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Abstract 
 

Distributive desynchronization algorithms based on pulse-coupled oscillator (PCO) models 
have been proposed for achieving collision-free wireless transmissions. These algorithms do 
not depend on a global clock or infrastructure overheads. Moreover, they gradually converge 
to fair time-division multiple access (TDMA) scheduling by broadcasting a periodic pulse 
signal (called a ‘firing’) and adjusting the next firing time based on firings from other nodes. 
The time required to achieve constant spacing between phase neighbors is estimated in a 
closed form or via stochastic modeling. However, because these algorithms cannot guarantee 
the completion of desynchronization in a short and bounded timeframe, they are not practical. 
Motivated by the limitations of these methods, we propose a practical solution called 
PD-DESYNC that provides a short and deterministic convergence time using a flag firing to 
indicate the beginning of a cycle. We demonstrate that the proposed method guarantees the 
completion of desynchronization within three cycles, regardless of the number of nodes. 
Through extensive simulations and experiments, we confirm that PD-DESYNC not only 
outperforms other algorithms in terms of convergence time but also is a practical solution. 
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1. Introduction 

Wireless sensor networks (WSNs) have been used widely in different domains and have 
recently been further highlighted owing to a rapidly increasing interest in the Internet of 
Things (IoT). However, networking among mobile nodes remains considerably restricted 
because of the scarcity of resources for the nodes and the heaviness from layering stacks of 
standards. For short-range wireless communications, medium access control (MAC) protocols 
can be placed into two categories: contention-based and contention-free MAC protocols. 
Carrier-sense multiple access with collision avoidance (CSMA/CA) is a contention-based 
MAC protocol for accessing an available shared network medium for data transmission. In this 
domain, a node verifies if a channel is idle and able to transmit data. If the channel is busy, the 
node holds the transmission. When the channel is not idle, nodes contend for shared network 
media using a binary exponential backoff algorithm. If the nodes recognize the shared network 
channel as idle and simultaneously transmit data, a collision occurs. Thus, CSMA/CA is a 
simple and adaptive protocol that operates well for small numbers of nodes and variable traffic; 
however, it experiences significant latency and message loss owing to competition and 
collisions between data packets. Many TDMA-based wireless sensor MAC protocols [1–4] 
have been introduced. TDMA is a contention-free MAC protocol where time is divided into 
frames that include several time slots, and each node can communicate with the others in its 
assigned slot. Furthermore, predefined and dedicated time slots provide a collision-free 
environment for data communication. In general, TDMA-based MAC protocols are more 
efficient than CSMA/CA-based protocols in terms of energy efficiency and bandwidth 
utilization, regardless of traffic load. Moreover, time synchronization is the essential and most 
challenging issue in TDMA-based MAC protocols. The synchronization among the nodes is 
generally achieved through a central unit, such as a base station or an access point. However, 
such centralized MAC scheduling is not suitable for WSNs, where all nodes are homogeneous 
and resource-constrained devices. 

Desynchronization is an attractive primitive for WSN networks in the sense that it can 
achieve fair TDMA scheduling via a simple, distributed rule without a centralized coordinator. 
In the majority of desynchronization schemes [5–7], nodes are modeled by pulse-coupled 
oscillators (PCOs) that broadcast individually in a periodic manner. PCOs were designed from 
synchronization that was inspired by the naturally occurring biological synchronization 
required for heartbeats among fireflies [8–11]. All nodes, interconnected through direct 
wireless links, periodically broadcast a pulse signal (called a ‘firing’) message during every 
firing cycle, T. Then, they update each with their own next firing times based on the firing 
messages of the other nodes. This process continues until the firing of all nodes is evenly 
distributed throughout T, where T can be given according to data rate, number of participating 
nodes, wireless channel, and guard interval, among other characteristics. 

Convergence time (CT) is defined as the time difference between the instant when the 
network topology changes (creation, addition, removal) and the instant when all nodes achieve 
their convergent states. Whereas the existing PCO-based algorithms consider the convergence 
rate or speed based on progressive characteristics, we use a deterministic metric. Further, CT is 
a key factor in terms of bandwidth efficiency, energy consumption, and practical deployment 
in [5, 7, 8, 12, 13, 14]. Thus, CT, a function of the number of firing cycles to achieve the 
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convergence state, is derived in a closed form with regard to the rate of convergence in [5, 6, 
10, 14] and is stochastically estimated in [15]. However, although CT can be conjectured, it 
requires a significant amount of time to achieve the convergence state. Thus, it cannot be 
guaranteed within a specific number of firing cycles and is not yet practical for real-world 
applications. 

In this paper, we propose a practical and deterministic desynchronization scheme, 
PD-DESYNC, that provides deterministic CT in three firing cycles, regardless of the number 
of nodes. In previous work in this domain, such as [8, 14], it was assumed that the number of 
participating nodes was known and the algorithms were presented based on this information. 
However, extra complexity is required for each node to count participants; if any information 
regarding the nodes is known in advance, the algorithms can be significantly improved. Thus, 
obtaining information regarding the organization of the nodes is considered another important 
research domain. To the best of our knowledge, no desynchronization algorithms currently 
discuss or present a method to accomplish this. 

Hence, all the nodes of PD-DESYNC periodically broadcast a pulse signal in the same 
manner as PCO-based techniques. Each node recalculates and updates the firing time in the 
next firing cycle based on the firing messages from the other nodes in the current cycle. When 
the flag firing (FF) being broadcast by a randomly selected leader node is considered the 
beginning point of a cycle, each node can count the firing messages during T. The next firing 
time is then determined by the number of nodes and order of broadcasted firings. There is no 
additional equipment or cost required for counting. 

We conducted theoretical analysis and extensive simulations, and further verified the 
performance of PD-DESYNC through practical experiments on TinyOS-based Telos sensors. 
To evaluate the efficiency of the algorithms, CT (the time required to complete 
desynchronization) was used as a metric. To clarify the performance evaluations, we 
compared PD-DESYNC with DESYNC [5, 6] and anchored DESYNC [14]. 

The remainder of this paper is organized as follows. In Section 2, we briefly review related 
work. Section 3 presents PD-DESYNC, a practical and deterministic desynchronization 
method. Section 4 compares the performance of the algorithms with respect to CT through 
simulation results and implementation. Section 5 provides our concluding remarks. 
 

2. Related Works 

2.1 DESYNC [5–7] 
DESYNC is considered to be a general framework for distributed algorithms to achieve the 
desynchronization required by TDMA. Nodes are modeled by PCOs in [8–11], which were 
designed for cardiac and firefly synchronization. These algorithms assume that (i) all n nodes 
can communicate with each other in a single channel, (ii) each node is modeled by an 
oscillator with the same fundamental frequency as period T, and (iii) there is no oscillator 
clock drift. Thus, the state of a node can be represented by the phase of its oscillator. Without 
loss of generality, it is convenient to assume that the fundamental frequency is one and the 
phase is in [0,1]. 
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When a node reaches the end of its cycle, it fires and resets its phase to zero. This firing 

also notifies all the other nodes that it is beginning a new cycle. Next, it waits for the next node 
to fire and jumps to a new phase according to a certain function. This jumping function uses 
only the firing information of the node fired immediately before it and the node fired 
immediately after it. DESYNC achieves desynchronization (i.e., the phases of the n nodes are 
evenly spaced) if the new phase of each jump in a node is moved towards an estimated 
midpoint of the phases of two neighboring nodes. However, the CT of the DESYNC is only 
conjectured to be O(n2), which is nondeterministic. 

 

2.2 Anchored DESYNC [14] 
In anchored DESYNC (A-DESYNC), except for the fact that a single special node cannot 
adjust its own clock because it is already synchronized, the phase adjustment procedure is the 
same as that of DESYNC [5, 6]. Moreover, A-DESYNC is a centralized scheduling algorithm 
because it is assumed that each node knows the total number of nodes. Maintaining one node 
with fixed beaconing (i.e., an anchored node) allows for faster convergence to TDMA [15]. 
However, without suggesting how to select the anchored node, it is assumed that the anchored 
node is determined in advance or by a certain scheme. Thus, the CT of A-DESYNC is 
conjectured to be O(n2 ln(n/ε)), which is nondeterministic. 

 

2.3 PCO-based DESYNC [8] 
PCO-based desynchronization (PCO-DESYNC) with inhibitory coupling achieves 
round-robin scheduling by limiting the listening interval; every node updates its own phase 
after it receives a firing from a previous phase neighbor within the listening interval. It exhibits 
a logarithmic complexity, O(log(n)), which is nondeterministic. It is also a centralized 
algorithm in the sense that it uses the total number of nodes; however, it does not explain how 
this number is obtained. 

 

2.4 Fast DESYNC [16, 17] 
In [16], by formalizing a well-established desynchronization algorithm as a gradient descent 
method for solving an optimization problem, a new upper bound of O(�𝑛/𝜀), is established on 
the number of iterations required to achieve convergence. Using Nesterov’s Accelerated 
Gradient Descent, a new algorithm that converges to the steady network state more quickly 
can be obtained. Moreover, it has been extended into a version of decentralized multichannel 
coordination. However, the CT is estimated as a convergence rate, which is nondeterministic. 

A summary of representative DESYNC-based algorithms is provided in Table 1. 
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Table 1. Summary of representative DESYNC-based algorithms 

Algorithms 

Centralized 

or 

Distributed 

Provide 

Bounded 

CT 

Use total 

number of 

nodes 

Provide how to 

determine total 

number of nodes 

DESYNC Distributed NO NO - 

A-DESYNC Centralized NO YES NO 

PCO-DESYNC Centralized NO YES NO 

Fast DESYNC Distributed YES NO - 

PD-DESYNC Distributed YES YES YES 

3. PD-DESYNC: PRACTICAL AND DETERMINISTIC 
DESYNCHRONIZATION 

In this section, we first describe the PCO framework [9–11]. Using this framework, 
PD-DESYNC algorithms are then explained in detail. Notations are summarized in Table 2. 
 

Table 2. Notations in PCO framework 
Notation Description 
ϕi(t) phase of Ni at time t, ϕi(t) ∈ [0,1] 

T firing cycle 
n total number of nodes 
Ni i-th node in T (i=0, ..., n-1) 
τi count-up timer of Ni from zero to T 

Ci, AF firing counter of Ni after its own firing between two consecutive FFs 
Ci, BF firing counter of Ni before its own firing between two consecutive FFs 
NN normal node 
FN flag node 
FF flag firing 

hasFired variable indicating if Ni has fired between two consecutive FFs 
CT convergence time 

 

3.1 PD-DESYNC Framework 
As in [5–7], we consider the desynchronization problem as a fully connected graph of n nodes; 
i.e., all n nodes are able to communicate with each other. Each node is modeled by an 
oscillator with frequency T = 1, where T is a firing cycle and there is no oscillator clock drift. 
Let ϕi(t) ∈ [0, 1] be the phase of Ni at time t, i = 0, ..., n-1. Upon reaching ϕi(t)=1, Ni fires, 
indicating the termination of its cycle to the other nodes. Upon firing, the node resets ϕi(t+) to 
zero. Each node moves around a ring in a clockwise direction with period T (Fig. 1). 
Whenever a node reaches the top of a ring, it fires; all other nodes can detect this firing and 
record their times to adjust their own phases. 
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Fig. 1. Description of PD-DESYNC framework 

 

3.2 PD-DESYNC Algorithm 
The goal of the proposed PD-DESYNC algorithm is to adjust the phase of each node such that 
the phases of the n nodes can be evenly spaced within a short and deterministic CT. To achieve 
this goal, each node receives the total number of nodes (n) by counting the firings of the other 
nodes during T, and locates its own phase for the next cycle using the order of firings and 
number of nodes. The flag node (FN), which is chosen through the initial procedure, 
broadcasts an FF every T time unit. By counting the firings between two consecutive FFs, each 
node can obtain the total number of participants. Following this, Ni sets its own current phase, 
ϕi(t) using a function of n and two firing counters Ci, BF and Ci, AF, where Ci, BF and Ci, AF are the 
firing counter before and after its own firing between two consecutive FFs, respectively. Every 
node acts as either an FN or a normal node (NN). The only difference is that when ϕi(t)=1, an 
FN broadcasts not only a firing but also an FF. We outline the PD-DESYNC algorithm 
consisting of these three procedures following. 
 

A) Initial procedure: Through the initialization procedure, a node can determine if it is an 
FN or NN. If a node does not detect an FF or a firing before its own firing, the node is an 
FN; otherwise, it is an NN. The initialization procedure of a node is described below 
(Table 3 and Fig. 2).  

 
 

Table 3. Initial procedure 
Step Action 

(A.1) Ni initializes τi = 0, Ci, AF = 0, Ci, BF = 0, and hasFired = false. 

(A.2)–(A.3) 
If Ni detects an FF before τi expires, it acts as an NN. Otherwise, Ni 
is an FN of which ϕi(t) first reaches one. 

(A.4) 
Ni becomes an NN. It selects a random value in [0,1] and adjusts 
ϕi(t) to the value. 
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(A.5) 
When τi expires, Ni selects a random value in [0,1] and adjusts ϕi(t) 
to the value. 

(A.6) If Ni detects an FF before ϕi(t) = 1, it acts as an NN.  

(A.7)–(A.8) 
If ϕi(t) = 1 without detecting any firing, it becomes an FN and 
broadcasts an FF and a firing. 

 
 

 
Fig. 2. Initial procedure of a node 

 
 

The initial procedure is an important process of the PD-DESYNC algorithm, where each 
node becomes either an FN or NN. Ni initializes τi = 0, a count-up timer that counts from zero 
towards T. If it detects an FF before the expiration of the FF timer (τi), Ni becomes an NN. If 
the FF timer expires, it becomes a candidate for an FN and sets ϕi(t) to a random number in 
[0,1]. The FF timers of the other nodes can expire simultaneously. If all of them become FNs 
and immediately broadcast FFs and firings, a collision must occur (refer to Section 4.1). 
Therefore, the Ni whose FF timer has expired selects a random number as an initial value of 
ϕi(t). The first node whose ϕi(t) reaches one becomes the FN and broadcasts an FF and a firing 
within every T period. The other nodes hearing the FF act as NNs and broadcast a firing 
whenever ϕi(t) reaches one. 
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For ease of understanding of the initial procedure, let us suppose that there are n = 4 nodes. 
Fig. 3 illustrates the timeline of the initial procedure. Initially, the nodes are turned on in the 
sequence N0, N1, N2, and N3, and start their own FF timer. When the FF timer (τ0) of N0 expires 
first, N0 becomes a candidate for an FN and sets ϕ0(t) to 0.7, which is randomly generated in 
[0,1]. When ϕ0(t) = 1, it becomes an FN and broadcasts an FF and a firing within every T 
period. The FF timer (τ1) of N1 also expires; it becomes a candidate for an FN and sets ϕ1(t) to 
0.3. However, when ϕ1(t) reaches 0.5, N1 hears an FF and a firing from N0, becomes an NN, 
and resets ϕ1(t) to 0.5. If ϕ1(t) was set to a value close to one and reached one before ϕ0(t), N1 
would become an FN instead of N0. Both N2 and N3 become NNs because they detect an FF 
from N0 before expiration of their FF timers (τ2 and τ3). Further, ϕ1(t) and ϕ1(t) are set to 0.8 and 
0.2, respectively.  

From the moment that N0 becomes an FN, firing cycles begin. Within every T time unit, FN 
(N0) broadcasts an FF and a firing and the NNs (N1, N2, N3) execute a firing. NNs adjust their 
ϕi(t) (i = 1, 2, 3) by counting n, Ci, BF, and Ci, AF and computing ϕi(t) in the next firing cycle. 

 
 

 
Fig. 3. Timeline of initial procedure (n = 4) 

 
 

B) NN Procedure: Each NN executes three processes: The first is to detect FFs or firings, 
the second is to verify if ϕi(t) reaches one, and the third is to verify if τi has expired. The 
initialization procedure of a node is presented in Table 4 and Fig. 4. 

 
                                                   𝜙𝑖(𝑡) = 𝑇(1 − 𝐶𝑖,𝐵𝐹

𝐶𝑖,𝐴𝐹+𝐶𝑖,𝐵𝐹+1
)                                                 (1) 
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Table 4. NN Procedure 
Step Action 

(B.1)–(B.3) 
When Ni detects a firing, it increases Ci, BF before its own firing and Ci, AF after 
its own firing by one. 

(B.4) 
When Ni detects an FF, it adjusts ϕi(t) by the phase function (1), reinitializes τi = 
0, Ci, AF = 0, Ci, BF = 0, and hasFired = false. 

(B.5)–(B.6) 
When ϕi(t) = 1, Ni broadcasts a firing and is set to hasFired = true. 
If a collision occurs,  

(B.7) 
If τi has expired, Ni assumes that there is no FN. To determine a new FF, Ni 
performs the initial procedure of Section 3.2.B)  again. 

 
 

 
Fig. 4. Procedure of a Normal Node 

 
 

C) FN Procedure: The FN procedure is simple, as indicated in the Table 5 and Fig. 5. 
 
 

Table 5. FN Procedure 
Step Action 

(C.1)–(C.2) When ϕi(t) = 1, Ni broadcasts an FF and its own firing. 

(C.3) If Ni detects an FF before broadcasting of its own FF, it becomes an NN. 
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Fig. 5. Flag Node Procedure 

4. Performance Evaluation 
PD-DESYNC is a deterministic solution. Regardless of the number of nodes (n), 
desynchronization is completed within three firing cycles. It is sufficiently straightforward to 
demonstrate that the CT is bounded by only three firing cycles; every entering node performs 
the initial procedure. It requires 2T at the maximum degree, which is a worst-case scenario 
where the FF timer set to T has expired and all competitive nodes select values close to T in a 
random backoff process for FN. Next, after a second T, each node knows the total number of 
nodes and precisely adjusts its own phase based on that information; it requires up to 3T to 
achieve desynchronization. 

To clarify the performance evaluation, we compared PD-DESYNC with DESYNC [5–7] 
and A-DESYNC [15]. To confirm that PD-DESYNC converges to desynchronization within 
three firing cycles, we conducted extensive simulations and practical implementations, where 
CT was used a metric. 
 
 Convergence Time (CT): CT is defined as the time difference between the moment when 

the network topology changes (creation, addition, removal) and the time when all nodes 
achieve the convergent state. Whereas the existing PCO-based algorithms consider the 
convergence rate or speed based on progressive characteristics, we use a deterministic 
metric. 

 

4.1 Addressing Collisions 

In the PD-DESYNC algorithm, the method of selecting an FN and determining the time to 
broadcast an FF or firing is based on a timer and randomness. A random number is set in ϕi(t) 
for the FN and NN to broadcast an FF or firing. A collision could occur, and therefore, 
countermeasures are required to prevent this situation. 

A major collision problem occurs when multiple nodes become FNs and broadcast an FF 
simultaneously. Let us call this ‘FF collision’. This could occur when all nodes are powered up 
simultaneously or the FN disappears from the network in the desynchronization state. If the 
FN disappears in the desynchronization state, the FF timers of the nodes expire simultaneously. 
At this stage, if multiple nodes become FNs and broadcast an FF simultaneously, an FF 
collision occurs, affecting the operation of PD-DESYNC. To minimize the FF collision 
problem, when the FF timer expires, ϕi(t) is set to a random number in [0,1]; Ni with the 
greatest value becomes the FN. This process is similar to CDMA/CA used in IEEE 802.11 
DCF: when a node waits to become free, after the DIFS(DCF Interframe Space) interval, it 
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chooses a random backoff counter in the contention window and decrements until the backoff 
counter is zero before attempting to transmit.  

Although the collision problem caused by the timer has been mitigated, the probability of 
FF collision by randomness continues to exist. If a node that is unrelated to an FF collision 
exists, this node cannot hear the FF and determines that there is no FN. During the FF collision, 
the node becomes the FN and broadcasts an FF. The nodes that are directly involved in the FF 
collision hear the FF and become NNs. Thus, there exists only one FN in the network. If there 
is no node unrelated to the FF collision, a collision occurs during data transfer and fails to 
deliver the data. At this point, the nodes involved in the collision can recognize the situation 
and avoid collision by repeating the procedure from the initial step. 

After the FN is determined, two or more of the remaining nodes set ϕi(t) to the same 
random number causing another collision problem. Because their ϕi(t)s reach one and they 
broadcast FFs at the same time, a collision can occur. This is called ‘firing collision’ because 
firing collision occurs repeatedly at each T, and eventually fails to transmit the data. 
Subsequently, a collision can be avoided by repeating the initial procedure. This is similar to 
the collision resulting from selecting the same random backoff counters in the contention 
period of IEEE 802.11 DCF. In the case of firing collision, the FF can recognize a firing 
collision before transmitting the data, and if it broadcasts a message to reset ϕi(t) to the NNs, 
the collision can be prevented before the data is transmitted. However, this method has the 
disadvantage of adding a new message and process to the nodes.  

 

4.2 Determination of T 
T is determined by the network application requirement and network environment factors. 
Here, the assumed network application requirement is that all participating nodes of the 
network must have at least one transmission opportunity within T. First, the number of 
network participating nodes is estimated. This number can be calculated stochastically or it 
can be given deterministically. If it is calculated stochastically, one or more transmission 
opportunities can be stochastically guaranteed. For example, if n is a normal distribution with 
n~N(μ, σ2), a transmission opportunity can be guaranteed for a maximum ⌊1.29𝜎 + 𝜇⌋ nodes 
with a probability of 90%. This is because P(n < 1.29σ + μ) = P(Z < 1.29) = 0.9015, where Z = 
(n - μ) / σ. If the number is given deterministically, one or more transmission opportunities are 
always guaranteed. For example, in a military operation, assume a squad, which is a 
sub-subunit led by a non-commissioned officer, always consists of 7–12 soldiers. Here, if the 
number of the participant nodes is set to 12, the participating nodes can be guaranteed of at 
least one transmission opportunity. 

After the number of participating members is set, T can be calculated by the network 
environment factors such as data rate, wireless channel, and guard interval. IEEE 802.11n [18] 
is assumed here. Each node has a guard interval (LGI) for transmission reliability and a firing 
interval (LF) before data transmission. FN has LGI, LF and the FF interval (LFF). The 
transmission time of one PPDU (PHY Protocol Data Unit) is LPPDU_SIFS_ACK. Fig. 6 displays a 
scenario of n nodes during T; Fig. 7 displays the components of LPPDU_SIFS_ACK. T must satisfy 
(2) because T must be greater than the time for at least n nodes to transmit data once.  
 

                                         T > LFF + n (LGI  + LF + LPPDU_SIFS_ACK)                                  (2) 
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Fig. 6. Transmission scenario of n nodes in T 

 

 
Fig. 7. PPDU 

 
Table 6. Parameters of IEEE 802.11n 

Parameter Description Value 
data rate data rate when MCS (Modulation Coding Scheme) Index = 5 52,000,000 bps 

LGI guard interval (in seconds) 0.8 us 
LPPDU_SIFS_ACK interval of long PPDU (PHY Protocol Data Unit) + SIFS + ACK  261.17 us 

LF firing interval (in seconds) = type (4 bits) + node ID (48 bits) 52 us (52 bits) 
LFF flag firing interval (in seconds) = type (4 bits) + node ID (48sbits) 52 us (52 bits) 

 
Table 6 displays the IEEE 802.11n parameter values for calculating T in a real environment. 

The data rate, LGI, and LPPDU_SIFS_ACK values are referenced from [18, 19]; LF and LFF are 
referenced from [20]. The PLCP (Physical Layer Convergence Procedure) preamble and 
PLCP header are transmitted at 1 Mbps for reliable transmission; other fields are transmitted at 
52 Mbps, and SIFS is 20 us. If n is set to 12, then T > 3819.64 us = 52 us + 12(0.8 us+52 us + 
261.17 us). After the determination of T, the efficiency of the slot utilization can be 
significantly improved using the firing offset adjustment technique in [20].  

 

4.3 Analytical Results 
To demonstrate that desynchronization was performed within 3T, we analyzed the timeline of 
the proposed desynchronization scheme under the worst-case circumstances. If network 
topology change occurred (such as node addition or node removal for an existing FN), all 
nodes exchanged firings with each other during a firing cycle after receiving an FF from the 
FN. Following this, desynchronization was achieved at the next firing cycle. 

The process of adding n4 in the second (2nd) firing cycle is detailed in Fig. 8, where four 
nodes (N0,…,N3) were in the convergence state in the first (1st) firing cycle. Next, N4 was 
added into the network in the second (2nd) firing cycle, and detected an FF before the FF timer 
(T) expired. In the third (3rd) firing cycle, five nodes exchanged firings. When all five nodes 
received FFs at the start of the fourth (4th) firing cycle, they recalculated their own firing times 
by (1) and reached the convergence state. Thus, desynchronization was achieved within 2T 
(<3T). Whereas it requires 2T to complete desynchronization from the addition of a node, there 
is only one T (the third (3rd) firing cycle) where TDMA fails. 
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Fig. 8. Timeline in node addition 

 
 

 
Fig. 9. Worst-case timeline in node addition 
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The worst-case scenario occurs when there is no FN in the network because all nodes power 
on or the FN disappears; the process of selecting an FN consumes additional time. This 
procedure is described from the moment when the five nodes power up to the moment when 
they converge to desynchronization (Fig. 9). For ease of presentation, the indices of nodes are 
numbered in the ascending order of their turn-on times. In the first (1st) firing cycle, all nodes 
powered on at different times and then set FF timers. At the beginning of the second (2nd) 
firing cycle, the FF timer of N0 expired. To create a worst-case scenario, ϕi(t) (i = 0,…,3) was 
set to zero. When ϕi(t) = 1, N0 became an FN and broadcasted an FF and a firing. The Ni (i = 1, 
…, 3) that received the FF from the FN, then became an NN and transmitted a firing when ϕi(t) 
= 1. When N0 transmitted an FF and a firing at the beginning of the fourth (4th) firing cycle, all 
nodes recalculated their own firing times by (1), and then converged to desynchronization. 
Thus, desynchronization can be achieved within 3T, even in a worst-case scenario. 
 

4.4 Simulation Results 
All current proposed methods in this domain are biologically inspired self-maintaining 
schemes for collision-free TDMA scheduling in a single-hop, single-channel network. In 
related work, convergence rates are used as a metric because the time required to converge to 
desynchronization is unbounded. Thus, we evaluated convergence time, which is a 
deterministic metric. We used the averages for the CTs of DESYNC and A-DESYNC and of 
the worst-case scenario for PD-DESYNC. The averaged CTs of DESYNC and A-DESYNC 
and the worst-case scenario CT of PD-DESYNC are displayed in Fig. 10. 
 

We developed our event-driven simulator to perform extensive simulation tests. To ensure 
that all our results were comparable, we used the same test scenario for all simulations. All 
results were averaged after 3,000 iterations, and T was set to 1,000 ms. Finally, n varied from 
five to 50. Without loss of generality, we measured the CT as the total number of firing cycles 
from the cycle where the topology changed to the cycle immediately before the first 
desynchronization was achieved. We considered three cases: (i) initial network configuration, 
(ii) node addition, and (iii) node removal. In case (i), several nodes configured a network; in 
case (ii), one node (NN or FN) joined the network; in case (iii), one node (NN or FN) left the 
network. 
 

1) Initial network creation: The existing algorithms consider the following situation to 
be a general case. As a group of nodes boots up and periodically broadcasts firings, the 
nodes are desynchronized, either gradually or deterministically, by their own 
algorithms. The CTs of the three schemes at the initial creation of a network are 
depicted in Fig. 10. Whereas the CTs of DESYNC and A-DESYNC increased rapidly 
as n increased, PD-DESYNC converged to a steady state within three firing cycles 
(regardless of n). 
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Fig. 10. CTs for DESYNC, A-DESYNC, and PD-DESYNC at initial creation of network, n ∈ [5,50] 

 
 

2) Addition of a node: In this scenario, the network was assumed to be initially 
desynchronized. A new node joined the network, which was then re-desynchronized by 
its own algorithm. As indicated in Fig. 11, whereas the CTs of DESYNC and 
A-DESYNC increased rapidly as n increased, PD-DESYNC converged to a steady state 
within two firing cycles regardless of n. Because a random backoff process for FN 
selection was omitted, the CT decreased by one. 

 

 
Fig. 11. CTs for DESYNC, A-DESYNC, and PD-DESYNC at addition of node, n ∈ [5,50] 

 
3) Removal of a node: In this scenario, the network was also assumed to be initially 

desynchronized. One node left the network, which was then re-desynchronized by its own 
algorithm. In PD-DESYNC, two cases are possible: (i) removal of an NN or (ii) removal 
of an FN. Hence, Fig. 12 displays the CTs of DESYNC, A-DESYNC, PD-DESYNC 
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(NN), and PD-DESYNC (FN). Whereas the CTs of DESYNC and A-DESYNC increased 
rapidly as n increased, PD-DESYNC (NN) and PD-DESYNC (FN) converged to a steady 
state within two and three firing cycles (regardless of n), respectively. When the FN 
leaves, three steps of the expiration of an FN timer, random backoff process, and counting 
of n follow. However, immediately after an NN leaves during the firing cycle, every node 
counts and obtains n' = n - 1. Furthermore, at the next firing cycle, all nodes can adjust 
their own phases according to the phase function (1). 

 

 
Fig. 12. CTs for DESYNC, A-DESYNC, PD-DESYNC(NN) and PD-DESYNC(FN) at the addition of a 

node, n∈[5,50] 
 

4.5 Experimental Results with Kmotes 
To validate the practicality of PD-DESYNC, we implemented PD-DESYNC programmed 
with NesC on TinyOS-based Kmote sensor motes, which is a clone of TelosB developed by 
the Korea Electronics Technology Institute. We measured the CTs of PD-DESYNC on the 
testbed with five motes for all experiments with a fixed parameter: T = 6000 ms. To evaluate 
the effect of the addition and removal of a node, we conducted three classes of experiments: 
creation of the network, addition of a node, and removal of a node. Our demonstration clip can 
be played on YouTube (refer to [21]). 

Fig. 13 displays a typical run with five nodes. Each point represents the relative firing time 
when the firing time of FN was assumed to be zero within a single firing cycle. 
In the first (1st) round, every node reset its own FF timer and waited for the FF without 
broadcasting a firing. In the second (2nd) round, N0 won the backoff competition, became an 
FN, broadcasted an FF, and fired. Other nodes that received the FF broadcasted a firing when 
ϕi(t) = 1 while detecting and counting other firings. In the third (3rd) round, as 
desynchronization was achieved, all nodes broadcasted their firings with equally spacing 
around the ring. 
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Fig. 13. Experiment with 5 Kmotes 

 
Fig. 14 displays CTs at the initial network creation, the addition of a node, and removal of a 

node. When measuring CT at the initial network creation, we used the node that is first 
powered on because it was a probable worst case. In the initial network creation, the CT was 
measured from the starting cycle of the first booted node to the prior cycle where the value of 
ϕi(t) was calculated or recalculated. In both the addition and removal of a node, the CT was 
measured from the last cycle when the number of firings was unchanged to the prior cycle 
where the value of ϕi(t) was recalculated. Each result was averaged after 30 iterations. The CT 
at network creation was approximately two (<3); CTs at the addition and removal of a node 
were approximately one (<3). These results demonstrate that the proposed PD-DESYNC is a 
practical, deterministic, and effective desynchronization scheme. 
 

 
Fig. 14. Measurements of CTs with 5 Kmotes 
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5. Conclusion 
Existing DESYNC-based algorithms cannot guarantee the completion of desynchronization in 
a short time. Thus, they are not practical for real, time-divided communication systems. To the 
best of our knowledge, we are the first to propose a deterministic desynchronization algorithm 
that converges to desynchronization within three firing cycles. The proposed PD-DESYNC 
consists of three procedures: initialization, NN, and FN procedures. Whereas other algorithms 
[8, 14] only assume that the total number of nodes is known, we have proposed a simple 
algorithm that obtains the total number of nodes based on the FFs broadcast by the FN, which 
was selected by chance in a random backoff competition. Finally, extensive, event-driven 
computer simulations demonstrated that the proposed PD-DESYNC outperforms DEYSNC 
and A-DEYSNC. Through our implementation and experiments, we can verify the efficacy of 
PD-DESYNC. In the near future, we plan to study two extensions to PD-DESYNC. 
(1) Energy-efficient algorithms:  Operations such as the counting of firings, broadcasting of 

FF, and the electing of FN into PD-DESYNC have been added to PD-DESYNC. These 
operations reduce the network lifetime as they consume a considerable amount of energy. 
In particular, the operation for listening constantly to hear firings is energy-intensive. 
One method to improve this issue and increase the network lifetime is to reduce the 
number of firings. The existing DESYNC must continue to fire because it does not know 
when the convergence state is achieved. However, PD-DESYNC can guarantee attaining 
the desynchronization state within 3T. Therefore, if a stability state where the number of 
total nodes is constantly maintained is achieved, a sleep mode without firing for a certain 
period of time can be applied to PD-DESYNC. To implement this, the conditions for 
setting, maintaining, and releasing the sleep mode must be studied based on criteria for 
determining the stability state. 

(2) Multi-hop case: Research on extending DESYNC to a multi-hop topology is a 
considerably challenging issue. In [7] and [22], the network topology always achieves 
the same desynchronization state in specific situations including the Hamiltonian cycle. 
However, in other network topologies, if the firing start time of the nodes is different, it is 
difficult to predict the time allocated for each node because each node attains a different 
desynchronization state; thus, there are situations where we cannot obtain sufficient 
capacity. Further, although the desynchronization state is achieved, a collision can occur 
owing to the hidden node problem. Therefore, research using information sharing on 
two-hop neighbor nodes has been proposed [23]. We have been investigating how to 
solve the hidden node problem by sharing information between two-hop neighbor nodes 
in a two-hop case or using FN as a cluster header without sharing information, and plan 
to extend this to a multi-hop case. 
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