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Abstract 
 

We have developed composite measures of supercomputer technology, reflecting various 
factors of supercomputers using Martino’s scoring model. CPUs, accelerators, memory, 
interconnection networks, and power consumption are chosen as factors of the model. The 
weight values of the factors are derived based on a survey of 129 domestic and international 
experts. The measured values are then standardized to integrate measurement units of the 
factors in the model. This model has been applied to 50 supercomputers, and rank correlation 
analysis was performed using representative measures. As a consequence, the ranking 
drastically changes except for the 1st and 2nd supercomputers on the TOP500. In addition, the 
characteristics of memory and interconnection networks influence the ranking, and the results 
demonstrate that the proposed model has low correlations with HPL and HPCG but a high 
correlation with Green500. This indicates that power consumption is an important factor that 
has a significant effect on the measures of supercomputer technology. In addition, it is 
determined that the differences between the HPL ranking and the proposed model ranking are 
influenced by power consumption, CPU theoretical peak performance, and main memory 
bandwidth in order of significance. In conclusion, the composite measures proposed in this 
study are more suitable for comprehensively describing supercomputer technology than 
existing performance measures. The findings of this study are expected to support decision 
making related to management and policy in the procurement and operation of 
supercomputers. 
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1. Introduction 

Scientific computing or computational science and engineering is a multidisciplinary field 
comprising algorithms, software, computers, information technology, and computing 
infrastructure required to understand and solve complex problems in science and engineering 
[1,2,3]. Supercomputers are computer systems capable of the most powerful computation 
performance for solving such problems. Therefore, the performance of supercomputers is an 
important concern for researchers and organizations that own and operate such computer 
systems [3,4]. 

The TOP500 Project, which began in 1993, ranks the top 500 supercomputers in the world 
and announces the ranking twice a year based on the results of the benchmark program 
High-Performance LINPACK (HPL) [5,6]. HPL is easy to measure, use, and update because it 
indicates the performance of supercomputers based on the number of floating-point operations 
per second (FLOPS). However, accelerators, such as GPU and many-core processors, are 
currently being employed for data-based artificial intelligence studies such as deep learning 
and big data analysis studies that require massive data processing [7]. In the life sciences field, 
memory capacity and memory bandwidth limitations present considerable challenges as a 
significant amount of memory is needed for large-scale genetic analysis [7,8]. Consequently, 
HPL has been strongly criticized for low correlations with the operating performance of 
applications because the measurements of HPL do not reflect the characteristics of other 
important factors of supercomputers [9-12]. 

The High Performance Conjugate Gradients (HPCG) benchmark that complements HPL 
reflects the characteristics of data access patterns of current applications. However, HPCG 
exhibits a shortcoming in which benchmark results are greatly affected by actual memory 
bandwidth [11,12]. In addition, other supercomputer benchmarking projects for specific 
purposes are in progress, such as Graph500, which focuses on supercomputer performance 
measurements for data-intensive applications, and Deep500, which is intended for 
performance measurement of deep learning applications. 

Meanwhile, as supercomputer performance increases, power consumption also increases, 
raising concerns associated with “The Energy Crisis in Supercomputing” [13,14]. Therefore, 
power consumption is a critical factor that must be considered in the procurement and 
operation of supercomputers, and as a consequence, accelerators are increasingly being used 
in many supercomputers because of their power efficiency and high parallel computing 
performance characteristics [15-20]. The Green500, which measures the energy efficiency of 
supercomputers based on FLOPS per watt, has been launched through the TOP500 Project 
[21]. This means that Green500 denotes the HPL measurement of per unit power, therefore, it 
also contains the disadvantages of HPL.  

This study proposes composite measures of supercomputer technology using a scoring 
method that indicates the technology level of supercomputers by comprehensively considering 
the utilization characteristics of users and the primary factors of supercomputers. This paper 
suggests that the model proposed in this study is suitable for comprehensively describing the 
technology level of supercomputers compared to existing simple performance benchmark 
program-based indicators, and that this can help to inform management decisions and policies 
for procurement and operation of supercomputers. 

The remainder of this study is organized as follows. Section 2 presents a discussion on prior 
studies on representative performance measurement methods for supercomputers including 
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their limitations. Section 3 presents the proposed research methods and composite measures of 
supercomputer technology. Section 4 evaluates supercomputers based on the proposed 
composite measures and compares the ranking order of the supercomputers derived from the 
proposed model with the existing ranking orders of supercomputers using traditional 
benchmarks. Section 5 summarizes the research results and presents a discussion on the 
limitations and future works. 

2. Prior Studies on Supercomputer Performance Measurement 
The performance of supercomputers is a critical concern for researchers who use them for 
solving complex and large problems in science and engineering. Various benchmarks have 
been developed to measure the performance of supercomputers, but the most widely used 
benchmarks are HPL and HPCG. 

HPL is a benchmark program that determines the solution to Ax = b, which denotes a 
large-scale dense matrix problem of a linear equation. The performance of HPL is determined 
by the 64-bit floating-point operation used in multiplication of the dense matrix, which is a 
major calculation in the methodology of the benchmark program [5,22]. The FLOPS value, 
which is obtained from HPL, is used as a measure of supercomputing performance in the 
TOP500 Project, which presents a list of the top 500 fastest supercomputers in the world since 
1993. When HPL was initially applied in the TOP500 Project, most benchmark applications 
were based on the dense matrix calculation, which is similar to HPL. However, the majority of 
current applications compute differential equations that require high memory bandwidth and 
irregular data access. As a consequence, there is a low correlation between the performances 
of HPL and the application [22,23,24].  

To complement this disadvantage of HPL, HPCG was developed by Jack Dongarra and the 
researchers who developed HPL. HPCG is a benchmark program that solves a 
partial-differential equation in a three-dimensional grid discretized with a 27-point stencil. 
Similar to HPL, HPCG determines the solution to Ax = b, but unlike HPL, the matrix A is 
sparse. The solution process uses the conjugate gradient algorithm and the Gauss–Seidel 
preconditioner, unlike HPL [23]. HPCG compensates for the shortcoming of the HPL by 
reflecting the characteristics of data access patterns seen in current applications. The result of 
HPCG depends on the actual bandwidth of memory because HPCG requires an excessively 
larger memory bandwidth compared to real applications, which is a shortcoming of HPCG 
[13,14]. 

Compared to supercomputer performance evaluation obtained from benchmark programs, 
which comprise approaches based on the concept that performance is denoted by calculation 
speed, the Green500 Project focuses on the power efficiency of supercomputers and derived 
the ranking based on FLOPS per watt. Because the increase in calculation performance of 
supercomputers has caused a rapid increase in power consumption, power efficiency presents 
an important factor that must be considered when procuring and operating supercomputers, 
leading to the concept of “Green Supercomputing” [13,14]. For example, the Earth Simulator 
in Japan, which ranked no.1 for two years from 2002, incurred an annual cost of 10 million US 
dollars (USD) to run at 12 MW power consumption [13]. Moreover, Nurion, the 5th generation 
supercomputer introduced at KISTI in Korea in 2018, incurs a peak power consumption of 
3809 kW, and the annual electricity cost incurred by Nurion is estimated to be 4.4 billion 
KRW. In general, 1MW-year worth of electricity costs approximately one million USD, and 
power consumption costs are increasing uncontrollably as the performance of supercomputers 
increases, owing to competition among developed countries [13,14,19,20]. However, 
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Green500 is also a straightforward metric that presents the computation performance per unit 
power by dividing the HPL benchmark results of supercomputers by their power consumption. 
Therefore, Green500 also includes the shortcomings of HPL. 

3. Research Method and Model 
The HPL, HPCG, and Green500 in the TOP500 project are largely influenced by specific 
components of supercomputers and hold the disadvantage of not reflecting the features of 
various supercomputer components. Supercomputers consist of vairous factors, and 
supercomputer technology depends on the combination of these factors. In addition, there is 
no specific analysis method that combines factors for composite measures of supercomputer 
technology. Therefore, developing comprehensive composite measures that overcome the 
limitations of previous studies is essential. In this paper, we use Martino's general scoring 
model, which has been widely used to develop composite measures based on a combination of 
several factors [25,26]. 

To develop a scoring model, factors must be first identified. All factors that are necessary 
for the technology to function properly are listed. Duplicate factors are excluded and only 
measurable factors are chosen. Similar factors are then grouped together. Weightings are then 
assigned to each factor by considering the relative importance of the grouped factors. 
Standardization is then performed to convert all units to the same scale, which can be used to 
evaluate and measure all factors. 

3.1 Selection and Identification of Factors 
In this paper, we focus on supercomputer hardware to measure the technology level of the 
supercomputer regardless of its specific applications. Therefore, we select several major 
hardware components of the supercomputer as factors for the scoring model. Major hardware 
components of the supercomputer such as processor, memory, interconnection networks, I/O 
system, and storage are considered based on several previous studies [4,12,27,28]. As 
described above, the performance of a factor must be objectively measurable. Because most 
supercomputer manufacturers do not publish information on the internal I/O systems in the 
computer node, the I/O systems were excluded. Storage systems were also excluded because it 
is difficult to measure the storage capacity used by a specific HPC system, because several 
supercomputers use several storages in most organizations. In conclusion, we selected 
processors, memory, and interconnection networks as the major factors, which can provide 
objective data. Data on them are available from the TOP500 project, which includes history 
and credibility as supercomputer statistical data repository dating back to 1993. Furthermore, 
to reflect recent trends, processors are divided into CPUs and accelerators such as graphics 
processing units (GPUs) and a many integrated core (MIC) architecture. 

In addition, as described in the previous section, the power consumption of supercomputers 
has been added as a major factor because it is an important consideration for supercomputer 
procurement and operation. Information on accelerators and power consumption are also 
included in the TOP500 project. 

3.2 Weights of the Factors 
To derive the weights assigned to the major factors presented in this paper, we conducted a 
survey on the importance of major supercomputer components to domestic and foreign 
researchers. In total, 129 questionnaires were collected during supercomputing conferences 
from computational science and engineering researchers who use high-performance 
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computers (cluster, cloud, or supercomputers). Fig. 1 presents the descriptive statistics of the 
survey respondents. 
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Fig. 1. Respondents’ affiliations and regions 

 
Based on the survey, we performed multiple ranked response analysis to determine the 

importance of CPUs, accelerators, memory, and interconnection networks. The frequencies of 
the 1st, 2nd, 3rd, and 4th rankings based on the importance of each factor are calculated, and 
the significance is assigned to each ranking multiplied by 4, 3, 2, or 1. The proportions of sums 
are used as weights [29]. Table 1 summarizes the results. 

 
Table 1. Rankings and weights based on importance of major supercomputer components 

Component 1st 2nd 3rd 4th Sum of Importance % Weight Symbol 
CPU 80 30 14 5 443 34.34 0.35  

Accelerator 21 22 40 46 276 21.40 0.21  
Memory 22 53 39 15 340 26.36 0.26  

Interconnection 
networks 6 24 36 63 231 17.91 0.18  

 
In addition, we consider the performance of the supercomputer in terms of its effectiveness 

while considering power consumption in terms of costs. We then derive the weights for 
performance and power consumption. The procurement costs and electricity costs of the top 
10 supercomputers among 50 target supercomputers were calculated. Procurement costs were 
sourced through the Internet, and the electricity cost is estimated at 1 million USD per 
1MW-year [11-14]. As described above, because supercomputer performances are increasing 
rapidly, the lifetime of supercomputers is considered 5 years, so the electricity cost has been 
calculated for 5 years. [4,7]. Therefore, the ratio of the cost of procurement and operation is 
determined by assuming that the sum of the procurement price and the electricity cost for 5 
years is the total cost of each supercomputer. Based on the average across the 10 
supercomputers, we determined the ratios of procurement cost and operating cost to total cost 
to be 0.81 and 0.19, respectively. Therefore, the system performance weight( )  is 0.81 and 
the power consumption weight( ) is 0.19. Table 2 summarizes the results. 

 
Table 2. Procurement costs and electricity costs of the top 10 supercomputers 

TOP500 
Ranking Supercomputers 

Power 
Consumption 

(kw) 

Procurement 
Cost 

(million USD) 

5-year 
electricity cost 
(million USD) 

Procurement 
Cost Ratio 

Operating 
Cost Ratio 

1 Summit 8,806  200  44.03 0.819571 0.180429 

2 Sunway 
TaihuLight 15,371  273  76.855 0.780323 0.219677 
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7 Titan 8,209  97  41.045 0.702669 0.297331 

8 Sequoia 7,890  250  39.45 0.863707 0.136293 

9 Trinity 3,844  174  19.22 0.900528 0.099472 

10 Cori 3,939  70  19.695 0.780423 0.219577 

11 Nurion 3,809  48  19.045 0.715937 0.284063 

16 K Computer 12,660  1,000  63.3 0.940468 0.059532 

17 Mira 3,945  50  19.725 0.717103 0.282897 

29 Shaheen II 2,834  80  14.17 0.849527 0.150473 

Sum 2242 356.535 8.070257 1.9297427 

Ratio 0.862794 0.137206 0.81 0.19 

3.3 Construction of the Model 
The composite measure model for reflecting major supercomputer factors is based on the 
general scoring model developed by Joseph Martino. The model proposed in this study is 
expressed as follows: 
 

                                                        (1) 

Here,  
 

In the equation (1), uppercase letters denote factors, and lowercase letters denote the 
weights applied to the factors. The uppercase letters of the numerator indicate the desirable 
factors, and the larger the values of factors, the higher the score of the technology. The 
uppercase letters of the denominator denote costs or other undesirable factors. If these values 
increase, the score of the technology decreases. Table 3 presents a description of the factors in 
the model. 

 
Table 3. Factors Considered in the Model 

Symbol Definition Unit of Measurement 

P CPU theoretical peak performance GFLOPS 

A Accelerator theoretical peak 
performance GFLOPS 

MS Main memory size GB 

MB Main memory bandwidth GB/s 

AS Accelerator memory size GB 

AB Accelerator memory bandwidth GB/s 

I Interconnection network bandwidth GB/s 

PW Power consumption kW 
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P, A, MS, MB, AS, AB, and I are placed in the numerator because the performance of 
supercomputers increases as their values increase. PW is placed in the denominator because it 
denotes the cost of these supercomputers.  

I is an overriding factor, which is the most important and is expressed as a multiplication in 
the equation. The total score is computed as zero when any of these factors is zero.  

P and A, which are related to computation performance, and MS, MB, AS, and AB, which 
are related to memory performance, are tradable factors. Even if the value of any of these 
factors is zero, the total score is not zero. These factors can be expressed as a multiplication in 
the equation after integration with other factors. 

The weight values a, b, c, d, α, β, γ, and δ are determined by expert judgment or statistics. 
Their sum must be 1 because the weight values of the factors need to be normalized. This 
study also considers a model that did not consider power consumption for comparing the 
rankings of the conventional HPL and HPCG benchmarks. Consequently, the weights are 
different between the models that consider power consumption and those that do not. The 
method of determining the weight values of factors a, b, c, and d is described in Table 4. 

 
Table 4. Weights of the Model Factors 

Symbol Definition Power consumption included Power consumption 
excluded 

Equation Weight Equation Weight 

a 
The weight of 
computation 
performance 

 0.45  0.56 

b The weight of 
memory performance  0.21  0.26 

c 
The weight of 

interconnection 
network performance 

 0.15  0.18 

d The weight of power 
consumption  0.19   

 
α, β, γ, and δ are the weight values of tradable factors. The sum of the theoretical peak 

performance of CPUs and accelerators is the theoretical peak performance of a supercomputer. 
Therefore, P and A are expressed by an addition, and their weight values α and β are denoted 
by the proportions of the total theoretical performance. Furthermore, the sum of the main 
memory performance and the accelerator memory performance is the total memory 
performance of the supercomputer. γ and δ indicate the weight values that denote their 
importance, and they are equal to α and β because they are determined by the proportions of 
the CPU and accelerator that make up the total theoretical performance in the supercomputer. 
The equations for calculating the weights of the tradable factors are listed in Table 5. 

 
Table 5. Weights between the tradable factors 

Symbol Definition Equation Weight 

α The CPU’s proportion of computation performance 
 

0.62 

β The accelerator’s proportion of computation 
performance  

0.38 
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γ The main memory’s proportion of memory performance 
 

0.62 

δ The accelerator memory’s proportion of memory 
performance  

0.38 

 
Finally, we propose the power model (P-Model) by integrating the factors and their weights. 

On the other hand, to verify the validity of the P-Model, we also proposed the non-power 
model (NP-Model) that does not include the power consumption factor for comparing against 
representative supercomputer performance measures. The models are defined as follows: 
 

              (P-Model) 
 

       (NP-Model) 

3.4 Centering and Standardizing the Measured Values 
Each factor uses a different measurement unit or measures a different value depending on the 
measurement unit, even for the same factor. For example, the measurement unit of the CPU is 
FLOPS, which is different from B/s as the measurement unit of interconnection networks. In 
addition, the value can differ by 1,000 times depending on whether GFLOPS or TFLOPS are 
used as the measurement unit of CPU peak performance. Therefore, the measurements of 
factors with different measurement units and values must be standardized to construct a 
composite measure. The mean and normal distribution of the measured values must be 
calculated for each factor, and the measured values of each factor must be standardized based 
on them. Finally, to center the standardized values onto a scale within the same range, the 
standardized values were multiplied by 0.7 and then 5 added so that the values fall between 1 
and 10. 

4. Analysis and Results 

4.1 Target Selection 
To apply the scoring model proposed in this paper, we selected supercomputers with measured 
values of HPL, HPCG, and Green 500 on the TOP500 list as of June 2018 to compare our 
proposed model with representative supercomputer performance measures. Moreover, Nurion, 
the latest supercomputer to be introduced at KISTI National Supercomputing Division in 
Korea, was added to the analysis target. Fifty supercomputers, excluding machines with no 
values for the major factors among the selected supercomputers, were finally selected for 
analysis. 

4.2 Analysis Results 
The P-Model was used as the composite measure model of supercomputer technology, and the 
NP-Model was used for comparisons with representative measures of the selected 50 
supercomputers. Table 6 presents the rankings of the 50 supercomputers that were selected 
based on the P-Model score and the NP-Model score, including their HPL, HPCG, and Green 
500 rankings and the differences between the HPL ranking and the P-Model ranking. 
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Summit and Sunway TaihuLight, which ranked the 1st and 2nd in the P-Model ranking, 
were also ranked the 1st and 2nd in the TOP 500, respectively. These are overwhelmingly 
larger in scale than other supercomputers because Summit and Sunway TaihuLight have 
maximal achieved performance of 122.3 PF and 93 PF on HPL, respectively [6]. Therefore, 
their scores were much higher than those of other supercomputers. Trinity, which ranked 6th 
in the HPL ranking, was 3rd in the P-Model ranking. Trinity contains 9,984 nodes, which are 
equipped with an Intel Xeon Phi Knight Landing with high-bandwidth memory (MCDRAM) 
with 16 GB capacity and a peak memory bandwidth of over 450 GB/s, nominally five times 
faster than DDR4. Consequently, Trinity has a large memory capacity of over 2 PB [29]. 
Trinity was the third-ranked supercomputer in the P-Model because it consists of top-ranked 
factors such as main memory size, accelerator peak performance, and accelerator memory size, 
which were ranked 2nd among the 50 supercomputers. Plasma Simulator, which ranked 4th in 
the P-Model, consists of a Fujitsu PRIMEHPC FX 100 with HMC (Hybrid Memory Cube), 
which has a high memory bandwidth of 240 GB/s x in/out [6,31]. In addition, this has the Tofu 
2 interconnection network with a high bandwidth of 50 GB/s per node [32]. The 
supercomputer at the Information Technology Center, Nagoya University, which ranked 5th, 
and the SORA-MA, which ranked 6th in the P-Model ranking, also consist of the same 
hardware features as Plasma Simulator [33]. Based on the results, the P-Model 4th, 5th, and 
6th ranked systems, which have risen significantly from their HPL rankings, have the 
characteristics of systems in which the main memory bandwidth and the interconnection 
network bandwidth are ranked 1st among the 50 supercomputers, respectively. 

In other words, the result demonstrates that the model presented in this paper reflects not 
only the performance of CPUs and accelerators but also the memory bandwidth that is 
important in the current application, and the interconnection network bandwidth for data 
transfer between nodes that are important in massively parallel applications. 

In the case of Nurion, the HPL ranking and the HPCG ranking were 8th and 6th in the 
analysis target 50s, respectively. By contrast, it was ranked 16th on the Green500 ranking, and 
so the efficiency of power consumption by Nurion was lower than that of other 
supercomputers. However, Nurion ranked 12th in the P-Model as the performance and power 
consumption of Nurion were properly reflected.  

 
Table 6. Scores and rankings of the proposed models and representative supercomputer rankings 

Supercomputer HPL 
Ranking 

HPCG 
Ranking 

Green500 
Ranking 

P-Model 
Ranking 

NP-Model 
Ranking 

The 
differences 
between 
the HPL 
ranking 
and the 
P-Model 
ranking 

P-Model 
Score 

NP-Model 
Score 

Summit 1 1 1 1 1 0  3.4581 10.7886 
Sunway 

TaihuLight 2 5 8 2 2 0  3.1418 10.2427 

Piz Daint 3 4 3 15 16 -11  2.9112 7.7394 
Titan 4 11 30 44 17 -28  2.7116 7.6785 

Sequoia 5 10 27 39 14 -17  2.7650 7.8584 
Trinity 6 3 15 3 3 3  3.0790 8.5694 
Cori 7 8 17 14 8 -5  2.9312 8.0250 

Nurion 8 6 16 12 10 -5  2.9322 8.0129 
Oakforest-PACS 9 7 9 11 11 -2  2.9636 7.9871 
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HPC4 10 12 5 10 13 0  2.9852 7.8761 
Tera-1000-2 11 9 14 9 4 3  3.0046 8.1980 
K Computer 12 2 47 50 15 -33  2.6271 7.7739 

Mira 13 15 28 33 21 -11  2.7782 7.4674 
TSUBAME3.0 14 13 2 7 9 7  3.0435 8.0163 
MareNostrum 15 18 13 19 18 -1  2.8830 7.5552 

Pleiades 16 14 44 43 27 -23  2.7262 7.3267 
Hazel Hen 17 17 42 30 22 -6  2.7828 7.4417 
Shaheen II 18 19 36 24 25 -7  2.7912 7.3782 

Pangea 19 16 45 48 38 -30  2.6670 7.0843 
Cheyenne 20 21 20 28 32 -11  2.7853 7.2212 
Vulcan 21 24 29 29 29 -9  2.7837 7.2480 

JOLIOT-CURIE 
SKL 22 33 10 18 20 5  2.8873 7.4741 

ECMWF1 23 30 32 25 30 -4  2.7870 7.2475 
ECMWF2 24 31 33 25 30 -3  2.7870 7.2475 

Electra 25 32 18 20 23 5  2.8672 7.4105 
DGX Saturn V 26 29 6 8 12 17  3.0258 7.8879 
SORA-MA 27 20 37 6 5 21  3.0592 8.1954 

Mistral 28 36 21 38 40 -14  2.7656 7.0741 
ICT-Nagoya 29 22 31 5 6 25  3.0670 8.1849 
SuperMUC 30 23 46 49 48 -20  2.6655 6.9962 

TSUBAME 2.5 31 28 35 42 42 -12  2.7500 7.0555 
occigen2 32 35 41 40 37 -4  2.7637 7.1066 

Plasma Simulator 33 27 38 4 7 28  3.0674 8.1663 
Prolix2 34 40 22 36 44 -6  2.7702 7.0531 

Beaufix2 35 39 23 35 43 -3  2.7707 7.0549 
Tera-1000-1 36 41 40 37 39 -1  2.7687 7.0749 
Prometheus 37 37 34 22 33 11  2.8066 7.1756 

Edison 38 26 50 47 35 -9  2.6891 7.1180 
ARCHER 39 25 49 45 36 -7  2.7014 7.1121 

Sid 40 49 24 34 46 -1  2.7734 7.0272 
Curie thin nodes 41 34 48 46 50 -7  2.7004 6.9701 
JOLIOT-CURIE 

KNL 42 38 12 16 24 24  2.8907 7.4034 

Cobalt 43 43 25 23 34 14  2.8048 7.1358 
Graham 44 46 26 21 28 23  2.8585 7.3220 

Cartesius 2 45 48 43 41 49 1  2.7574 6.9931 
Falcon 46 47 19 32 45 11  2.7810 7.0285 

EAGLE 47 50 39 31 41 13  2.7818 7.0568 
Reedbush-L 48 42 4 13 19 33  2.9312 7.5127 
Reedbush-H 49 45 7 17 26 30  2.8880 7.3625 

XStream 50 44 11 27 47 17  2.7868 7.0268 

 

4.3 Comparisons with Representative Supercomputer Measures 
To compare the proposed composite measures with existing measures of supercomputers, a 
rank correlation analysis was performed on the rankings from Table 6 and the results are listed 
in Table 7.  
 



4152                                                                                                       Kim et al. : Composite Measures of Supercomputer Technology 

 
Table 7. Results of rank correlation analysis 

Symbol Definition HPL 
Ranking 

HPCG 
Ranking 

Green500 
Ranking 

P-Model 
Ranking 

NP-Model 
Ranking 

HPL 
Ranking 

Correlation 
coefficient 1.000     

Probability of 
significance  0.000    

HPCG 
Ranking 

Correlation 
coefficient .930** 1.000    

Probability of 
significance 0.000     

Green 500 
Ranking 

Correlation 
coefficient 0.267 0.157 1.000   

Probability of 
significance 0.061 0.275    

P-Model 
Ranking 

Correlation 
coefficient .290* 0.271 .717* 1.000  

Probability of 
significance 0.041 0.057 0.000   

NP-Model 
Ranking 

Correlation 
coefficient .692* .725** .476** .759** 1.000 

Probability of 
significance 0.000 0.000 0.000 0.000  

** Spearman correlation is significant at the 0.01 level (2-tailed) 
* Spearman correlation is significant at the 0.05 level (2-tailed) 

 
We first examined the ranking of conventional measures of supercomputers. The 

correlation between the HPL ranking and the HPCG ranking showed a correlation coefficient 
of 0.93 and a significance level of less than 0.01, indicating a very high correlation [34]. 
Therefore, a supercomputer with a high HPL ranking is expected to have a high HPCG ranking 
as well, and the explanatory power is 86%. However, the correlation of the HPL ranking and 
the Green500 ranking showed a correlation coefficient of 0.271 and a significance level of 
0.061, indicating low correlation. In addition, the correlation coefficient of the HPCG ranking 
and the Green500 ranking was not significant. This means that the ranking of a supercomputer 
can change considerably when power consumption is included in the measures, and the 
measures that include power consumption have a different explanatory power compared to the 
simple performance benchmarks.  

The correlation between the P-Model ranking and the HPL ranking showed a correlation 
coefficient of 0.29 and a significance level of 0.41. In addition, the correlation of the P-Model 
ranking and the HPCG ranking showed a correlation coefficient of 0.271 and a significance 
level of 0.057. This means that the P-Model ranking is very different from the rankings 
derived by the HPL and HPCG benchmark results. In contrast, there was a high correlation 
between the P-Model ranking and the Green500 ranking, and the explanatory power between 
them was 51.4% as the correlation coefficient between them was 0.717 and the significance 
level was less than 0.01.  

The ranking of the NP-Model for comparing with existing measures showed correlations 
with the HPL ranking and the HPCG ranking, with correlation coefficients of 0.692 and 0.725, 
respectively and a significance level of less than 0.01. However, there was a low correlation 
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between the rankings of the NP-Model and Green 500, which showed a correlation coefficient 
of 0.29 and a significance level of less than 0.01. 

In summary, there was no correlation of the HPL ranking and the HPCG ranking with the 
Green500 ranking because power consumption was included only in the latter measure. 
Likewise, the correlations of the HPL ranking and the HPCG ranking with the P-Model were 
very low because power consumption was only included in the P-Model. By contrast, the 
correlations of the HPL ranking and the HPCG ranking with the NP-Model were high, as none 
of the models considered power consumption. This suggests that the power consumption of a 
supercomputer has a greater effect on rankings compared with other factors. In other words, 
power consumption is a critical factor in the evaluation of supercomputer technology.  

The above analysis demonstrates that the composite measures of supercomputers proposed 
in this study have high explanatory power for the overall technology level of supercomputers 
because they include a better variety of influencing factors compared to the simple measures 
used by conventional benchmarks.  

4.4 Analysis on the differences between the HPL Ranking and the P-Model 
Ranking 
To identify factors in terms of differences between the P-Model and existing HPC 
performance measures, the differences between the P-Model ranking and existing rankings 
were analyzed. For this purpose, only variation between the HPL ranking and the P-Model 
ranking was analyzed. In the above section, the rank correlation analysis results demonstrated 
that the HPL and the HPCG rankings were similar, and the ranking variation between the 
P-Model and the Green500 had an approximately 50% explanatory power. Therefore, it is 
easy to determine which factors have a significant influence on rank changes by analyzing 
rankings which are considerably different. In addition, it is meaningful to identify the cause of 
the ranking differences between the P-Model proposed in this paper and the most 
representative existing measure.  

First, the differences between the P-Model ranking and the HPL ranking of the 50 
supercomputers were used to derive the ranking change values. Then, to evaluate the overall 
tendency of the ranking changes, these values were divided into five levels based on the 
quartile with a significant drop, slight drop, no change, slight rise, or significant rise. As 
independent variables, we used all eight major factors employed in the P-Model. Because the 
ranking change level, as the dependent variable, included two or more ranks, ordinal logistic 
regression analysis was performed [34]. 

Prior to conducting the ordinal logistic regression analysis, the analysis must satisfy the 
basic assumption that each independent variable has the same effect when a dependent 
variable changes by one unit. As shown in Table 8, the results of the parallel lines test 
demonstrated that the significance level is 0.527, higher than 0.05, and so it is possible to 
perform ordinal logistic regression analysis. 
 

Table 8. Results of the parallel line test 
Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 98.360    
General 75.474 22.886 24 0.527 

 
The results of the model fitting test were presented in Table 9. The log-likelihoods of the 

intercept-only model and the final model with independent variables were 148.491 and 98.360, 
respectively. The chi-square statistic, the difference between the two models, was 50.131, 
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which was at a significance level of 0.00. Therefore, this model is valid because the final 
model, in which independent variables are added, is more significant for explaining ranking 
variations. 

 
Table 9. Result of model fitting test 

Model -2 Log Likelihood Chi-Square df Sig. 
Intercept Only 148.491    

Final 98.360 50.131 8 0.000 
 

The goodness-of-fit test was performed to confirm that the data for analysis is well suited to 
a given model. The probabilities of significance for Pearson and Deviance statistics were .914 
and 1.000, respectively, which are both significance levels greater than 0.05. Therefore, the 
data were well suited to a given model as shown in Table 10. 

 
Table 10. Results of goodness-of-fit 

 Chi-Square df Sig. 
Pearson 158.468 184 0.914 

Deviance 98.360 184 1.000 
 

The pseudo R2, which is the coefficient of determination in a logistic regression model, 
generally has a lower value than the normal regression model, even if the model is well fitted. 
The Pseudo R2 values for the Nagelkerke, Cox and Snell, and McFadden were 0.667, 0.633, 
and 0.338, respectively as shown in Table 11. 

 
Table 11. Results of pseudo R-square 
Class pseudo R-square 

Nagelkerke  0.667 
Cox and Snell 0.633 

McFadden 0.338 
 

The results of the ordinal logistic analysis are shown in Table 12. Only CPU theoretical 
peak performance, main memory bandwidth, and power consumption were found to be 
significant independent variables with a significance level of less than 0.01. The larger Wald 
statistic means that an independent variable has a greater influence on the dependent variable. 
Therefore, the differences between the HPL ranking and the P-Model ranking was influenced 
by power consumption, CPU theoretical peak performance, and main memory bandwidth in 
order of significance. 

CPU theoretical peak performance is a positive sign of the coefficient estimate, and if CPU 
theoretical peak performance increases by one unit, the odds of being included in the one-level 
higher category of the ranking change are increased by 0.000014249335%. This result 
occurred because the measured values of CPU theoretical peak performance were extreme, 
ranging from a minimum of 29,120 to a maximum of 128,446,365. In addition, in the ordinal 
logistic regression analysis, when continuous variables, as independent variables, are used as 
inputs, the odds ratio, which indicates changes in the dependent variable, is very low. Main 
memory bandwidth is a positive sign of the coefficient estimate, and if main memory 
bandwidth increases by one unit, the odds of being included in the one-level higher category of 
the ranking change are increased by 3.2%. Power consumption is a negative sign of the 
coefficient estimate and if power consumption increases by one unit, the odds of being 
included in the one-level higher category of the ranking change are reduced by 0.002%. 
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Table 12. Results of the ordinal logistic analysis 

Variables B 
estimate S. E. Wald df Sig. 

95% Confidence 
interval OR 

(Odds 
Ratio) Lower 

bound 
Upper 
bound 

CPU theoretical 
peak 

performance 
0.000 0.000 7.337 1 0.007 0.000 0.000 1.000 

Accelerator 
theoretical peak 

performance 
0.000 0.000 2.989 1 0.084 0.000 0.000 1.000 

Main memory 
size 0.000 0.000 3.655 1 0.056 0.000 0.000 1.000 

Main memory 
bandwidth 0.031 0.012 6.780 1 0.009 0.008 0.055 1.032 

Accelerator 
memory size 0.000 0.000 1.243 1 0.265 0.000 0.000 1.000 

Accelerator 
memory 

bandwidth 
0.003 0.002 3.104 1 0.078 0.000 0.007 1.003 

Interconnection 
network 

bandwidth 
0.000 0.005 0.000 1 0.985 -0.009 0.010 1.000 

Power 
consumption -0.002 0.000 11.039 1 0.001 -0.002 -0.001 0.998 

 
In summary, the results of the ordinal logistic analysis on the differences between the HPL 

ranking and the P-Model ranking demonstrated that CPU theoretical peak performance and 
main memory bandwidth have a positive (+) effect, but power consumption has a negative 
effect. In addition, power consumption has the greatest influence on ranking changes, 
followed by CPU theoretical peak performance and main memory bandwidth. Therefore, 
supercomputers with low power consumption, high main memory bandwidth, and high CPU 
theoretical peak performance are more likely to rank higher in the P-Model than in HPL. This 
is consistent with the results that the systems ranked 4th, 5th, and 6th in P-Model, higher than 
in the HPL ranking, had characteristics in which the main memory bandwidth was ranked first 
among 50 supercomputers. 

5. Conclusion 
In this paper, we developed the composite measures of supercomputer technology that 
reflected the characteristics of a variety of supercomputer components to overcome the 
fragmentation of traditional supercomputer performance measures. For this purpose, major 
supercomputer hardware components such as CPUs, accelerators, interconnection networks, 
and power consumption were chosen as factors. Weightings were then derived by conducting 
surveys of domestic and foreign experts’ opinions regarding which factors were important. 
Furthermore, we applied the concept of cost-effectiveness to derive weights to represent the 
importance of supercomputer performance and power consumption. Finally, we developed the 
model by integrating the factors and weights based on Martino’s general scoring model. 

As a consequence of applying this model to selected supercomputers on the TOP500 list, the 
rankings significantly changed except for the supercomputers ranked 1st and 2nd. In addition, 
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we found that the characteristics of the memory and the interconnection networks, which were 
not reflected in the conventional measures, influenced the ranking. In addition, the result of a 
rank correlation analysis on the proposed model and representative measures’ rankings 
demonstrated that the proposed model showed low correlations with the HPL and the HPCG 
ranking, but a high correlation with the Green500 ranking. This indicated that power 
consumption is a critical factor that significantly influences supercomputer technology. 
Furthermore, the differences between the HPL ranking and the P-Model ranking was found to 
be influenced by power consumption, CPU theoretical peak performance, and main memory 
bandwidth in order of significance. In conclusion, we demonstrated that the composite 
measures presented in this study are suitable to comprehensively measure the supercomputer 
technology compared to conventional measures based on the benchmarks. The proposed 
composite measures are expected to contribute to management decisions and policies in the 
procurement and operation of supercomputers in the future. 

However, it is important to note that it may result in bias, depending on the selected targets, 
when this model is applied in practice. Supercomputers are state-of-the-art facilities whose 
price and performance change rapidly with time. Therefore, including older systems in the 
analysis may result in bias resulting from significant performance gaps. For example, when 
calculating the ratio of the procurement cost to the operating cost, the K-Computers system 
incurred significant development costs; thus, the procurement cost ratio was higher than for 
other supercomputers. Attention must be accorded to the interpretation of results as deflection 
may occur depending on the selection of the systems to be compared. 

The limitations of this study are as follows. First, some major hardware factors such as I/O 
systems and storages were not reflected owing to lack of data. Therefore, additional factors 
should be further explored, investigated, and analyzed. We also did not consider the cost of the 
facilities in which a supercomputer is installed as part of the procurement cost. In addition, we 
did not consider other operating costs such as labor costs, software purchase costs, and other 
indirect expenses. Therefore, a more accurate model that reflects the general overall 
procurement and operation costs may be developed after collecting data from other 
supercomputer centers. On the other hand, weights were derived from the survey responses of 
experts in this study. We may consider the use of statistical methods such as factor analysis, 
principal component analysis, or other survey methods such as the Delphi method or the 
analytic hierarchy process. Finally, we compared the models presented in this paper only with 
the supercomputer performance measures provided by TOP500, but we plan to examine these 
models against various other measures such as Graph500 and I/O500 in future work. 
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