
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, Aug. 2019 3880
Copyright ⓒ 2019 KSII

PD-DESYNC: Practical and Deterministic
Desynchronization in Wireless Sensor

Networks

Sang-Hyun Hyun1, Geon Kim2, and Dongmin Yang2*
1 SOFTITECH Co., Ltd., Jukdong-ro, Yuseong-gu, Daejeon, Republic of Korea

[e-mail: shhyun@sit21c.com]
2 Graduate School of Archives and Records Management, Chonbuk National University, Baekje-daero, Jeonju-si,

Jeollabuk-do, Republic of Korea
[e-mail: godardkim@jbnu.ac.kr (G. K.), dmyang@jbnu.ac.kr (D. Y.)]

*Corresponding author: Dongmin Yang (dmyang@jbnu.ac.kr)

Received March 20, 2018; revised June 15, 2018; revised August 9, 2018; accepted February 12, 2019;
 published August 31, 2019

Abstract

Distributive desynchronization algorithms based on pulse-coupled oscillator (PCO) models
have been proposed for achieving collision-free wireless transmissions. These algorithms do
not depend on a global clock or infrastructure overheads. Moreover, they gradually converge
to fair time-division multiple access (TDMA) scheduling by broadcasting a periodic pulse
signal (called a ‘firing’) and adjusting the next firing time based on firings from other nodes.
The time required to achieve constant spacing between phase neighbors is estimated in a
closed form or via stochastic modeling. However, because these algorithms cannot guarantee
the completion of desynchronization in a short and bounded timeframe, they are not practical.
Motivated by the limitations of these methods, we propose a practical solution called
PD-DESYNC that provides a short and deterministic convergence time using a flag firing to
indicate the beginning of a cycle. We demonstrate that the proposed method guarantees the
completion of desynchronization within three cycles, regardless of the number of nodes.
Through extensive simulations and experiments, we confirm that PD-DESYNC not only
outperforms other algorithms in terms of convergence time but also is a practical solution.

Keywords: Desynchronization, Distributed algorithms, Wireless MAC protocol, Time
division multiple access, Wireless Sensor Networks

http://doi.org/10.3837/tiis.2019.08.004 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 3881

1. Introduction

Wireless sensor networks (WSNs) have been used widely in different domains and have
recently been further highlighted owing to a rapidly increasing interest in the Internet of
Things (IoT). However, networking among mobile nodes remains considerably restricted
because of the scarcity of resources for the nodes and the heaviness from layering stacks of
standards. For short-range wireless communications, medium access control (MAC) protocols
can be placed into two categories: contention-based and contention-free MAC protocols.
Carrier-sense multiple access with collision avoidance (CSMA/CA) is a contention-based
MAC protocol for accessing an available shared network medium for data transmission. In this
domain, a node verifies if a channel is idle and able to transmit data. If the channel is busy, the
node holds the transmission. When the channel is not idle, nodes contend for shared network
media using a binary exponential backoff algorithm. If the nodes recognize the shared network
channel as idle and simultaneously transmit data, a collision occurs. Thus, CSMA/CA is a
simple and adaptive protocol that operates well for small numbers of nodes and variable traffic;
however, it experiences significant latency and message loss owing to competition and
collisions between data packets. Many TDMA-based wireless sensor MAC protocols [1–4]
have been introduced. TDMA is a contention-free MAC protocol where time is divided into
frames that include several time slots, and each node can communicate with the others in its
assigned slot. Furthermore, predefined and dedicated time slots provide a collision-free
environment for data communication. In general, TDMA-based MAC protocols are more
efficient than CSMA/CA-based protocols in terms of energy efficiency and bandwidth
utilization, regardless of traffic load. Moreover, time synchronization is the essential and most
challenging issue in TDMA-based MAC protocols. The synchronization among the nodes is
generally achieved through a central unit, such as a base station or an access point. However,
such centralized MAC scheduling is not suitable for WSNs, where all nodes are homogeneous
and resource-constrained devices.

Desynchronization is an attractive primitive for WSN networks in the sense that it can
achieve fair TDMA scheduling via a simple, distributed rule without a centralized coordinator.
In the majority of desynchronization schemes [5–7], nodes are modeled by pulse-coupled
oscillators (PCOs) that broadcast individually in a periodic manner. PCOs were designed from
synchronization that was inspired by the naturally occurring biological synchronization
required for heartbeats among fireflies [8–11]. All nodes, interconnected through direct
wireless links, periodically broadcast a pulse signal (called a ‘firing’) message during every
firing cycle, T. Then, they update each with their own next firing times based on the firing
messages of the other nodes. This process continues until the firing of all nodes is evenly
distributed throughout T, where T can be given according to data rate, number of participating
nodes, wireless channel, and guard interval, among other characteristics.

Convergence time (CT) is defined as the time difference between the instant when the
network topology changes (creation, addition, removal) and the instant when all nodes achieve
their convergent states. Whereas the existing PCO-based algorithms consider the convergence
rate or speed based on progressive characteristics, we use a deterministic metric. Further, CT is
a key factor in terms of bandwidth efficiency, energy consumption, and practical deployment
in [5, 7, 8, 12, 13, 14]. Thus, CT, a function of the number of firing cycles to achieve the

3882 Hyun et al.: PD-DESYNC: Practical and Deterministic Desynchronization

convergence state, is derived in a closed form with regard to the rate of convergence in [5, 6,
10, 14] and is stochastically estimated in [15]. However, although CT can be conjectured, it
requires a significant amount of time to achieve the convergence state. Thus, it cannot be
guaranteed within a specific number of firing cycles and is not yet practical for real-world
applications.

In this paper, we propose a practical and deterministic desynchronization scheme,
PD-DESYNC, that provides deterministic CT in three firing cycles, regardless of the number
of nodes. In previous work in this domain, such as [8, 14], it was assumed that the number of
participating nodes was known and the algorithms were presented based on this information.
However, extra complexity is required for each node to count participants; if any information
regarding the nodes is known in advance, the algorithms can be significantly improved. Thus,
obtaining information regarding the organization of the nodes is considered another important
research domain. To the best of our knowledge, no desynchronization algorithms currently
discuss or present a method to accomplish this.

Hence, all the nodes of PD-DESYNC periodically broadcast a pulse signal in the same
manner as PCO-based techniques. Each node recalculates and updates the firing time in the
next firing cycle based on the firing messages from the other nodes in the current cycle. When
the flag firing (FF) being broadcast by a randomly selected leader node is considered the
beginning point of a cycle, each node can count the firing messages during T. The next firing
time is then determined by the number of nodes and order of broadcasted firings. There is no
additional equipment or cost required for counting.

We conducted theoretical analysis and extensive simulations, and further verified the
performance of PD-DESYNC through practical experiments on TinyOS-based Telos sensors.
To evaluate the efficiency of the algorithms, CT (the time required to complete
desynchronization) was used as a metric. To clarify the performance evaluations, we
compared PD-DESYNC with DESYNC [5, 6] and anchored DESYNC [14].

The remainder of this paper is organized as follows. In Section 2, we briefly review related
work. Section 3 presents PD-DESYNC, a practical and deterministic desynchronization
method. Section 4 compares the performance of the algorithms with respect to CT through
simulation results and implementation. Section 5 provides our concluding remarks.

2. Related Works

2.1 DESYNC [5–7]
DESYNC is considered to be a general framework for distributed algorithms to achieve the
desynchronization required by TDMA. Nodes are modeled by PCOs in [8–11], which were
designed for cardiac and firefly synchronization. These algorithms assume that (i) all n nodes
can communicate with each other in a single channel, (ii) each node is modeled by an
oscillator with the same fundamental frequency as period T, and (iii) there is no oscillator
clock drift. Thus, the state of a node can be represented by the phase of its oscillator. Without
loss of generality, it is convenient to assume that the fundamental frequency is one and the
phase is in [0,1].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 3883

When a node reaches the end of its cycle, it fires and resets its phase to zero. This firing

also notifies all the other nodes that it is beginning a new cycle. Next, it waits for the next node
to fire and jumps to a new phase according to a certain function. This jumping function uses
only the firing information of the node fired immediately before it and the node fired
immediately after it. DESYNC achieves desynchronization (i.e., the phases of the n nodes are
evenly spaced) if the new phase of each jump in a node is moved towards an estimated
midpoint of the phases of two neighboring nodes. However, the CT of the DESYNC is only
conjectured to be O(n2), which is nondeterministic.

2.2 Anchored DESYNC [14]
In anchored DESYNC (A-DESYNC), except for the fact that a single special node cannot
adjust its own clock because it is already synchronized, the phase adjustment procedure is the
same as that of DESYNC [5, 6]. Moreover, A-DESYNC is a centralized scheduling algorithm
because it is assumed that each node knows the total number of nodes. Maintaining one node
with fixed beaconing (i.e., an anchored node) allows for faster convergence to TDMA [15].
However, without suggesting how to select the anchored node, it is assumed that the anchored
node is determined in advance or by a certain scheme. Thus, the CT of A-DESYNC is
conjectured to be O(n2 ln(n/ε)), which is nondeterministic.

2.3 PCO-based DESYNC [8]
PCO-based desynchronization (PCO-DESYNC) with inhibitory coupling achieves
round-robin scheduling by limiting the listening interval; every node updates its own phase
after it receives a firing from a previous phase neighbor within the listening interval. It exhibits
a logarithmic complexity, O(log(n)), which is nondeterministic. It is also a centralized
algorithm in the sense that it uses the total number of nodes; however, it does not explain how
this number is obtained.

2.4 Fast DESYNC [16, 17]
In [16], by formalizing a well-established desynchronization algorithm as a gradient descent
method for solving an optimization problem, a new upper bound of O(�𝑛/𝜀), is established on
the number of iterations required to achieve convergence. Using Nesterov’s Accelerated
Gradient Descent, a new algorithm that converges to the steady network state more quickly
can be obtained. Moreover, it has been extended into a version of decentralized multichannel
coordination. However, the CT is estimated as a convergence rate, which is nondeterministic.

A summary of representative DESYNC-based algorithms is provided in Table 1.

3884 Hyun et al.: PD-DESYNC: Practical and Deterministic Desynchronization

Table 1. Summary of representative DESYNC-based algorithms

Algorithms

Centralized

or

Distributed

Provide

Bounded

CT

Use total

number of

nodes

Provide how to

determine total

number of nodes

DESYNC Distributed NO NO -

A-DESYNC Centralized NO YES NO

PCO-DESYNC Centralized NO YES NO

Fast DESYNC Distributed YES NO -

PD-DESYNC Distributed YES YES YES

3. PD-DESYNC: PRACTICAL AND DETERMINISTIC
DESYNCHRONIZATION

In this section, we first describe the PCO framework [9–11]. Using this framework,
PD-DESYNC algorithms are then explained in detail. Notations are summarized in Table 2.

Table 2. Notations in PCO framework
Notation Description
ϕi(t) phase of Ni at time t, ϕi(t) ∈ [0,1]

T firing cycle
n total number of nodes
Ni i-th node in T (i=0, ..., n-1)
τi count-up timer of Ni from zero to T

Ci, AF firing counter of Ni after its own firing between two consecutive FFs
Ci, BF firing counter of Ni before its own firing between two consecutive FFs
NN normal node
FN flag node
FF flag firing

hasFired variable indicating if Ni has fired between two consecutive FFs
CT convergence time

3.1 PD-DESYNC Framework
As in [5–7], we consider the desynchronization problem as a fully connected graph of n nodes;
i.e., all n nodes are able to communicate with each other. Each node is modeled by an
oscillator with frequency T = 1, where T is a firing cycle and there is no oscillator clock drift.
Let ϕi(t) ∈ [0, 1] be the phase of Ni at time t, i = 0, ..., n-1. Upon reaching ϕi(t)=1, Ni fires,
indicating the termination of its cycle to the other nodes. Upon firing, the node resets ϕi(t+) to
zero. Each node moves around a ring in a clockwise direction with period T (Fig. 1).
Whenever a node reaches the top of a ring, it fires; all other nodes can detect this firing and
record their times to adjust their own phases.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 3885

Fig. 1. Description of PD-DESYNC framework

3.2 PD-DESYNC Algorithm
The goal of the proposed PD-DESYNC algorithm is to adjust the phase of each node such that
the phases of the n nodes can be evenly spaced within a short and deterministic CT. To achieve
this goal, each node receives the total number of nodes (n) by counting the firings of the other
nodes during T, and locates its own phase for the next cycle using the order of firings and
number of nodes. The flag node (FN), which is chosen through the initial procedure,
broadcasts an FF every T time unit. By counting the firings between two consecutive FFs, each
node can obtain the total number of participants. Following this, Ni sets its own current phase,
ϕi(t) using a function of n and two firing counters Ci, BF and Ci, AF, where Ci, BF and Ci, AF are the
firing counter before and after its own firing between two consecutive FFs, respectively. Every
node acts as either an FN or a normal node (NN). The only difference is that when ϕi(t)=1, an
FN broadcasts not only a firing but also an FF. We outline the PD-DESYNC algorithm
consisting of these three procedures following.

A) Initial procedure: Through the initialization procedure, a node can determine if it is an
FN or NN. If a node does not detect an FF or a firing before its own firing, the node is an
FN; otherwise, it is an NN. The initialization procedure of a node is described below
(Table 3 and Fig. 2).

Table 3. Initial procedure
Step Action

(A.1) Ni initializes τi = 0, Ci, AF = 0, Ci, BF = 0, and hasFired = false.

(A.2)–(A.3)
If Ni detects an FF before τi expires, it acts as an NN. Otherwise, Ni
is an FN of which ϕi(t) first reaches one.

(A.4)
Ni becomes an NN. It selects a random value in [0,1] and adjusts
ϕi(t) to the value.

3886 Hyun et al.: PD-DESYNC: Practical and Deterministic Desynchronization

(A.5)
When τi expires, Ni selects a random value in [0,1] and adjusts ϕi(t)
to the value.

(A.6) If Ni detects an FF before ϕi(t) = 1, it acts as an NN.

(A.7)–(A.8)
If ϕi(t) = 1 without detecting any firing, it becomes an FN and
broadcasts an FF and a firing.

Fig. 2. Initial procedure of a node

The initial procedure is an important process of the PD-DESYNC algorithm, where each
node becomes either an FN or NN. Ni initializes τi = 0, a count-up timer that counts from zero
towards T. If it detects an FF before the expiration of the FF timer (τi), Ni becomes an NN. If
the FF timer expires, it becomes a candidate for an FN and sets ϕi(t) to a random number in
[0,1]. The FF timers of the other nodes can expire simultaneously. If all of them become FNs
and immediately broadcast FFs and firings, a collision must occur (refer to Section 4.1).
Therefore, the Ni whose FF timer has expired selects a random number as an initial value of
ϕi(t). The first node whose ϕi(t) reaches one becomes the FN and broadcasts an FF and a firing
within every T period. The other nodes hearing the FF act as NNs and broadcast a firing
whenever ϕi(t) reaches one.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 3887

For ease of understanding of the initial procedure, let us suppose that there are n = 4 nodes.
Fig. 3 illustrates the timeline of the initial procedure. Initially, the nodes are turned on in the
sequence N0, N1, N2, and N3, and start their own FF timer. When the FF timer (τ0) of N0 expires
first, N0 becomes a candidate for an FN and sets ϕ0(t) to 0.7, which is randomly generated in
[0,1]. When ϕ0(t) = 1, it becomes an FN and broadcasts an FF and a firing within every T
period. The FF timer (τ1) of N1 also expires; it becomes a candidate for an FN and sets ϕ1(t) to
0.3. However, when ϕ1(t) reaches 0.5, N1 hears an FF and a firing from N0, becomes an NN,
and resets ϕ1(t) to 0.5. If ϕ1(t) was set to a value close to one and reached one before ϕ0(t), N1
would become an FN instead of N0. Both N2 and N3 become NNs because they detect an FF
from N0 before expiration of their FF timers (τ2 and τ3). Further, ϕ1(t) and ϕ1(t) are set to 0.8 and
0.2, respectively.

From the moment that N0 becomes an FN, firing cycles begin. Within every T time unit, FN
(N0) broadcasts an FF and a firing and the NNs (N1, N2, N3) execute a firing. NNs adjust their
ϕi(t) (i = 1, 2, 3) by counting n, Ci, BF, and Ci, AF and computing ϕi(t) in the next firing cycle.

Fig. 3. Timeline of initial procedure (n = 4)

B) NN Procedure: Each NN executes three processes: The first is to detect FFs or firings,
the second is to verify if ϕi(t) reaches one, and the third is to verify if τi has expired. The
initialization procedure of a node is presented in Table 4 and Fig. 4.

 𝜙𝑖(𝑡) = 𝑇(1 − 𝐶𝑖,𝐵𝐹

𝐶𝑖,𝐴𝐹+𝐶𝑖,𝐵𝐹+1
) (1)

3888 Hyun et al.: PD-DESYNC: Practical and Deterministic Desynchronization

Table 4. NN Procedure
Step Action

(B.1)–(B.3)
When Ni detects a firing, it increases Ci, BF before its own firing and Ci, AF after
its own firing by one.

(B.4)
When Ni detects an FF, it adjusts ϕi(t) by the phase function (1), reinitializes τi =
0, Ci, AF = 0, Ci, BF = 0, and hasFired = false.

(B.5)–(B.6)
When ϕi(t) = 1, Ni broadcasts a firing and is set to hasFired = true.
If a collision occurs,

(B.7)
If τi has expired, Ni assumes that there is no FN. To determine a new FF, Ni
performs the initial procedure of Section 3.2.B) again.

Fig. 4. Procedure of a Normal Node

C) FN Procedure: The FN procedure is simple, as indicated in the Table 5 and Fig. 5.

Table 5. FN Procedure
Step Action

(C.1)–(C.2) When ϕi(t) = 1, Ni broadcasts an FF and its own firing.

(C.3) If Ni detects an FF before broadcasting of its own FF, it becomes an NN.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 3889

Fig. 5. Flag Node Procedure

4. Performance Evaluation
PD-DESYNC is a deterministic solution. Regardless of the number of nodes (n),
desynchronization is completed within three firing cycles. It is sufficiently straightforward to
demonstrate that the CT is bounded by only three firing cycles; every entering node performs
the initial procedure. It requires 2T at the maximum degree, which is a worst-case scenario
where the FF timer set to T has expired and all competitive nodes select values close to T in a
random backoff process for FN. Next, after a second T, each node knows the total number of
nodes and precisely adjusts its own phase based on that information; it requires up to 3T to
achieve desynchronization.

To clarify the performance evaluation, we compared PD-DESYNC with DESYNC [5–7]
and A-DESYNC [15]. To confirm that PD-DESYNC converges to desynchronization within
three firing cycles, we conducted extensive simulations and practical implementations, where
CT was used a metric.

 Convergence Time (CT): CT is defined as the time difference between the moment when

the network topology changes (creation, addition, removal) and the time when all nodes
achieve the convergent state. Whereas the existing PCO-based algorithms consider the
convergence rate or speed based on progressive characteristics, we use a deterministic
metric.

4.1 Addressing Collisions

In the PD-DESYNC algorithm, the method of selecting an FN and determining the time to
broadcast an FF or firing is based on a timer and randomness. A random number is set in ϕi(t)
for the FN and NN to broadcast an FF or firing. A collision could occur, and therefore,
countermeasures are required to prevent this situation.

A major collision problem occurs when multiple nodes become FNs and broadcast an FF
simultaneously. Let us call this ‘FF collision’. This could occur when all nodes are powered up
simultaneously or the FN disappears from the network in the desynchronization state. If the
FN disappears in the desynchronization state, the FF timers of the nodes expire simultaneously.
At this stage, if multiple nodes become FNs and broadcast an FF simultaneously, an FF
collision occurs, affecting the operation of PD-DESYNC. To minimize the FF collision
problem, when the FF timer expires, ϕi(t) is set to a random number in [0,1]; Ni with the
greatest value becomes the FN. This process is similar to CDMA/CA used in IEEE 802.11
DCF: when a node waits to become free, after the DIFS(DCF Interframe Space) interval, it

3890 Hyun et al.: PD-DESYNC: Practical and Deterministic Desynchronization

chooses a random backoff counter in the contention window and decrements until the backoff
counter is zero before attempting to transmit.

Although the collision problem caused by the timer has been mitigated, the probability of
FF collision by randomness continues to exist. If a node that is unrelated to an FF collision
exists, this node cannot hear the FF and determines that there is no FN. During the FF collision,
the node becomes the FN and broadcasts an FF. The nodes that are directly involved in the FF
collision hear the FF and become NNs. Thus, there exists only one FN in the network. If there
is no node unrelated to the FF collision, a collision occurs during data transfer and fails to
deliver the data. At this point, the nodes involved in the collision can recognize the situation
and avoid collision by repeating the procedure from the initial step.

After the FN is determined, two or more of the remaining nodes set ϕi(t) to the same
random number causing another collision problem. Because their ϕi(t)s reach one and they
broadcast FFs at the same time, a collision can occur. This is called ‘firing collision’ because
firing collision occurs repeatedly at each T, and eventually fails to transmit the data.
Subsequently, a collision can be avoided by repeating the initial procedure. This is similar to
the collision resulting from selecting the same random backoff counters in the contention
period of IEEE 802.11 DCF. In the case of firing collision, the FF can recognize a firing
collision before transmitting the data, and if it broadcasts a message to reset ϕi(t) to the NNs,
the collision can be prevented before the data is transmitted. However, this method has the
disadvantage of adding a new message and process to the nodes.

4.2 Determination of T
T is determined by the network application requirement and network environment factors.
Here, the assumed network application requirement is that all participating nodes of the
network must have at least one transmission opportunity within T. First, the number of
network participating nodes is estimated. This number can be calculated stochastically or it
can be given deterministically. If it is calculated stochastically, one or more transmission
opportunities can be stochastically guaranteed. For example, if n is a normal distribution with
n~N(μ, σ2), a transmission opportunity can be guaranteed for a maximum ⌊1.29𝜎 + 𝜇⌋ nodes
with a probability of 90%. This is because P(n < 1.29σ + μ) = P(Z < 1.29) = 0.9015, where Z =
(n - μ) / σ. If the number is given deterministically, one or more transmission opportunities are
always guaranteed. For example, in a military operation, assume a squad, which is a
sub-subunit led by a non-commissioned officer, always consists of 7–12 soldiers. Here, if the
number of the participant nodes is set to 12, the participating nodes can be guaranteed of at
least one transmission opportunity.

After the number of participating members is set, T can be calculated by the network
environment factors such as data rate, wireless channel, and guard interval. IEEE 802.11n [18]
is assumed here. Each node has a guard interval (LGI) for transmission reliability and a firing
interval (LF) before data transmission. FN has LGI, LF and the FF interval (LFF). The
transmission time of one PPDU (PHY Protocol Data Unit) is LPPDU_SIFS_ACK. Fig. 6 displays a
scenario of n nodes during T; Fig. 7 displays the components of LPPDU_SIFS_ACK. T must satisfy
(2) because T must be greater than the time for at least n nodes to transmit data once.

 T > LFF + n (LGI + LF + LPPDU_SIFS_ACK) (2)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 3891

Fig. 6. Transmission scenario of n nodes in T

Fig. 7. PPDU

Table 6. Parameters of IEEE 802.11n

Parameter Description Value
data rate data rate when MCS (Modulation Coding Scheme) Index = 5 52,000,000 bps

LGI guard interval (in seconds) 0.8 us
LPPDU_SIFS_ACK interval of long PPDU (PHY Protocol Data Unit) + SIFS + ACK 261.17 us

LF firing interval (in seconds) = type (4 bits) + node ID (48 bits) 52 us (52 bits)
LFF flag firing interval (in seconds) = type (4 bits) + node ID (48sbits) 52 us (52 bits)

Table 6 displays the IEEE 802.11n parameter values for calculating T in a real environment.

The data rate, LGI, and LPPDU_SIFS_ACK values are referenced from [18, 19]; LF and LFF are
referenced from [20]. The PLCP (Physical Layer Convergence Procedure) preamble and
PLCP header are transmitted at 1 Mbps for reliable transmission; other fields are transmitted at
52 Mbps, and SIFS is 20 us. If n is set to 12, then T > 3819.64 us = 52 us + 12(0.8 us+52 us +
261.17 us). After the determination of T, the efficiency of the slot utilization can be
significantly improved using the firing offset adjustment technique in [20].

4.3 Analytical Results
To demonstrate that desynchronization was performed within 3T, we analyzed the timeline of
the proposed desynchronization scheme under the worst-case circumstances. If network
topology change occurred (such as node addition or node removal for an existing FN), all
nodes exchanged firings with each other during a firing cycle after receiving an FF from the
FN. Following this, desynchronization was achieved at the next firing cycle.

The process of adding n4 in the second (2nd) firing cycle is detailed in Fig. 8, where four
nodes (N0,…,N3) were in the convergence state in the first (1st) firing cycle. Next, N4 was
added into the network in the second (2nd) firing cycle, and detected an FF before the FF timer
(T) expired. In the third (3rd) firing cycle, five nodes exchanged firings. When all five nodes
received FFs at the start of the fourth (4th) firing cycle, they recalculated their own firing times
by (1) and reached the convergence state. Thus, desynchronization was achieved within 2T
(<3T). Whereas it requires 2T to complete desynchronization from the addition of a node, there
is only one T (the third (3rd) firing cycle) where TDMA fails.

3892 Hyun et al.: PD-DESYNC: Practical and Deterministic Desynchronization

Fig. 8. Timeline in node addition

Fig. 9. Worst-case timeline in node addition

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 3893

The worst-case scenario occurs when there is no FN in the network because all nodes power
on or the FN disappears; the process of selecting an FN consumes additional time. This
procedure is described from the moment when the five nodes power up to the moment when
they converge to desynchronization (Fig. 9). For ease of presentation, the indices of nodes are
numbered in the ascending order of their turn-on times. In the first (1st) firing cycle, all nodes
powered on at different times and then set FF timers. At the beginning of the second (2nd)
firing cycle, the FF timer of N0 expired. To create a worst-case scenario, ϕi(t) (i = 0,…,3) was
set to zero. When ϕi(t) = 1, N0 became an FN and broadcasted an FF and a firing. The Ni (i = 1,
…, 3) that received the FF from the FN, then became an NN and transmitted a firing when ϕi(t)
= 1. When N0 transmitted an FF and a firing at the beginning of the fourth (4th) firing cycle, all
nodes recalculated their own firing times by (1), and then converged to desynchronization.
Thus, desynchronization can be achieved within 3T, even in a worst-case scenario.

4.4 Simulation Results
All current proposed methods in this domain are biologically inspired self-maintaining
schemes for collision-free TDMA scheduling in a single-hop, single-channel network. In
related work, convergence rates are used as a metric because the time required to converge to
desynchronization is unbounded. Thus, we evaluated convergence time, which is a
deterministic metric. We used the averages for the CTs of DESYNC and A-DESYNC and of
the worst-case scenario for PD-DESYNC. The averaged CTs of DESYNC and A-DESYNC
and the worst-case scenario CT of PD-DESYNC are displayed in Fig. 10.

We developed our event-driven simulator to perform extensive simulation tests. To ensure
that all our results were comparable, we used the same test scenario for all simulations. All
results were averaged after 3,000 iterations, and T was set to 1,000 ms. Finally, n varied from
five to 50. Without loss of generality, we measured the CT as the total number of firing cycles
from the cycle where the topology changed to the cycle immediately before the first
desynchronization was achieved. We considered three cases: (i) initial network configuration,
(ii) node addition, and (iii) node removal. In case (i), several nodes configured a network; in
case (ii), one node (NN or FN) joined the network; in case (iii), one node (NN or FN) left the
network.

1) Initial network creation: The existing algorithms consider the following situation to
be a general case. As a group of nodes boots up and periodically broadcasts firings, the
nodes are desynchronized, either gradually or deterministically, by their own
algorithms. The CTs of the three schemes at the initial creation of a network are
depicted in Fig. 10. Whereas the CTs of DESYNC and A-DESYNC increased rapidly
as n increased, PD-DESYNC converged to a steady state within three firing cycles
(regardless of n).

3894 Hyun et al.: PD-DESYNC: Practical and Deterministic Desynchronization

Fig. 10. CTs for DESYNC, A-DESYNC, and PD-DESYNC at initial creation of network, n ∈ [5,50]

2) Addition of a node: In this scenario, the network was assumed to be initially
desynchronized. A new node joined the network, which was then re-desynchronized by
its own algorithm. As indicated in Fig. 11, whereas the CTs of DESYNC and
A-DESYNC increased rapidly as n increased, PD-DESYNC converged to a steady state
within two firing cycles regardless of n. Because a random backoff process for FN
selection was omitted, the CT decreased by one.

Fig. 11. CTs for DESYNC, A-DESYNC, and PD-DESYNC at addition of node, n ∈ [5,50]

3) Removal of a node: In this scenario, the network was also assumed to be initially

desynchronized. One node left the network, which was then re-desynchronized by its own
algorithm. In PD-DESYNC, two cases are possible: (i) removal of an NN or (ii) removal
of an FN. Hence, Fig. 12 displays the CTs of DESYNC, A-DESYNC, PD-DESYNC

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 3895

(NN), and PD-DESYNC (FN). Whereas the CTs of DESYNC and A-DESYNC increased
rapidly as n increased, PD-DESYNC (NN) and PD-DESYNC (FN) converged to a steady
state within two and three firing cycles (regardless of n), respectively. When the FN
leaves, three steps of the expiration of an FN timer, random backoff process, and counting
of n follow. However, immediately after an NN leaves during the firing cycle, every node
counts and obtains n' = n - 1. Furthermore, at the next firing cycle, all nodes can adjust
their own phases according to the phase function (1).

Fig. 12. CTs for DESYNC, A-DESYNC, PD-DESYNC(NN) and PD-DESYNC(FN) at the addition of a

node, n∈[5,50]

4.5 Experimental Results with Kmotes
To validate the practicality of PD-DESYNC, we implemented PD-DESYNC programmed
with NesC on TinyOS-based Kmote sensor motes, which is a clone of TelosB developed by
the Korea Electronics Technology Institute. We measured the CTs of PD-DESYNC on the
testbed with five motes for all experiments with a fixed parameter: T = 6000 ms. To evaluate
the effect of the addition and removal of a node, we conducted three classes of experiments:
creation of the network, addition of a node, and removal of a node. Our demonstration clip can
be played on YouTube (refer to [21]).

Fig. 13 displays a typical run with five nodes. Each point represents the relative firing time
when the firing time of FN was assumed to be zero within a single firing cycle.
In the first (1st) round, every node reset its own FF timer and waited for the FF without
broadcasting a firing. In the second (2nd) round, N0 won the backoff competition, became an
FN, broadcasted an FF, and fired. Other nodes that received the FF broadcasted a firing when
ϕi(t) = 1 while detecting and counting other firings. In the third (3rd) round, as
desynchronization was achieved, all nodes broadcasted their firings with equally spacing
around the ring.

3896 Hyun et al.: PD-DESYNC: Practical and Deterministic Desynchronization

Fig. 13. Experiment with 5 Kmotes

Fig. 14 displays CTs at the initial network creation, the addition of a node, and removal of a

node. When measuring CT at the initial network creation, we used the node that is first
powered on because it was a probable worst case. In the initial network creation, the CT was
measured from the starting cycle of the first booted node to the prior cycle where the value of
ϕi(t) was calculated or recalculated. In both the addition and removal of a node, the CT was
measured from the last cycle when the number of firings was unchanged to the prior cycle
where the value of ϕi(t) was recalculated. Each result was averaged after 30 iterations. The CT
at network creation was approximately two (<3); CTs at the addition and removal of a node
were approximately one (<3). These results demonstrate that the proposed PD-DESYNC is a
practical, deterministic, and effective desynchronization scheme.

Fig. 14. Measurements of CTs with 5 Kmotes

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 3897

5. Conclusion
Existing DESYNC-based algorithms cannot guarantee the completion of desynchronization in
a short time. Thus, they are not practical for real, time-divided communication systems. To the
best of our knowledge, we are the first to propose a deterministic desynchronization algorithm
that converges to desynchronization within three firing cycles. The proposed PD-DESYNC
consists of three procedures: initialization, NN, and FN procedures. Whereas other algorithms
[8, 14] only assume that the total number of nodes is known, we have proposed a simple
algorithm that obtains the total number of nodes based on the FFs broadcast by the FN, which
was selected by chance in a random backoff competition. Finally, extensive, event-driven
computer simulations demonstrated that the proposed PD-DESYNC outperforms DEYSNC
and A-DEYSNC. Through our implementation and experiments, we can verify the efficacy of
PD-DESYNC. In the near future, we plan to study two extensions to PD-DESYNC.
(1) Energy-efficient algorithms: Operations such as the counting of firings, broadcasting of

FF, and the electing of FN into PD-DESYNC have been added to PD-DESYNC. These
operations reduce the network lifetime as they consume a considerable amount of energy.
In particular, the operation for listening constantly to hear firings is energy-intensive.
One method to improve this issue and increase the network lifetime is to reduce the
number of firings. The existing DESYNC must continue to fire because it does not know
when the convergence state is achieved. However, PD-DESYNC can guarantee attaining
the desynchronization state within 3T. Therefore, if a stability state where the number of
total nodes is constantly maintained is achieved, a sleep mode without firing for a certain
period of time can be applied to PD-DESYNC. To implement this, the conditions for
setting, maintaining, and releasing the sleep mode must be studied based on criteria for
determining the stability state.

(2) Multi-hop case: Research on extending DESYNC to a multi-hop topology is a
considerably challenging issue. In [7] and [22], the network topology always achieves
the same desynchronization state in specific situations including the Hamiltonian cycle.
However, in other network topologies, if the firing start time of the nodes is different, it is
difficult to predict the time allocated for each node because each node attains a different
desynchronization state; thus, there are situations where we cannot obtain sufficient
capacity. Further, although the desynchronization state is achieved, a collision can occur
owing to the hidden node problem. Therefore, research using information sharing on
two-hop neighbor nodes has been proposed [23]. We have been investigating how to
solve the hidden node problem by sharing information between two-hop neighbor nodes
in a two-hop case or using FN as a cluster header without sharing information, and plan
to extend this to a multi-hop case.

Acknowledgements
This work was supported by the Ministry of Education of the Republic of Korea and the
National Research Foundation of Korea (NRF-2016S1A5B8913575). This research was
supported by “Research Base Construction Fund Support Program” funded by Chonbuk
National University in 2017.

3898 Hyun et al.: PD-DESYNC: Practical and Deterministic Desynchronization

References
[1] F. Turati, M. Cesana, L. Campelli, “SPARE MAC Enhanced: A Dynamic TDMA Protocol for

Wireless Sensor Networks,” in Proc. of IEEE GLOBECOM 2009, Hilton Hawaiian Village
Honolulu, HI, USA, 30 Nov – 04 Dec 2009. Article (CrossRef Link).

[2] S. Cho, K. Kanuri, J.-W. Cho, J.-Y. Lee, S.-D. June, “Dynamic Energy Efficient TDMA-based
MAC Protocol for Wireless Sensor Networks,” in Proc. of ICAS-ISNS 2005, 2005.
Article (CrossRef Link).

[3] I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: a Hybrid MAC for Wireless Sensor Networks,”
in Procs. of SenSys 2005, 90-101, 2005. Article (CrossRef Link).

[4] A. Barroso, U. Roedig, C. Sreenan, “/spl mu/- MAC: An energy efficient medium access control
for wireless sensor networks,” in Procs. of The 2nd EWSN 2005, pp. 70-80, 2005.
Article (CrossRef Link).

[5] J. Degesys, I. Rose, A. Patel, R. Nagpal, “Desync: Self-organizing desynchronization and TDMA
on wireless sensor networks,” in Proc. of IPSN 2007, pp. 11-20, 2007. Article (CrossRef Link).

[6] A. Patel, J. Degesys, R. Nagpal, “Desynchronization: the theory of self-organizing algorithms for
round-robin scheduling,” in Proc. of SASO 07, pp. 87–96, 2007.

[7] J. Degesys and R. Nagpal, “Towards Desynchronization of Multi-hop Topologies,” in Proc. of
SASO 08, pp. 129–138, 2008. Article (CrossRef Link).

[8] R. Pagliari, Y.-W. Hong, A. Scaglione, “Bio-inspired algorithms for decentralized round-robin and
proportional fair scheduling,” IEEE Journals on Selected Areas in Communications, vol. 28, no. 4,
pp. 564–575, 2010. Article (CrossRef Link).

[9] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled biological oscillators,” SIAM
Journal on Applied Mathematics, vol. 50, no. 6, pp. 1645–1662, 1990. Article (CrossRef Link).

[10] R. Leidenfrost and W. Elmenreich, “Firefly clock synchronization in an 802.15.4 wireless
network,” Eurasip J. Embed. Syst., vol. 2009, Article id. 18585, pp. 17, 2009.

[11] R. Pagliari, Y.-W. Hong, and A. Scaglione, “Bio-inspired algorithms for decentralized round-robin
and proportional fair scheduling,” IEEE Journal on Selected Areas in Communications: Special
Issue on Bio-Inspired Networking, vol. 28, no. 4, pp. 564–575, 2010. Article (CrossRef Link).

[12] D. Buranapanichkit and Y. Andreopoulos, “Distributed time frequency division multiple access
protocol for wireless sensor networks,” IEEE Wireless Communications Letters, vol. 1, no. 5, pp.
440–443, 2012. Article (CrossRef Link).

[13] H. Besbes, G. Smart, D. Buranapanichkit, C. Kloukinas, Y. Andreopoulos, “Analytic conditions
for energy neutrality in uniformly formed wireless sensor networks,” IEEE Transactions on
Wireless Communications, vol. 12, no. 10, pp. 4916–4931, 2013. Article (CrossRef Link).

[14] C.-M. Lien, S.-H. Chang, C.-S. Chang, D.-S. Lee, “Anchored Desynchronization,” in Proc. of
IEEE INFOCOM 2012, pp. 2966–2970, 2012. Article (CrossRef Link).

[15] D. Buranapanichkit, N. Deligiannis, Y. Andreopoulos, “Convergence of Desynchronization
Primitives in Wireless Sensor Networks: A Stochastic Modeling Approach,” IEEE Transactions
on Signal Processing, vol. 63, no. 1, pp. 221–233, 2015. Article (CrossRef Link).

[16] N. Deligiannis, F.C.J. Mota, G. Smart, Y. Andreopoulos, “Fast Desynchronization for
Decentralized Multichannel Medium Access Control,” IEEE Transactions on Communications,
vol. 63, no. 9, pp. 3336–3349, 2015. Article (CrossRef Link).

[17] N. Deligiannis, F.C.J. Mota, G. Smart, “Decentralized multichannel medium access control:
viewing desynchronization as a convex optimization method,” in Proc. of ACM IPSN 2015, 13-24,
2015. Article (CrossRef Link).

[18] IEEE 802.11 Working Group, “IEEE Standard for Information technology--Telecommunications
and information exchange between systems Local and metropolitan area networks--Specific
requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications,” in Proc. of IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pp.1-2793,
2016. Article (CrossRef Link).

http://dx.doi.org/doi:10.1109/GLOCOM.2009.5425974
http://dx.doi.org/doi:10.1109/ICAS-ICNS.2005.43
https://doi.org/10.1145/1098918.1098929
http://dx.doi.org/doi:10.1109/EWSN.2005.1462000
http://dx.doi.org/doi:10.1145/1236360.1236363
http://dx.doi.org/doi:10.1109/SASO.2008.70
https://doi.org/10.1109/JSAC.2010.100506
http://dx.doi.org/doi:10.1137/0150098
http://dx.doi.org/doi:10.1109/JSAC.2010.100506
http://dx.doi.org/doi:10.1109/WCL.2012.062512.120245
http://dx.doi.org/doi:10.1109/TWC.2013.092013.121649
http://dx.doi.org/doi:10.1109/INFCOM.2012.6195739
http://dx.doi.org/doi:10.1109/TSP.2014.2369003
http://dx.doi.org/doi:10.1109/TCOMM.2015.2455036
http://dx.doi.org/doi:10.1145/2737095.2737108
https://ieeexplore.ieee.org/document/7786995

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 3899

[19] D. Skordoulis, Q. Ni, H.-H. Chen, A. P. Stephens, C. Liu, A. Jamalipour, “IEEE 802.11n MAC
Frame Aggregation Mechanisms for Next-Generation High-Throughput WLANs,” IEEE Wireless
Communications, vol. 15, no. 1, pp. 40–47, Feb. 2008. Article (CrossRef Link).

[20] K. Kim, S.-H. Shin, B.-H. Roh, “Firing Offset Adjustment of Bio-Inspired DESYNC-TDMA to
Improve Slot Utilization Performances in Wireless Sensor Networks,” KSII Transactions on
Internet and Information Systems, vol. 11, no. 3, pp. 1492–1509, Mar. 2017.
Article (CrossRef Link).

[21] YouTube, “PD-DESYNC implementation and demonstration,” Available Online:
https://www.youtube.com/watch?v=b8VTOTXmxmE.

[22] A. Motskin, T. Roughgarden, P. Skraba, L. Guibas, “Lightweight coloring and desynchronization
for networks,” in Proc. of IEEE INFOCOM 2009, pp.2382-2391, 2009. Article (CrossRef Link).

[23] Y. Kim, J. Lee, E. Kong, U. You, C. Lee, H. Choi, M. Han, B. Roh, C. Park, M. Hoh, H. Choi,
“Bio-inspired Resource Allocation for Multi-hop Networks,” The Journal of Korean Institute of
Communications and Information Sciences, vol. 40, no. 10, pp. 2035-2046, 2015.
Article (CrossRef Link)

Sanghyun Hyun received his B.S. and M.S. degrees in Information and Communications
Engineering from Daejeon University, Daejeon, Korea in 2013 and 2015, respectively. He is
currently an associate consultant of Global Business Divisio at SOFTITECH, Daejeon, Korea.
His research interests are system integration & consulting, ad hoc networks, wireless sensor
networks, and IoT.

Geon Kim received B.S. degree from Chonbuk National University, Korea in 1991, M.S.
degrees from University de Paris XII and VIII, France in 1999, and Ph. D. degree from
University of Paris I Pantheon-Sorbonne, France in 2002. He is currently an Associate
Professor at Graduate School of Archives and Records Management, Chonbuk National
University. His current research interests include digital archives management, digital
audiovisual archives, and bigdata.

Dongmin Yang received B.S., M.S., and Ph.D. degrees in Computer Science and
Engineering from the POSTECH, Korea in 2000, 2003 and 2011, respectively. From Sep.
2009 to Sep. 2011, he was with Samsung Electronics Company, Korea, as a Senior Engineer.
From Sep. 2011 to Sep. 2017, he was an Assistant Professor at the Department of Electronics,
Information & Communications Engineering, Daejeon University. He is currently an
Assistant Professor at Graduate School of Archives and Records Management, Chonbuk
National University. His current research interests include archives & records information
security, and MANET.

http://dx.doi.org/doi:10.1109/MWC.2008.4454703
http://dx.doi.org/doi:10.3837/tiis.2017.03.014
https://www.youtube.com/watch?v=b8VTOTXmxmE
http://dx.doi.org/doi:10.1109/INFCOM.2009.5062165
https://doi.org/10.7840/kics.2015.40.10.2035

