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Abstract 
 

To deal with single sample face recognition, this paper presents a patch based semi-supervised 
linear regression (PSLR) algorithm, which draws facial variation information from unlabeled 
samples. Each facial image is divided into overlapped patches, and a regression model with 
mapping matrix will be constructed on each patch. Then, we adjust these matrices by mapping 
unlabeled patches to [1,1, ··· ,1]T . The solutions of all the mapping matrices are integrated into 
an overall objective function, which uses ℓ2,1 -norm minimization constraints to improve 
discrimination ability of mapping matrices and reduce the impact of noise. After mapping 
matrices are computed, we adopt majority-voting strategy to classify the probe samples. To 
further learn the discrimination information between probe samples and obtain more robust 
mapping matrices, we also propose a multistage PSLR (MPSLR) algorithm, which iteratively 
updates the training dataset by adding those reliably labeled probe samples into it. The 
effectiveness of our approaches is evaluated using three public facial databases. Experimental 
results prove that our approaches are robust to illumination, expression and occlusion. 
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1. Introduction 

Face recognition is a research hotspot because of its potential practical value in the artificial 
intelligence field. A lot of recognition techniques have been put forward taking into account 
various situations, in which single sample per person (SSPP) [1] is one of the tough 
challenging topics. In a large amount of practical applications, such as access control, 
e-passport and law enforcement, there is usually only one labeled sample available for each 
individual. In the absence of variation information, it becomes more difficult to fulfill the 
SSPP face recognition task especially when the probe samples bear dramatic facial variations 
of illumination, expression, occlusion, etc. Traditional face recognition methods [2-5] usually 
assume that there are multiple training samples for each subject. When encountering SSPP 
problem, the performance of these methods will degrade seriously. And what is worse, some 
methods do not work any more. 

This paper presents a patch based semi-supervised linear regression (PSLR) algorithm to 
deal with SSPP problem. In the proposed method, facial variation information is drawn from 
large number of unlabeled samples. Borrowing from equidistant prototypes embedding [6], 
the labels of facial images are treated as coordinate space, and gallery samples are placed at the 
unit coordinates. In the coordinate space, we term the coordinates that provide no 
identification information as equidistant points, such as [0,0, ··· ,0]T  and [1,1, ··· ,1]T , whose 
components are equal to each other. In other words, the distances between one equidistant 
point and each unit coordinate are equal. Different from linear regression analysis with generic 
learning (LRA-GL) [6] that describes facial variation information by mapping the intra-class 
differences in the generic dataset to zero vector, we place unlabeled samples at [1,1, ··· ,1]T  to 
introduce the variation information, which is illustrated in Fig. 1. Incorporating lots of 
unlabeled samples into training procedure also helps to avoid overfitting. In order to enhance 
discrimination ability of mapping matrix and reduce the influence of noise, we adopt 
ℓ2,1-norm for the objective function [7]. To take full advantage of local information from 
human faces and reduce the dimension of training data, each facial image is divided into a 
collection of overlapped patches, and a regression model with mapping matrix is constrcuted 
for each patch. In order to harvest both local and global benefits, we incorporate the solutions 
of mapping matrices from all pathes into an overall objective function. After mapping matrices 
are computed, we classify the probe samples by majority voting [8].  

Although PSLR can learn face variation information by utilizing the unlabeded samples, the 
number of the labeled smalples is small under SSPP circumstance. Most often, more correctly 
labeled samples can provide more useful infromation and lead to higher recognition rate. 
Therefore, we aim to further take advantages of those probe samles that are regarded to be 
reliably labeled by PSLR. Based on the observation, we further propose a multistage PSLR 
(MPSLR) algorithm to incorporate the discrimination information between the probe samples 
into PSLR. We first classify the probe samples by PSLR. Then, we pick out those reliably 
labeled probe samples that have more than a certain percentage of votes on their categoires. 
These selected probe samples with their estimated labels are added into the training dataset to 
learn more reliable mapping matricies. By this way, MPSLR repeatedly updates the training 
dataset and retrains regression model untill it achieves satisfactory result. Experimental 
evaluation of effectiveness is made on the proposed approaches, which exhibits that our 
approaches achieve excellent performance. 
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...

a line composed of equidistant  points

 
Fig. 1. The illustration of label coordinate space, in which the coordinates of three training images  are 
respectively at  [0,0,1]T , [0,1,0]T , [1,0,0]T , and all the unlabeled images are placed at [1,1,1]T . The 
distances from any certain equidistant point to each unit coordinate are equal, and all the equidistant 

points lie in one line. 
 

This is an extended version of our conference work [9]. The newly incorporated 
contributions are highlighted as follows: 

1) We propose MPSLR algorithm to further improve recognition performance. 
2) We also provide a theoretical explanation for PSLR. The computational complexities 

and convergences of our algorithms are also analyzed. 
3) We carry out more experiments to verify the effectiveness of our methods.  
The rest of the paper is organized as follows. We introduce the related work in Section 2. 

Section 3 presents the details of the proposed algorithms. In Section 4, we carry out 
experiments and analyze the results. We make a conclusion in Section 5. 

2. Related Work 
As far as SSPP problem is concerned, the estimation of inter-subject facial variations would 
become inaccurate, and what is worse, it is impossible to estimate the intra-subject facial 
variations. To alleviate these difficulties and get as much information as possible, some 
generic learning based methods were proposed, which are based on the intuition that the 
intra-subject facial variations of different individuals are similar, and thus can be 
approximated by estimating from sufficient number of generic faces. Therefore, to collect the 
effective identification information, a generic training dataset is adopted, in which multiple 
training samples are available for each individual. For example, Su et al. [1] infered the 
identification information of the SSPP gallery dataset by learning a prediction model from the 
generic training dataset. Deng et al. [6] proposed to map gallery samples and intra-subject 
differences in the generic training dataset to the equidistant locations and zero vectors, 
respectively. Some other methods [10][11][12] utilize plentiful intra-subject variations in the 
generic training dataset, together with gallery images, to represent probe images. In this way, 
the descriptive ability of these methods on unobserved variations can be substantially 
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strengthened. 
All the above methods dealing with SSPP problem belong to global representation based 

methods since they repsent the global face image with a high-dimensional vector form. 
However, these holistic methods do not pay attention to the distinctiveness of different parts of 
human faces and thus are prone to be affected by those regions with variations of illumination, 
expression, occlusion, etc. In view of this, a large number of patch based methods came out, in 
which two different treatments can be applied. One way is to treat the patches of each subject 
as different samples of the same class and then perform feature extraction on them by some 
discriminant learning techniques. For instance, Chen et al. [13] proposed to divide each face 
image into several patches and apply Fisher linear discriminative analysis (FLDA) [3] to the 
data set of newly produced samples. In [14], Lu et al. treated the local patches of each 
individual as a manifold and maximized the manifold margins of different individuals by 
learning multiple feature spaces. The other way is to represent different patch using one 
feature vector separately. And then those well-known classification techniques, such as 
collaborative representation based classification (CRC) [15] and sparse representation based 
classification (SRC) [16], can be employed to predict the label of each patch. Then the label 
results of all the patches can be aggregated to make the final decision by majority voting. 
Although local region partition can significantly improve the robustness and performance 
[8][17], patch based methods still have no knowledge about facial variations and suffer from 
indiscriminative regions. 

3. Patch based Semi-supervised Linear Regression 

3.1 Motivation 
As mentioned in related work, the methods for solving SSPP problem in face recognition 
generally fall into two categories: global methods and local methods, whose advantages are 
rather complementary. Therefore, we can harvest their advantages to overcome their 
disadvantages. In other words, we should take into account both global and local information. 
Furthermore, the facial variations cannot be fully measured by the conventional unsupervised 
or supervised methods due to the challenge of SSPP problem. Considering that facial variation 
information can be drawn from lots of unlabeled samples, we should also make full use of 
facial variation information from unlabeled samples to deal with SSPP problem. Based on the 
above motivation, we propose an intuitive and effective method, called patch based 
semi-supervised linear regression (PSLR), which fully utilizes unlabeled samples and 
integrates the strengths of both global and local representation. 

3.2 Patch based Linear Regression 
In light of the fact that more identification information can be provided by local region 
partition, we propose a patch based linear regression (PLR) algorithm. Each face image is 
divided into a large number of overlapped patches, and the mapping matrices of different 
patches are formulated into an overall objective function. 

For clarity, we give the definition that ( )T i ∈ℛ𝐾 is the label indicator vector of the i-th 
person, i.e. ( ) [0,T i = ··· ,1, ··· ,0]T , the i-th component of which is 1 and the others are zero. 
Without loss of generality, we assume that gallery samples are arranged according to which 
label they belong to. Then the label matrix of gallery samples, i.e. [ (1), (2),Y T T= ··· , ( )]T K , 
is a K K×  identity matrix. 

For any face image, we partition it into S  overlapped patches. And  the patches at the same 



3966                                              Ding et al.: Patch based Semi-supervised Linear Regression for Face Recognition 

location of all gallery face images are collected to form a patch gallery dataset. In this way, we 
can acquire S  patch gallery datasets 1 2{ , ,X X ··· , }SX , where iX ∈ℛ𝑑×𝐾 ( 1,2,i = ··· , )S . S  
patch probe datasets 1 2{ , ,Z Z ··· , }SZ  are also acquired as well. After dividing S  local patches, 
the corresponding mapping matrix ( 1,2,iW i = ··· , )S  can be obtained by solving the following 
optimization problem: 

 
  

2,1 2,1
minW E Wλ+    . .s t   T T

i i iE Y X W= − ,   i∀ ,                      (1) 
 

where 
2,1 2

( ,:)
k

E E k=∑ , 
2,1 2

W ( ,:)
k

W k=∑ , 1[E ,TE = ··· , ]T T
SE , 1[ ,TW W= ··· , ]T T

SW  
and λ  is the regularized parameter. In order to improve discrimination ability of mapping 
matrices and reduce the influence of noise, we adopt ℓ2,1-norm for the formulations of loss 
function and regularization respectively. This formulation actually describes a global 
objective function, which compute the mapping matrix of each patch as a whole. 

For the i-th patch of a probe face image z , its label is given by: 
 

                                        ( ) arg max ( )T
i k i ilabel z y W z= = .                                           (2) 

 

3.3 Patch based Semi-supervised Linear Regression 
If the label space of facial images are treated as coordinate system where the label indicator 
vectors are unit coordinates, all the unlabeled or labeled samples should have their own 
locations. Usually, we place gallery samples at unit coordinates 1{ ( )}K

iT i =  by reference to 
equidistant prototypes embedding [6]. Nevertheless, where should those unlabeled samples be 
located in the coordinate system? Those unlabeled samples do not fall within any class in the 
training stage because of their ‘unlabeled’ status. In view of this, the location of one unlabeled 
sample should not provide any identification information, which means that the location is 
equally distant from each unit coordinate. In other words, the probabilities of samples at the 
location falling within each class are the same. Such locations without identification 
information are termed as equidistant points. More specifically, we denote the coordinate of 
one unlabeled sample as 1 2[ , ,t t t= ··· , ]T

Kt , then we obtain the following inference: 
 

2
(1)t T− = ··· 1 22

( )t T K t t= − ⇒ = = ··· Kt= .                          (3) 
 

Since there exist lots of probe samples which have no labels in the training stage, we use 
them as unlabeled samples, which can be placed at any equidistant point. Unlabeled samples 
should be far away from gallery samples in the coordinate system since they do not fall into 
any of the gallery categories during training. To compensate for the deviation between the 
gallery and probe samples, unlabeled samples should be placed at the same location. To prove 
this point, we first present the following assumption: 
 
Assumption 1. The intra-subject variation of any gallery facial images can be approximated 
by a linear combination of the differences from sufficient number of unlabeled face images. 
 

The probe sample x  of subject k  can be regarded as a superposition of the corresponding 
gallery sample kx  and intra-class variation vx , i.e., k vx x x= + . Since the difference of any 
two unlabeled samples makes one variant base jφ , given the unlabeled samples 1{ }

j

N
u jx = , there 
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are m ( ( 1) 2)m N N= −  variant bases 1{ } ({ | , , , })
p q

m
j j j j u ux x p q p qφ φ φ= = − ∀ > . Assumption 

1 ensures that the unobserved variations between the gallery and probe sample of any subject 
can be approximated by a linear combination of variant bases 1{ }m

j jφ = . Then, the intraclass 
variation vx  of subject k  can be recovered by 

 

1

m
v j jj

x β φ
=

≈∑ .                                                        (4) 
 
Given the mapping matrix W , the responding label vector y relative to the probe sample x  

can be calculated as follows: 
 

   ( )T T
k vy W x W x x= = + .                                                (5) 

 
Ideally, y  should be equal to the label vector of the gallery sample kx , i.e., 

 
      T

k ky y W x= = .                                                         (6) 
 

To make (6) true, all the unlabeled samples are mapped to the same location, i.e. for j∀ , 

( )
p q

T T
j u uW W x xφ = − = 0�⃑ . Therefore, 

1

mT T
v j jj

W x W β φ
=

≈ =∑ 0�⃑ . In other words, if all the 
unlabeled samples are mapped to the same location, the influence of intra-class variation can 
be approximately eliminated. 

Based on the above analysis, we can make unlabeled samples integrated into the 
objective function of (1) by mapping them to the equidistant point * [1,1,t = ··· ,1]T . Then, the 
new optimization problem is as follows: 

 
    

2,1 2,1 2,1
minW uE E Wα λ+ +                                                   

           . .s t  T T
i i iE Y X W= − ,  

i i

T T
u u u iE Y X W= −  , i∀ ,                       (7) 

 
where *[ ,uY t= ··· *, ]t ∈ℛ𝐾×𝑛  and uX  denote the labels and data of unlabeled samples, 
respectively, 

iuX ∈ℛ𝑑×𝑛 , 1[E ,TE = ··· , ]T T
SE , 1[ ,TW W= ··· , ]T T

SW , 
1

[ ,T
u uE E= ··· , ]

S

T T
uE . And 

α  is a balance factor. 
We define that [ , ]uY Y Yα α=  and [ , ]

i ii uX X Xα α= , and the objective function of (7) can be 
equivalently reformulated as follows: 

 

2,1 2,1
minW E Wα λ+   . .s t   

i i

T T
iE Y X Wα α α= − ,  i∀ .                        (8) 

 
Here 

1
[ ,TE Eα α= ··· , ]

S

T TEα  and 1[ ,TW W= ··· , ]T T
SW . 

3.4 Multistage Patch based Semi-supervised Linear Regression 
Though PSLR learns the intra-class variation information by placing the unlabeled samples at 
equidistant points, it cannot obtain the discrimination information hidden between the probe 
samples. In order to take advantage of the discrimination information between the probe 
samples, we further propose a multistage PSLR (MPSLR) algorithm. By using PSLR, we can 
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obtain the estimated labels of the probe samples. As we adopt majority-voting strategy to 
classify the probe samples, it is statistically guaranteed that the true label always ranks first in 
the voting list. In other word, many probe samples receive lots of votes on the category that 
they actually belong to. Therefore, these probe samples can be regarded as reliable samples 
with effective identification information. MPSLR aims at repeatedly adding the reliable probe 
samples into the training dataset and retraining a more reliable regression model. 

In order to clearly explain how to pick out the reliable probe samples, we assume that one 
probe sample is assigned to one category, on which it gets Pc  percent of total votes. We set a 
certain threshold δ , a probe sample will be marked as “reliable” as long as 100Pc δ≥ .  For 
reducing the influence of probe samples with wrong estimated labels, at most 80 percent of the 
probe samples can be marked. We denote the reliable probe samples as 1 2[ , ,X x x= ··· , ]Nx , 
and their estimated labels are denoted as 1 2[ , ,Y y y= ··· , ]Ny . To employ the effective 
identification information from the reliable probe samples, Eq.(7) can be extended as: 

 
  

2,1 2,1 2,1 1 1 2
min

i

S N T T
W u j j ii j

E E W y x Wα λ
= =

+ + + −∑ ∑                                 

  . .s t  T T
i i iE Y X W= − , 

i i

T T
u u u iE Y X W= − ,  i∀ .                                            (9) 

 
Although more discriminative information is captured, there are two issues to deal with to 

obtain a more robust mapping matrix W :  
1) As the training dataset is expanded, the estimated labels of the additional reliable probe 

samples are not entirely correct. 
2) The number of the reliable probe samples assigned to each category is different, which 

means that the sample size of different category is imbalanced. In that case, the learned 
mapping matrix W  will be biased. 

To reduce the influence of the reliable probe samples with wrong estimated labels and 
suppress the imbalance of different category, we introduce into Eq.(9) a weight vector 

1 2[ , ,γ γ γ= ··· , ]T
Nγ ∈ℛ𝑁, where ( 1,2,i iγ = ··· , )N  is the weight of error item associated with 

the i-th reliable probe sample ix . About the value of iγ , we give the following definition. 
Assume that the i-th reliable probe sample ix  belongs to C-th subject and there are M  
reliable probe samples that belong to C-th calss, the value of iγ  is 1 M . It is formulated as 
follows: 

 
    

1
1 ( )N

i i jj
ind y yγ

=
= ==∑ ,                                              (10) 

 

where 
1,    

( )
0,    

if x true
ind x

if x false


= 


. That is to say that the sum of the weights that associated with 

the same subject is 1, which makes the amount of information introduced into each class equal. 
Then, the new optimization problem is formulated as follows: 
 

  
2,1 2,1 2,1 1 1 2

min
i

S N T T
W u j j j ii j

E E W y x Wα λ γ
= =

+ + + −∑ ∑                            

. .s t  T T
i i iE Y X W= − ,  

i i

T T
u u u iE Y X W= − ,  i∀ .                                           (11) 
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Eq.(11) can be expressed briefly as follows: 
 

       
2,1 2,1 2,12,1

minW uE E E Wγα λ+ + +                                                         

. .s t  T T
i i iE Y X W= − ,  

i i

T T
u u u iE Y X W= − ,  

i i

T T
iE Y X Wγ γ γ= − ,  i∀ ,          (12) 

 
where 

1
[ ,TE Eγ γ= ··· , ]

S

T TEγ , [ , ,Yγ γ γ= ··· , ]Tγ ʘY , [ , ,
i

X γ γ γ= ··· , ]Tγ ʘ iX , and ʘ denotes 
the Hadamard product of two matrices. 

We define that [ , , ]uY Y Y Yϕ γα=  and [ , , ]
i i ii uX X X Xϕ γα= , then the optimization problem 

from (12) can be equivalently reformulated as follows: 
 

  
2,12,1

minW E Wϕ λ+    . .s t  
i i

T T
iE Y X Wϕ ϕ ϕ= − ,  i∀ ,                     (13) 

 
where 

1
[ ,TE Eϕ ϕ= ··· , ]

S

T TEϕ  and 1[ ,TW W= ··· , ]T T
SW . To prove the effectiveness of multistage 

trianing strategy, we also propose multistage PLR (MPLR) algorithm which is a special case 
of MPSLR algorithm with 0α = .  

MPSLR gets more information than PSLR by incorporating the reliable probe samples into 
the retraining process. After retraining, the mapping matrix W  is updated, and the estimated 
labels of the probe samples are also updated correspondingly. Then, the reliable probe samples 
are picked out anew. We gather the reliable probe samples X  and the training dataset 

{ }= , uX XΦ Φ（ ） to generate the new training dataset { }= , ,uX X XΩ Ω（ ）. In each loop 
iteration, Ω  is used to update W . In MPSLR, this process is repeatedly conducted untill the 
terminal condition is satisfied. As shown in Algorithm 1, the whole procedure of MPSLR 
algorithm is listed. 
 

Algorithm 1  MPSLR algorithm 
Step 1. Get the mapping matrix W  by solving Eq.(8). 
repeat 
Step 2. Classify the probe samples by majority voting. 
Step 3. Pick out the reliable probe samples X  and generate Ω . 
Step 4. Calculate the weight vector γ . 
Step 5. Use Ω  to update W  by solving Eq.(13). 
until the iteration number is reached or 80% of the probe samples are added into 

the training dataset. 
Step 6. Classify the probe samples and output the final result. 

 

3.5 Optimization via Inexact ALM 
In this section, we will develop the optimization algorithm to solve Eq.(8) and Eq.(13) using 
the inexact Augmented Lagrange Multiplier (ALM) method [18]. Obviously, both Eq.(8) and 
Eq.(13) are in the form 

       
2,1 2,1

minW E Wλ+    . .s t  T T
i i iE Y X W= − ,  i∀ ,                          (14) 

where 1[ ,TE E= ··· , ]T T
SE  and 1[ ,TW W= ··· , ]T T

SW . 
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For the sake of simplicity, we will give the optimization algorithm to solve Eq.(14). To deal 
with our problem, an assistant variable J  is introduced to make the objective function 
separable and the model in Eq.(14) is rewritten as: 

 
                

2,1 2,1
minW E Jλ+    . .s t  T T

i i iE Y X W= − , J W= , i∀ .                   (15) 
 
The augmented Lagrange function L  of (15) is: 
 

2,1 2,1 1
( , , , , , ) ( ( )) ( ( ))ST T T T

i i i ii
L E J W G H E J Tr G J W Tr H Y X W Eµ λ

=
= + + − + − − +∑  

22

1
( )

2
S T T

i i iF i F
J W Y X W Eµ

=
− + − −∑  

2

2,1 2,11 2
S T T i

i i i i ii
F

HE J Y X W Eµλ
µ=

= + + − − + +∑  

2
2 21 1

2 2 2
i

i i i iF F
F

GJ W H Gµ
µ µ µ

− + − −                                                       (16) 

 
where ( )Tr ⋅  is the trace of a matrix, 1[ ,TG G= ··· , ]T T

SG , 1[ ,TH H= ··· , ]T T
SH  are the Lagrange 

multipliers, and 0µ >  is a penalty parameter. Then, we update , ,E J W  by applying the idea 
of alternating minimization, i.e. update one variable with the others fixed. 

Provided the current point , , ,k k k kE J G H , we update 1kW +  by minimizing L  with respect 
to W , i.e. 

 

  
2 2

1
i1

arg min
2 2

k k
Sk T T k ki i

W i i i ii
F F

H GW Y X W E J Wµ µ
µ µ

+
=

= − − + + − +∑ ,              (17) 

 
which produces the optimal updation as 
 

   1 1( ) ( )
k k

k T T k k i i i
i i i i i i i

X H GW X X I X Y X E J
µ

+ − +
= + − + + ,  i∀ ,                      (18) 

 
where I  is the identity matrix. 

To update J , we need to solve  
 

  
2

1 1
2,1

arg min
2

k
k k

J
F

GJ J J Wµλ
µ

+ += + − + ,                               (19) 

 

which is in the form [19] 2

2,1

1min
2S F

S S Tγ + − , and its closed-form solution is 
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2
2

2

( ,:)
( ,:),   ( ,:) ;

( ,:) ( ,:)
0,                                     .

T i
T i if T i

S i T i
otherwise

γ
γ

 −
>= 




                                 (20) 

 
Given W  and J , E  can be updated by solving  
 

2
1 1

2,11
arg min

2

k
Sk T T k i

E i i i ii
F

HE E Y X W Eµ
µ

+ +
=

= + − − +∑ ,         (21) 

 
which can be divided into S  subproblems 
 

2
1 1

2,1
arg min

2i

k
k T T k i
i E i i i i

F

HE E Y X W Eµ
µ

+ += + − − + ,  i∀ .                    (22) 

 
It is worth noting that the optimization subproblems from (22) can also be solved in the same 
way with that from (19). 

As a conclusion, the updating scheme is described in Algorithm 2. 
 
 

Algorithm 2  Inexact ALM algorithm for optimizing Eq. (14) 
Input: ,X Y  and Parameter λ  
Output: W  
Initialize: 0E H= = , 0J W G= = = , 0.5µ = , 10

max 10µ = ,  
810ε −= , and 1.1ρ = .        

while not converged, maxIterk ≤  do 
1. fix J , E  and update W  via (18). 
2. fix W , E  and update J  via (19). 
3. fix W , J  and update E  via (22). 
4. update the multipliers 
 

1 1 1( )k k k kG G J Wµ+ + += + − . 
1 1 1( )k k T T k k

i i i i iH H Y X W Eµ+ + += + − − ,  i∀ . 
 
5. update µ  by maxmin( , )µ ρµ µ= . 
6. check the convergence conditions: 
 

1 1T T k k
i i iY X W E ε+ +

∞
− − < , i∀  and 1 1k kJ W ε+ +

∞
− < . 

 
end while 
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3.6 Computational Complexity Analysis 
In this part, we make analysis to the computational complexities of our methods. As with 
others, we use notation O  to express the time complexity [20]. 

Assume that n  is the number of samples, d  is the feature dimension of patches, S  is the 
number of patches of each sample and c  is the class number. As stated in Section 3.5, the 
proposed optimization problem is solved iteratively. In each iteration, W  is computed with 
the complexity of 2 3( ( ))O S dnc d n d+ +  while J  is computed with the complexity of 

( )O Sdc . Then, it costs ( )O Sdnc  to calculate E . Finally, G  and H  are got with the cost of 
( )O Sdc  and ( )O Sdnc , respectively. Thus the total time complexity of PSLR is 

2 3( ( ))O KS dnc d n d+ + , where K  is the iterative number in Algorithm 2. And the whole cost 
of MPSLR is 2 3( ( ))O TKS dnc d n d+ + , where T  is the iterative number in Algorithm 1. 

4. Experimental Results and Analysis 
In this section, we evaluate the proposed methods using Extended Yale B [21], AR [22] and 
LFW [23] databases. Our methods are compared with some popular approaches for SSPP 
problem including AGL [1], LRA*-GL [6], ESRC [10], SVDL [11], BlockFLD [13], PSRC 
[16], PCRC [17] and LGR [24]. The gray image  is used for all the methods, and we resize all 
the facial images to 80 80× . For patch based methods including BlockFLD, PSRC, PCRC, 
LGR and the proposed methods, the patch size is fixed to 11 11×  and the overlap between 
adjacent patches is 4 pixels. For MPSLR and MPLR, 0.1δ = . We use 0.01λ = , 0.02α =  to 
get the best result in our experiments. 

4.1 Extended Yale B Database 
The Extended Yale B database [21] includes 38 subjects under 64 kinds of illumination 
conditions. It is quite challenging for most methods to achieve satisfactory performance on the 
database due to its extreme lighting conditions. We show some sample images in Fig. 2. 
 

  

 
Fig. 2. Sample images from Extended Yale B database. 

 
To prove the effectiveness of our methods for illumination and discuss the effect of 

semi-supervised and multistage techniques on recognition performance, all the samples are 
randomly divided into two groups, each with 32 images. For each subject, we randomly 
choose 1 to 5 facial images from the first group for training. All the images from the second 
group are used for testing. The testing is performed 5 times and the average recognition rates 
are shown in Fig. 3. It can be noticed that MPSLR always achieves the best result, with the 
number of training samples increasing from 1 to 5. Comparing with PLR and PSLR, MPLR 
and MPSLR get better performances, which can fully validate the effectiveness of multistage 
technique. As the training sample size increases, the recognition rates of these four algorithms 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019                                     3973 

are approaching gradually, which shows that semi-supervised and multistage techniques play 
a very small role on dealing with illumination changes as long as there are enough training 
samples. In other words, the fewer training samples become, the greater semi-supervised and 
multistage techniques contribute. 
 

 
Fig. 3. Recognition rates with different numbers of training samples on Extended Yale B Database. 

 
To further assess the ability of the proposed approaches in dealing with SSPP problem, we 

compare them with several popular methods designed for SSPP face recognition. The 
evaluation experiments are carried out with the first 30 subjects, and the other 8 subjects are 
used as the generic dataset for those generic learning based methods. We use the frontal faces 
with neutral illumination as gallery samples and the other images as probe samples. We list the 
experimental results in Table 1. Benefiting from local representation, the recognition rate of 
PSRC, PCRC, LGR and PLR reach 88.47%, 88.10%, 87.51% and 88.99%, respectively. By 
taking the advantages of both variation information from unlabeled samples and 
discrimination information from probe samples, MPSLR reaches 96.83% that is the highest 
recognition rate. The recognition performance of MPLR is similar to that of MPSLR, this is 
because multistage technique plays a leading role when semi-supervised and multistage 
techniques are both applied to PLR. In a sense, multistage technique also belongs to 
semi-supervision, because the labels of reliable probe samples are assigned by the algorithm 
itself. One can also see that MPSLR outperforms PSLR by 3.23% while MPLR outperforms 
PLR by 7.52%. And the good performance of our approaches also verifies the robustness of 
semi-supervised and multistage techniques for illumination. 

 
Table 1. Recognition Rates (%) on Extended Yale B Database for SSPP Problem. 

Method AGL LRA*-GL ESRC SVDL BlockFLD PSRC 

Accuracy 60.32 68.20 67.62 66.24 74.55 88.47 

Method PCRC LGR PLR PSLR MPLR MPSLR 

Accuracy 88.10 87.51 88.99 93.60 96.51 96.83 
 

1 2 3 4 5
40

50

60

70

80

90

100

The number of training samples

R
ec

og
ni

tio
n 

R
at

es
 (%

)

 

 
PLR
PSLR
MPLR
MPSLR



3974                                              Ding et al.: Patch based Semi-supervised Linear Regression for Face Recognition 

4.2 AR Database 
The AR database [22] consists of over 4,000 color face images of 126 people, which contains 
frontal faces with different lighting conditions, facial expressions and disguises. 26 pictures 
are available for each subject, which are taken in two separate sessions. Some facial images 
are shown in Fig. 4. 
 

  

 
Fig. 4. Sample images from AR database. 

 
Following the experimental setup in [10], we collect a subset with 2500 images from 100 

individuals, which includes 50 males and 50 females. And we randomly choose 1 to 5 images 
per subject from Session 1 for training. All of 12 images from Session 2 are used for testing. 
The evaluation experiment is performed 5 times. Then the average accuracies of our methods 
are reported, which are shown in Fig. 5. It can be seen that MPLR and MPSLR are always 
superior to PLR and PSLR, no matter how many samples are used for training. The 
effectiveness of multistage technique is confirmed again. And we can also find that the results 
from PSLR and MPSLR are close to those from PLR and MPLR, respectively. This is mostly 
because the training samples selected from the AR database may contain expression or 
occlusion. 
 

 
Fig. 5. Recognition rates with different numbers of training samples on AR Database. 

 
We perform experiments to further assess the recognition ability of our approaches for 

SSPP problem. 80 subjects are used for evaluation, which consists of the first 40 male and the 
first 40 female subjects. And the other 20 subjects are used as the generic dataset. We use the 
single face image of each subject with neutral illumination and expression from session 1 as 
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gallery image. The other images of session 1 and session 2 form the probe dataset. We show 
the experimental results in Table 2. One can observe from the tables that MPSLR obtains the 
highest average accuracy of 88.91% outperforming PSLR by 4.48% while MPLR works the 
third best outperforming PLR by 8.33%. Comparing with PLR, PSLR achieves 5% 
improvement. Although LGR obtains the second highest accuracy being superior to PSLR, the 
performance of LGR relies greatly on the generic dataset. If we carry out experiments for LGR 
using PIE-C27 as the generic dataset, PSLR has a better performance compared with LGR. 
Moreover, the experimental results also demonstrate that the proposed methods are robust to 
illumination, expression and occlusion. 

 
Table 2. Recognition Rates (%) on AR Database for SSPP Problem. 

Method illumination expression disguise illumination+ 
disguise average 

AGL 75.63 66.46 55.31 45.63 59.95 
LRA*-GL 91.88 75.21 79.38 68.60 77.86 

ESRC 89.79 75.42 68.75 57.35 71.88 
SVDL 90.63 76.25 71.25 56.88 72.56 

BlockFLD 71.25 67.92 68.13 50.32 62.92 
PSRC 82.09 76.67 87.19 65.16 75.94 
PCRC 88.75 82.50 91.88 73.13 82.50 
LGR 89.79 87.82 95.31 84.53 88.48 

LGR+PIE 81.25 73.96 89.69 76.41 79.22 
PLR 85.63 80.00 88.13 70.00 79.43 

PSLR 95.21 80.83 89.06 76.72 84.43 
MPLR 96.46 84.58 90.63 82.19 87.76 

MPSLR 97.08 86.04 92.50 83.13 88.91 
 
 

4.3 LFW Database 
The LFW database [23] includes images of 5,749 individuals under an unconstrained 
environment. LFW-a is a aligned version of LFW using commercial software tool [25]. We 
collected a subset of 158 individuals with 10 or more face images from LFW-a and gathered 
10 samples for each person. Fig. 6 shows several sample images from LFW database. 
 
 

  

 
Fig. 6. Sample images from LFW database. 
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In the experiment of dealing with SSPP problem, we use the first 80 subjects for evaluation 
and the other subjects as the generic dataset. In our conference paper [9], we randomly select 
one image as the training sample for each subject. To reproduce the experiment conveniently 
and evaluate the recognition performance more effectively, we sequentially select one image 
as the gallery sample and use the other nine images as the probe samples. Thus 10 experiments 
are carried out. The average results are shown in Table 3 from which one can find that PSLR is 
still superior to PLR and that MPSLR is slightly inferior to MPLR. This is because there is 
drastic pose variation in this database, and there are too many types of variations. The number 
of unlabeled samples is insufficient, which cannot satisfy Assumption 1. In such case, 
semi-supervised technique does not help. And comparing with PLR and PSLR, MPLR and 
MPSLR achieve nearly 3% improvement. This suggests that multistage technique can help to 
improve the robustness for SSPP face recognition in uncontrolled environment. 
 

Table 3. Recognition Rates (%) on LFW Database for SSPP Problem. 
Method AGL LRA*-GL ESRC SVDL BlockFLD PSRC 

Accuracy 32.25 26.90 32.96 33.18 18.01 15.79 

Method PCRC LGR PLR PSLR MPLR MPSLR 

Accuracy 32.29 29.36 37.00 37.53 40.69 40.56 
 

4.4 Parameter Selection 
In this section, we will discuss the impact of α  and λ  on the classification performances of 
our approaches by using Extended Yale B and AR databases. We tune α  and λ  within the 
range of { }0.001  0.005,  0.01,  0.02  0.05,  0.1,  0.5， ，  and { }0.001  0.005,  0.01,  0.05,  0.1,  0.5， , 
respectively. The performances of PSLR and MPSLR under different parameter combinations 
are presented in Fig. 7. It can be observed that if α  and λ  are large, the performance tends to 
deteriorate. And the performance varies slightly with varying α  and λ  when α  and λ  are 
small. Generally speaking, MPSLR yields more satisfactory performances than PSLR. 
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(b) 

 
Fig. 7. The classification performances with the varied parameters α  and λ  on (a) Extended Yale B 

and (b) AR. 
 
 

4.5 Convergence Study 
Generally, it is hard to guarantee the convergence of inexact ALM when there are more than 
two blocks [26]. The convergence of Algorithm 2 would not be proved in theory easily since 
the objective function of (14) is not smooth and there are three blocks (including W , J  and 
E ). Therefore, we verify the convergence of PSLR and MPSLR by experiments. The 
convergence curves of PSLR and MPSLR on Extended Yale B and AR databases are shown in 
Fig. 8. One can see from these figures that the objective value monotonically decreases and the 
two methods converge within 60 iterations. 
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（b） 

Fig. 8. Convergence curves of PSLR and MPSLR methods. (a) Extended Yale B and (b) AR. 

5. Conclusion 
In this paper, we propose a patch based semi-supervised linear regression (PSLR) algorithm 
for the single sample face recognition task, which makes use of unlabeled samples to describe 
facial variation information and adjust the mapping matrix. The local region partition strategy 
is adopted, which provides more identification information. We also formulate all regression 
models relative to each patch into an overall objective function, which harvests both global 
and local strengths. To further improve the performance of PSLR, we propose multistage 
PSLR (MPSLR), which  adopt multistage strategy to select the reliable probe samples with 
effective identification information and use them to improve the discriminability of regression 
model. Experimental results prove that PSLR and MPSLR work well in dealing with SSPP 
problem. 
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