffic 
estimates are beyond the scope of this paper. 
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                                        Fig. 5.a. Average Burst Latency - hybrid OBS 80/20 
 
                       

 
                                       Fig. 5.b. Average burst delay – hybrid OBS 90/10 
 
 
                      

 
                                         Fig. 5.c. Average burst delay - centralized OBS 
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B- System Health and Packet Loss Ratio 

System health measures the ability of the proposed OBS model to efficiently carry traffic 
using the current MP configurations. It is only used when T, the time period for updates, is 
variable. For 80/20 and 90/10 designs, the system health is given by the traditional OBS full 
path occupation level, and by the packet loss ratio for the 100% experiment. 

Fig. 6.a and Fig. 6.b show that the average utilization rate often stays very low—even less 
than 10% for a load<0.9. For variable T, although network updates are triggered by link 
utilization at instant peaks, we noticed fewer network reconfigurations needed for the MP 
compared to the fixed cycle where reconfigurations are periodically planned at a ratio of 1 to 
3. 

Fig. 7.a, Fig. 7.b, and Fig. 7.c present simulation results of the packet loss ratio for each 
scenario (80/20, 90/10, 100): Fig. 7.a and Fig. 7.b present the network performance. Fig. 7.c 
is a measure of the average system health of a 100 design. In Fig. 7.a and Fig. 7.b, every 
scenario of the proposed model performed better than the traditional OBS. For T=100 s, the 
performance is generally better than the traditional model while also being unstable. 
Combining these results with the instability of the aforementioned scenario, we established 
that T ≥100 seconds is too long to generate accurate resource allocation. 

 
               

 
                                        Fig. 6.a. Utilization Rate of Traditional OBS – 80/20 
 
                   

 
                                   Fig. 6.b. Utilization Rate of Traditional OBS – 90/10 
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   Fig. 7.c shows the good performance of the proposition framework compared to the 
traditional OBS. However, early packet loss was recorded. We think that earlier packet loss 
occurs because of sudden traffic change—especially at higher loads. This packet loss 
challenges the confidence of the estimates under all traffic conditions. We set the threshold 
of the packet loss ratio at 10−2, which suggests that instant peaks can trigger network updates. 
   For loads ≤0.8, the proposed framework presents no packet loss because of the absence of 
BCP contention and unsuccessful estimates of burst arrival. Higher loads—especially at 
instant peaks of the lognormal distribution—could support resource reallocation on demand 
within an acceptable period of time. It is interesting to point out that packet loss in 80/20 and 
90/10 designs is mainly associated with the running of a traditional OBS (control packet 
contention and unmatched burst arrival). The opposite packet loss was found in the 100 
model resulting from packets dropped in the waiting queue in CP. 

 
                       

 
                                               Fig. 7.a. Packet loss ratio – hybrid OBS 80/20 
 

 
                        

 
                                              Fig. 7.b. Packet loss ratio – hybrid OBS 90/10 
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                                           Fig. 7.c. Packet loss ratio – Centralized OBS  
      

C-Throughput 
   We evaluate the throughput of each full path in the network as follows: 
            
           
              𝑇ℎ𝑓𝑢𝑙𝑙  𝑝𝑎𝑡ℎ = 𝑇𝑜𝑡𝑎𝑙𝑏𝑖𝑡𝑠

𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

 
Here, 𝑇𝑜𝑡𝑎𝑙𝑏𝑖𝑡𝑠 is the total number of bits delivered successfully in each full path during the 
simulation time 𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 . Links are assumed to be 100 Gbps bandwidth for a fully 
subscribed network, and throughput in each physical segment is the same. Fig. 8.a, Fig. 8.b 
and Fig. 8.c present the average throughput of the global network.  
The proposition performs better than the traditional model except for the case of fixed T = 
100s, which produced similar results to the traditional OBS. In the scenarios of variable T or 
fixed T = 10s, the average throughput was improved by 51 and 45%, respectively (Fig. 8.b 
and Fig. 8.c). 
 

           

                                                             

                                             Fig. 8.a. Throughput – hybrid OBS 80/20 
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                                                        Fig. 8.b. Throughput – hybrid OBS 90/10 

     

                                                        Fig. 8.c. Throughput – Centralized OBS  

 
Although the hybrid systems (1 + 1), with variable T, have the best performances studied, 
they also induce an additional degree of complexity by the introduction of the System Health 
function. In the case of the same hybrid systems with fixed T, this factor disappears. The 
important parameter in this case becomes the choice of T. This choice is strongly dependent 
on the great variability of the distribution of data over time. If the distribution evolves too 
abruptly for quite short periods of time, a relatively small choice of T would be appropriate 
for the experiment. On the other hand, the more the distribution will be stable, a relatively 
long time cycle T will produce better results. It should be borne in mind that the primary 
scope of this work is to be able to use it for distributions that change abruptly over time, due 
to the fact that the nature of incoming traffic in Intra-DCN is not yet accurately described. 

5. Conclusion 
Here, we used an artificial intelligence technique to improve the global network latency of an 
OBS system in Intra-DCN. We proposed a SDN-based three layers’ architecture. The 
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proposition includes DP, CP, and MP. A Kalman filtering prediction-based algorithm was 
used in the MP to estimate short-term traffic horizons. These predictions are used for 
resource allocation and node scheduling prior to data arrival at electronic ingress nodes. Our 
algorithm runs in backend, which did not induce any additional waiting time to the bursts in 
CP. Previous updates remain valid at each ingress node, until new updates can satisfy the 
necessary and sufficient condition. Our simulations have included three scenarios that was 
namely two hybrids and one centralized architecture. Hybrid architecture with 90/10 channel 
distribution tends to be the most suitable for Intra-DCN traffic due to good traffic estimates 
and fine balance between main and protection line. The time cycle T, for OBS nodes to 
receive updates from the MP was a main point of discussion. The hybrid systems with fixed 
time period T= 10s have the best trade-off in terms of global network performance and 
algorithm complexity, while variable T has the best performances in term of packet loss ratio, 
average network latency, and throughput. Finally, the simulations have confirmed the 
unpredictable behavior of Intra-DCN for relatively long-term estimates. For T ≥100 seconds, 
estimates tend to be imprecise. This frequently provided a graph with a significant difference 
in the amplitude between two close points.  
   Further researches would include extended Kalman filtering, and bring Kalman filtering 
together with a machine learning technique. We would then investigate average bandwidth 
use and the waiting time in the assembly unit. More datasets would also be considered. 
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