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Abstract 
 

This paper proposes an image generation method using a Multi Discriminator Generative 
Adversarial Net (MDGAN) as a next generation 2D game sprite creation technique. The 
proposed GAN is an Autoencoder-based model that receives three areas of information—color, 
shape, and animation, and combines them into new images. This model consists of two 
encoders that extract color and shape from each image, and a decoder that takes all the values 
of each encoder and generates an animated image. We also suggest an image processing 
technique during the learning process to remove the noise of the generated images. The 
resulting images show that 2D sprites in games can be generated by independently learning the 
three image attributes of shape, color, and animation. The proposed system can increase the 
productivity of massive 2D image modification work during the game development process. 
The experimental results demonstrate that our MDGAN can be used for 2D image sprite 
generation and modification work with little manual cost. 
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1. Introduction 

An important goal of game companies is the optimization of the artistic process. The game 
industry has been constantly trying to improve artistic processes over the years by adopting 
middleware. However, 2D game art resource development work still entails high costs due to 
intensive pixel modification using a large amount of resources. A graphics resource 
development technique that is often used in 2D games is the 2D sprite generation technique. 
This technique is a method of expressing movement while continuously changing a large 
number of images manually. It requires time-consuming pixel-by-pixel color correction and 
color palette designation for single motion expression, which leads to an increase in 
development costs. In the sprite generation process, artists usually create one 2D character in 8 
to 16 directions, with 10 to 30 consecutive images per second. Artists create all pixels by hand 
within a specified resolution. In a game, the number of such 2D characters ranges from dozens 
to hundreds, and producing this amount of 2D sprites is a burden for game developers. To 
make 2D sprite generation more efficient, we propose a new image generation technique based 
on a Multi Discriminator Generative Adversarial Net (MDGAN) model that references color, 
shape, and animation independently. Our system uses three objective functions, and it has a 
structure that competes with three different networks. Using our technique, artists can create a 
new composite of 2D sprite sets with different shapes, colors, and animations, based on a 
pre-made 2D sprite set. Our results show that MDGAN can be applied effectively in 2D game 
images by easily copying and modifying a large number of sprite sets. 

2. Related Work 
Generating sequential synthetic data that mimic real conditions is an important problem, 

and plenty of literature discusses this [1][2][3]. Generative Adversarial Networks (GANs) 
[4][5] have achieved impressive results in image generation [6][7], image editing [8], and 
representation learning [9][10]. Recent methods adopt similar ideas for conditional image 
generation applications, such as text2image [11], image inpainting [12], and future prediction 
[13], as well as for other domains such as videos [14] and 3D models [15].  

The task of image generation involves changing a particular aspect of a input image to 
another. Many GAN extensions have been proposed in this field. Deep Convolutional 
Generative Adversarial Networks (DCGANs) [16] introduce a class of Convolution Neural 
Networks (CNNs) that have certain architectural constraints, and demonstrate an unsupervised 
learning method that learns a hierarchy of object representations in both the generator and 
discriminator. Additionally, such a network uses learned features for novel tasks, 
demonstrating its applicability as general image representations. Auto-encoder-based GANs 
(AE-GANs) [17], which use an auto-encoder to encourage a model to better represent all the 
data they are trained with, discourage mode-collapse of GANs. Pix2Pix [18] proposes a 
learning method using a pair of data with a supervised learning approach. Pix2Pix is a method 
of learning to convert data from two domains into data in a domain that is paired in a specific 
domain. Instead of the auto-encoder method, Pix2Pix applies the GAN learning method to 
generate more realistic images. In addition, U-Net [19] is applied to the generator to improve 
noise and image quality. Bidirectional GAN (BiGAN) [20] has been suggested as a means of 
learning bidirectional mapping, as it demonstrates that the resulting learned feature 
representation is useful for auxiliary supervised discrimination tasks, making it competitive 
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with contemporary approaches to feature learning. Recently, Cycle-GAN [21] and DiscoGAN 
[22] were proposed for image-to-image translation. These networks use the underlying cycle 
consistency principle, whereby image-to-code translation reveals a meaningful connection. 
These methods have become popular for image-to-image translation. StarGAN [23] is a GAN 
that learns the mappings among multiple domains using only a single generator and a 
discriminator, training effectively from images of all domains. FusionGAN [24] generates a 
fusion image with the identity of input image x and the shape of input image y. This network 
can simultaneously train on more than two image datasets in an unsupervised manner. The 
Boundary Equilibrium GAN (BEGAN) [25] is a further evolution of the GAN network. This 
model improves the unbalanced learning of the generator and the discriminator during GAN 
training. In the existing GAN, it was difficult to balance the learning between the generator 
and the discriminator. BEGAN solves this problem by giving coefficients to the objective 
function of the generator and the discriminator.  

In this study, we show how a GAN technique can be used to effectively generate 2D 
images. In particular, this paper proposes a new Multiple Discriminator GAN (MDGAN) 
structure that extracts shape, color, and animation independently from multiple images. We 
visualized our work and compared our MDGAN with AE-GAN, BEGAN, and PIX2PIX 
results.  

There have been many attempts to apply GANs to game content creation. Jain et al. learned 
the pattern of the game map using an auto-encoder, and automatically generated a new game 
map [26]. Xue et al. proposed a new convolution artificial neural network model, and 
combined new behaviors with objects in images [27].  Reed et al. proposed a model using an 
auto-encoder, a rotated game sprite, and 3D car model images, and applied animation to other 
images [28]. Summerville et al. suggested a machine-learned technique to train generators on 
Super Mario Bros. videos, generating levels based on latent play styles learned from the 
YouTube video. They demonstrated the process for extracting the path from video and how 
the information feeds into an LSTM/RNN [29]. Snodgrass et al. proposed Markov models to 
generate content for multiple games. They applied the Markov models to three game genres in 
order to determine how well their models perform in terms of the playability of the generated 
content [30]. Horsley et al. suggested that CNNs can be useed for game sprite generation even 
with few input datasets. They utilized a  DCGAN for learning and generation of sprites [31]. 
Kim proposed an automatic character portrait generation system using Variable Auto-Encoder 
(VAE) [32]. Beckham et al. proposed terraion generation system by leveraging extremely 
high-resolution terrain and heightmap data provided by the NASA project. They used GANs 
to create a two-stage pipeline in which heightmaps can be randomly generated as well as a 
texture map that is inferred from the heightmap [33]. Giacomello et al. applied GANs to learn 
a model of DOOM levels from human-designed content. They trained two GANs: one using 
plain level images, one using both the images and some of the features. Their results showed 
that GANs could generate structure of DOOM levels in first person shooter games [34].   

According to our knowledge, our approach is the first to apply the GAN model to game 
sprite generation for the automation of 2D game art production using color, shape, and 
animation properties. Our research aims to partially automate 2D art resource work, which is 
traditionally all done by hand, by using a GAN algorithm.     
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3. 2D Sprite Set in Games 
2D sprite animation is a technique used to create the illusion of movement using static 2D 
images. An animation consists of multiple frames that are shown in a sequence at set intervals. 
An animation of someone running can be achieved by taking pictures of the person while 
running and playing those images back sequentially in a loop. Fig. 1 shows a “sprite set” 
image with a complete cycle of a male character’s behavior. Each line contains a frame of 
animation. When these frames are shown sequentially over a period of time, they appear as an 
animated image. The frame rate is how often the frame is changed per second. If a character is 
to complete a cycle in one second, 30 frames must be shown per second, so the frame rate is 30 
FPS. An animation is a very simple state machine. The running character in our illustration has 
30 states as per the sprite sheet. The numbered frames represent the states a running character 
goes through one at a time. The current state is determined by the amount of time since the 
animation began. If the animation is looping, it returns to the first frame after all frames have 
been shown.  
This paper proposes a method to convert a set of sprites into a set of sprites in a different style 
using the image-to-image translation technique. This can reduce the manual cost of creating a 
different but similar-style character sprite set. To do this, an artist needs to be able to change 
specific elements in the sprite set. In order to meet these conditions, image attributes need to be 
selected independently when image-to-image translation technology is applied. 
 

 
Fig. 1.  Example of original sprite set (left) and manually modified sprite set by artist (right). 

4. Generative Adversarial Nets 
A GAN uses a training method different from general artificial neural networks. There are two  
networks in a GAN, the generator and the discriminator, and these two networks compete and 
train. The generator generates an image by receiving the latent random variable as input, and 
the discriminator tries to find the actual image by receiving the image generated by the 
generator and the actual image. The quality of the images produced by the generator as a result 
of learning from each other through the confrontation of the two networks is better than using 
the learning method over the existing auto-encoders. The existing learning method of the 
auto-encoder learns with the goal of reducing the error between the correct image and the pixel 
of the generated image. In this process, the model learns to reduce only the value of the 
average error, so it does not produce a neat image. However, in the GAN, the generator learns 
to generate an image very similar to the actual image through a learning method that must 
deceive the discriminator model, which distinguishes between the actual image and the 
generated image. As a result, it is possible to improve the performance of generators through a 
contradiction structure that makes comparisons in a learning method that reduces a simple 
total error. 
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The generator takes a one-dimensional random vector called a latent random variable as an 
input, and generates the same dimension image as the actual image set. The discriminator 
receives both the image generated by the generator and the image of the actual image set at the 
same time, and learns whether the image received is an actual image or a generated image. 
Since the performance of the generator improves according to the performance of the 
discriminator, the learning rate of the two models is important. As a result, when the learning 
is completed, the generator generates various images according to the input vector. By 
changing the input vector, a particular feature can be represented in the generated image such 
as eyeglasses, hair color, or gender. However, the problem is that it is not known what 
characteristics the input vector has, and these must be confirmed manually by hand. The black 
box attribute of the GAN structure is a major obstacle to the utilization of an industrial 
resource production process. For artists to be able to create resources using image-to-image 
translation, the network structure must be classified by image attributes. In this way, if the 
GAN learning process is not sufficient, the artist should be able to obtain information about the 
network weakness. Our MDGAN structure aims to meet this requirement. 

 
Fig. 2. Overview of proposed MDGAN. 

5. Multiple Discriminant Generative Adversarial Nets 

5.1 Generator  
We propose a new GAN structure that extracts shape, color, and animation independently 

from multiple images. Fig. 2 shows the process of the overall network. The aim is to confirm 
the possibility of separating shape, color, and animation when a large number of sprites need 
to be changed collectively. Our goal is to train a generator, G, that learn mappings among 
multiple domains. To achieve this, we can train G to translate input image x1 (animation 
information with bone graph) and image x2  (shape and color information) into an output 
image y. By using this image, the proposed model is synthesizing an animated sprite image 
from random noise. Figure 3 shows the structure of the generator. All window filter sizes were 
fixed to (3, 3). The size of stride was (2, 2). The number of filters doubled as the size of the 
image shrank. Because two encoders were used, the decoder took as input the combined result 
of the two encoders, and each encoder did not share parameters. The resizing of the decoder 
was used to expand the size of the image, and it extended the image by interpolating the values 
of surrounding pixels. The resulting layers from the two encoders can be merged into a single 
layer and entered into the input of the decoder. The decoder, which receives the compressed 
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information of the two encoders as inputs, trained them to produce a mixture of images. We 
also applied a U-Net that reduced information loss of input image to the generator. Since two 
encoders were used for image synthesis, both outputs of the two encoders were used as inputs 
to the decoder.  

 
Fig. 3.  Architecture of animation generator in proposed model. 

 

5.2 Discriminators 
The GAN’s adversarial structure and the two discriminators were used differently from 

conventional methods. Also, similar to the Pix2Pix method, the objective function was used 
with the auto-encoder objective function. The first discriminator is a shape discriminator that 
learns to create a pair of skeletons in the character’s animation when the character image is 
received as input. The second discriminator is a color discriminator that receives two character 
images as inputs and classifies whether the two characters are of the same color structure. In 
contrast to each discriminator, what the generator wants to learn is the relationship between 
the character and the skeleton through the shape discriminator, as well as to learn the position 
and shape of the color through the color discriminator. The training trains each discriminator, 
then uses the adversarial objective function to train the generator, and the generator also trains 
the objective function of the auto-encoder. Table. 1 shows the detailed parameters of each 
discriminator. We used the following loss functions and Pseudocode code for MDGAN.    
 
for number of training iterations do 
 
1) Sample minibatch of  character samples   from data distribution 

 
 
2) Sample minibatch of  character samples   from data distribution 

 
 
3) Sample minibatch of  skeleton samples  from data distribution  
 
4) Sample minibatch of  base samples  from data distribution   
 
5) Update the shape discriminator (D1) by ascending its stochastic gradient: 
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6) Update the color discriminator (D2) by ascending its stochastic gradient: 

 

7) Update the shape discriminator (D1) by ascending its stochastic gradient: 
 

 

 
8) Update the color discriminator (D2) by ascending its stochastic gradient: 
 

 

9) Update the generator by ascending its stochastic gradient: 
 

 

end for 
 
 

Table. 1.  Layer Parameters (cl = Convolution Layer, fcl = Fully Connected Layer) 
 

Layer Shape Discriminator 

Convolution Layer 1 
 

kernel_size stride_size filter_size 
[3,3] [1,1] 64 
[3,3] [2,2] 64 
[3,3] [1,1] 64 
[3,3] [2,2] 64 
[3,3] [1,1] 128 
[3,3] [2,2] 128 
[1,1] [1,1] 1024 

 [3,3] [1,1] 256 
 [3,3] [1,1] 256 
 Resize : upscale x 2 

Convolution Layer 2 [3,3] [1,1] 128 
[3,3] [1,1] 128 

 Resize : upscale x 2 

Convolution Layer 3 [3,3] [1,1] 128 
[3,3] [1,1] 128 

 Resize : upscale x 2 

Convolution Layer 4 
[3,3] [1,1] 64 
[3,3] [1,1] 64 
[3,3] [1,1] 3 
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 Color Discriminator (Encoder) 

Convolution Layer 5 

[3,3] [1,1] 64 
[3,3] [2,2] 64 
[3,3] [1,1] 128 
[3,3] [2,2] 128 
[3,3] [1,1] 128 
[1,1] [1,1] 128 

 Color Discriminator (Classifier) 

Convolution Layer 6 

[3,3] [1,1] 256 
[3,3] [2,2] 256 
[3,3] [1,1] 512 
[3,3] [2,2] 512 

 [3,3] [1,1] 1024 

Convolution Layer 7 [3,3] [1,1] 1024 
[1,1] [1,1] 512 

 Reshape: Unit Size  =  32768 
Fully Connected Layer Unit Size  =  2 

 

5.3 Post Image Processing  
 
The resultant image of the model generates noise in the process of decoding information, 

which is lost when encoding is performed. The loss function used in the training of the model 
is trained to reduce the loss value according to the difference between the generated composite 
image and the target image. In this process, a composite image with noise increases the 
unnecessary loss value.  

To overcome this problem, we applied the post-processing applied image to the loss 
function instead of the synthetic image used for training. Therefore, there is no loss value that 
can occur in an unnecessary background image. Applying the image without noise to the loss 
function instead of applying the image containing the noise value can reduce unnecessary 
learning cost in 2D sprite set generation. Consequently, faster and more accurate training is 
possible. In order to reduce the influence of the learning speed, the post-processing task is 
implemented during the learning stage so that it can be executed simultaneously in the learning 
process using the GPU rather than the processing using the CPU.   

6. Experiment 
We used a Linux operating system and one GTX1080 GPU. The libraries and code used in 

the implementation were Python3 and Tensorflow. Three experiments were conducted. The 
first experiment showed color and shape transition between different character images. The 
second experiment showed color and shape transition between character and object images. 
The third experiment showed the color, shape, and animation transition result. 
 

6.1 Color & Shape Transition Between Character Images  
 
The data used in the first experiment were 1,530 images with three uniformly distributed RGB 
values. By combining these images with color and shape combinations, about 380,000 
combinations of images were created, and tbese made up for the amount needed for training. 
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Fig. 4  shows the result. The images in the top row of the figure show the training process, and 
the lower row images show the generation process. The generated images that received images 
of colors were not used for training. The generated image (the bottom right Result image in 
Figure 4) showed an accurate combination of results similar to the composite images created 
during the training process. This result means that our methodology can be used to easily 
change the color of a sprite set by using a reference image. 
 

 
Fig. 4.  Training result image (above), generation result (below). 

 

6.2 Color & Shape Transition Between Character and Object Image  
The second experiment was a synthetic experiment between character images and various 
object images. Unlike the dataset of the first experiment with RGB distribution, the dataset of 
the second experiment was a synthetic experiment with images of various objects and animals 
present. The total number of colors used in the experiment was 24. Of the 24 colors, up to 21 
colors were used for training, and the remaining three colors, Lime, Green, and Orange, were 
used for color image synthesis tests not used in training. In addition, the synthesized test was 
performed on images that had not been used for learning about colors already learned. 
A separate web image crawler was implemented for the purpose of constructing the dataset to 
be used as a color image. Data were collected through a combination of four keywords and 
image names. The words used as keywords consisted of “Fruit,” “Animal,” “Can,” “Bottle,” 
and so on, which can all contain various colors. An example of a combination of colors and 
keywords is “Red Color Can,” and a combination of up to 20 images can be collected for each 
keyword.  
Fig. 5 shows the result of the synthesized image, the color used in the training was not used in 
evaluation. The trained model shows that the key colors were well extracted from the object 
images received as inputs and were used to produce results for composite images. In the 
synthesized image, the second composite image extracted one color successfully from a black 
background and a flame image mixed with several colors. The fourth composite image 
extracted key reds from a beverage can image containing white letters. This result shows that 
our methodology has high extraction stability for color attribute images.  
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Fig. 5.  Generation results between character and object image. 

 

6.3 Animation Generation   
The data needed for the experiment were three types of images: skeleton, color character, and 
animated character image. Fig. 6(a) shows an image used as a skeleton image. All skeleton 
animation images consisted of a total of 16 image data sets. Fig. 6(b) is part of the color 
character image. The character image consisted of 7,776 images, that is, an image of six areas 
changed to six colors. Fig. 6(c) shows an animation character image set. Each color character 
represents an animation of a skeleton. Each image is composed of a skeleton image and a color 
character image and comprises about 120,000 images. The images used in the learning were 
generated by dividing the characters including the animation into 16 frames and changing the 
color of the model. 
 
In order to verify the performance of the proposed model, experiments were undertaken with 
models using the learning methods of AE-GAN, BEGAN, and Pix2Pix. To evaluate the 
learning result, eight combinations of images were created in the training completed model. 
The skeleton images used in the eight combinations used eight new skeleton images that were 
not used for training. The color character image consisted of four-color character images used 
in training and four-color character images not used in training.  
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Fig. 6.  Animation bone data set (a), model data set (b), and animation character data set (c). 

 
The results of each model are shown in Fig. 7. In the AE-GAN model, the color character 
shows the result of the partial learning, in shape and animation. In the BEGAN model, all the 
images of the experiment result are the same shape. This means that animation learning has not 
occurred properly. In the Pix2Pix model, the shape of the skeleton is partially generated, and 
the the color is not generated overall. Our MDGAN model correctly learned the skeleton that 
present the behavior of the animation character. It also generated the animation character 
showing similar target color. The image created by MDGAN did not exactly have the same 
color as the target color because the color that was not used in learning was designated as the 
target color. In this experiment, we used six specified colors, and we expect that if we increase 
the number of colors, we will create a character with a more accurate color. As shown in Fig. 8, 
it can be seen that when the color character including the color of the partial pattern, which is 
not used in the training, is used as the input, it shows the animation character of the partial 
pattern color. This shows that our MDGAN model learned the location of the color of the 
animated character. Similar to BEGAN and several GAN papers, we used Mechanical Turk to 
evaluate the results. In the survey, 50 participants were asked to select the most photorealistic 
image out of four models. As results, 72% of the participants selected MDGAN as the model 
that produced the most realistic images.  
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Fig. 7.  Comparison results with AE-GAN, BEGAN, and Pix2Pix. 
 
 

 
Fig. 8.  MDGAN results with training data set. 

 

7. Conclusions 
 
In this paper, we proposed a MDGAN model to create image-to-image translation of 2D game 
sprite sets. The proposed network model consists of an encoder that takes shape and color from 
the input as well as a decoder that generates a composite image of shapes and colors combined 
from the compressed values of the two encoders. When we compared our MDGAN results 
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with AE-GAN, Pix2Pix, and BEGAN, we were able to confirm that MDGAN generated new 
images with reliable shape and color. These image generation elements can be individually 
controlled by the user, demonstrating the possibility of easily creating new desired images.  
Recent advances in CNN/GAN algorithms have yielded remarkable results in many domains 
of industries. However, there are not many actual applications in the field of games. This is 
because the result generated by machine learning may not be able to generate the player's 
preferred content. Especially, the field of research related to sprite generation is very limited. 
This is because the number of open 2D image data available for machine learning is not 
enough for sufficient training. For this reason, the number of paper related to game sprite is 
very limited compared with that of web / video / text mining. In this situation, we propose an 
automatic method for generating large amount of bone and animation training image data 
using the existing 3D authoring tool and presented a machine learning method using it. In 
game development process, it is often the case that a specific sprite color is transformed 
collectively or a specific shape is collectively modified. Our approach can be applied to the 
in-house tool in that it can replace this repetition work. The proposed MDGAN model shows 
that the image-to-image translation technique can be applied to the in-game 2D sprite 
generation process, meaning that the 2D sprite creation task, which ordinarily requires a lot of 
manual work, can be significantly optimized. 
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