
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, Aug. 2019 4300

Copyright ⓒ 2019 KSII

A preliminary version of this paper was presented at APIC-IST 2018, and was selected by the conference review
process

http://doi.org/10.3837/tiis.2019.08.028 ISSN : 1976-7277

Stochastic Non-linear Hashing for
Near-Duplicate Video Retrieval using Deep
Feature applicable to Large-scale Datasets

Sung-Woo Byun
1
 and Seok-Pil Lee

1

1Department of Computer Science, Graduate School, SangMyung University
Seoul, South Korea

[e-mail: 123234566@naver.com, esprit@smu.ac.kr]
*Corresponding author: Seok-Pil Lee

Received September 26, 2018; revised March 19, 2019; revised May 24, 2019; accepted June 29, 2019;

 published August 31, 2019

Abstract

With the development of video-related applications, media content has increased dramatically
through applications. There is a substantial amount of near-duplicate videos (NDVs) among

Internet videos, thus NDVR is important for eliminating near-duplicates from web video

searches. This paper proposes a novel NDVR system that supports large-scale retrieval and

contributes to the efficient and accurate retrieval performance. For this, we extracted
keyframes from each video at regular intervals and then extracted both commonly used

features (LBP and HSV) and new image features from each keyframe. A recent study

introduced a new image feature that can provide more robust information than existing
features even if there are geometric changes to and complex editing of images. We convert a

vector set that consists of the extracted features to binary code through a set of hash functions

so that the similarity comparison can be more efficient as similar videos are more likely to map
into the same buckets. Lastly, we calculate similarity to search for NDVs; we examine the

effectiveness of the NDVR system and compare this against previous NDVR systems using

the public video collections CC_WEB_VIDEO. The proposed NDVR system’s performance

is very promising compared to previous NDVR systems.

Keywords: Near-duplicate Video, NDVR, Class Activation Maps, Hashing, supervised

learning

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4301

1. Introduction

With the development of video-related applications such as video-sharing websites, video

broadcasting, and advertising services, the amount of available media content has increased

dramatically. Among this huge amount of media content, there is a substantial portion of
duplicate and near-duplicate videos (NDVs) that have gone through video editing and

redistribution [1–5]. Such NDVs largely influence video-related applications, removing them

requires near-duplicate video retrieval (NDVR). The principle of NDVR is to retrieve accurate

and efficient NDVs that are defined as identical or approximately identical videos that are
almost exact duplicates of each other. To reflect these needs, NDVR is utilized in various

fields; it is applicable in various uses such as copyright protection, video monitoring, and

recommendation systems. For instance, we can use NDVR in search engines, ensuring that
users can enjoy a range of videos distinct from each other rather than be faced with an endless

list of the same or similar clips. Another example is using NDVR to reduce the risk that video

products face of being compromised by unauthorized copying, editing, and redistribution;
therefore, NDV detection is important for copyright protection.

NDVR involves searching for identical or approximately identical videos to existing videos

[6] and consists of three main parts: 1) keyframe extraction, 2) feature extraction, 3) similarity

computation. Keyframe extraction extracts multiple representative images from each video at
regular intervals; it then extracts features to characterize each keyframe. Feature extraction

generates numerical characteristics from each image using domain knowledge. Well-extracted

features increase the retrieval algorithms’ effectiveness. Similarity computation calculates
similarities between videos using the extracted features and finally retrieve near-duplicate

videos based on the similarities. NDVR system computes similarities and retrieve relevant

videos by exhaustively comparing the features extracted from each keyframe between all

pairwise keyframes. Here, because no single feature type exists that is sufficiently robust to
capture all variations in the information, previous studies have proposed video representation

methods that combine multiple types of feature. Many studies have used HSV histogram

[2,3,7,8] as the global feature type such as contrast changes, or sensitivity to brightness and
local binary pattern (LBP) as the local feature type [7,9,10]. Even though comparing all

available keyframe pairs and using complex and high-dimension features can offer accurate

retrieval results, in practice, there are time complexity problems.
This paper proposes a novel NDVR system that supports large-scale retrieval, which

extends the hashing functions to non-linear functions through dimension conversion. In

addition, this system contributes to the efficient and accurate retrieval performance. For this,

we extract keyframes from each video at regular intervals. Then, we extract both commonly
used features (LBP and HSV) and a new image feature from each keyframe. The new image

feature, which recent research introduced, can provide more robust information than existing

features even if there are geometric changes and complex editing of images because it involves
object localization without bounding boxes. We convert a vector set that consists of the

extracted features to binary code through a set of hash functions so that the similarity

comparison can be efficient by making similar videos more likely to map into the same
buckets. Lastly, we calculate similarity to search for NDVs. We examine and compare the

NDVR system’s effectiveness against previous NDVR systems using the public video

collection CC_WEB_VIDEO.

4302 Byun et al. : Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using

Deep Feature applicable to Large-scale Datasets

The remainder of this paper goes as follows: Section 2 presents related works for NDVR

systems, Sections 3 and 4 explain the basic NDVR system and the proposed method,
respectively, Section 5 shows the experiment results, and Section 6 concludes this work.

2. Related Works

Most NDVR approaches carry out retrieval by extracting features from video content. One

common strategy is to extract low-level features for characterizing each keyframe after

selecting keyframes from videos through uniform sampling. The most common features are
color information such as RGB and HSV histogram [2,3,7,8,11]; previous research often

referred to these as global features. However, because the characteristics of videos can be

changed by major variations such as histogram normalization and color variation, these can be

used to retrieve videos that are almost identical to the query video with minor variations [7].
Compared to global features, local features are more robust to complex editing or geometric

changes and they generally provide better performance when processing videos with complex

scenes. Local binary pattern (LBP) is commonly utilized as the local feature [12]. Features in
this category include Difference of Gaussian (DOG) [13], scale invariant feature transform

(SIFT) [14], and a mixture of principal component analysis (PCA) and SIFT referred to as

PCA-SIFT [15]. In recent studies using these image features, several have investigated areas
such as understanding an image and finding special regions in an image [16, 17]. Meanwhile,

Bolei Zhou et al. [18] used convolutional neural network (CNN) to propose deep features with

localizability applicable to images. We refer to this feature as class activation maps (CAM).

CAM for a particular category indicates discriminative image regions used by the
convolutional neural network (CNN) to identify the category as shown in Fig. 1.

Fig. 1. Examples of CAM

Comparing complex and high-dimension features can provide accurate retrieval results but
is very time-consuming. The hashing technique enables large-scale retrieval through rapid

pairwise similarity comparison between videos. Classic hashing technologies include locality

sensitive hashing (LSH), which converts video data into binary code through a set of random

projections. Using LSH means that similar objects are more likely mapped into the same
buckets. In addition, previous studies have developed various extensions of LSH. For example,

J. Song et. al proposed a learning-based hashing method that jointly learns pseudo class labels

and the hash code for given objects based on a discriminant embedding framework driven by
linear discriminant analysis [19]. Other examples are spectral hashing (SPH) [10], self-taught

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4303

hashing (STH) [9], semi-supervised hashing (SSH) [20], and supervised hashing with kernels

[21]. they construct hashcodes using different distance measures.

3. Near-duplicate video retrieval

3.1 Definition of near-duplicate video

NDVs are defined as follows in previous research: Near-duplicate web videos are identical or
approximately identical videos close to exact duplicates of each other, but different in file

format, encoding parameters, photometric variations (color or lighting changes), editing

operations (caption, logo, and border insertion), different lengths, and certain modifications
(added or removed frames). A user would clearly identify the videos as "essentially the same"

[6]. NDVs are two videos that look the same or approximately the same; the two do not have to

be pixel identical for us to consider them duplicates. Whether two videos are duplicates

depends entirely on the type of their differences and the comparison’s purpose. Originally,
precise duplicate videos and near-duplicate videos were different definitions, but this paper

includes exact duplicates in our definition of near-duplicate videos.

3.2 Structure of near-duplicate video retrieval

Generally, we use NDVR to search for identical or approximately identical videos and output

a ranked list of videos that are relevant to a specific user-provided query. We search NDVs
using a constructed retrieval system as follows:

Step 1: Keyframe extraction

The characteristics of video data include both image information and significant
information such as audio data. In addition, video data has a concurrent temporal, complex,

and informal structure. We generally make summarized information from such huge data by

extracting keyframes from the video. The keyframe extraction method extracts keyframes

from each video at regular intervals; assuming that we extract n keyframes from videos, later

processing steps focus on information provided by those n extracted keyframes.

Step 2: Feature extraction

Feature extraction is a process for generating numerical characteristics based on domain

knowledge about data. An important factor for feature extraction is that it requires compact
and reliable features because it deals with big data elements such as video. Therefore, previous

studies have proposed various approaches using different features. Global features to reflect

the whole characteristic of an image are suitable for identifying copies in formatting
modifications such as frame resolution changes and format conversion. Unlike global features,

we can extract local features after segmenting an image into regions and computing a set of

color, texture and shape features for each region. We consider such local features robust and
tolerant of geometric and photometric variation. However, there are too many local points for

efficient, exhaustive comparison, even between two frames. The notation of the extracted

feature vector is as follows: Let
1 2 3{ , , ... }dx x x x x be the feature vector for one feature type.

Assuming that n keyframes are extracted from a video, each feature type includes the size

n d where d is the length of each feature. For example, we use 1 2 3{ , , ... }i i i i idx x x x x to

denote the first feature type for the i th keyframe.

Step 3: Hash code generation

4304 Byun et al. : Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using

Deep Feature applicable to Large-scale Datasets

Many previous studies have used hashing when retrieving huge data such as video. This

converts an input vector into a fixed-length binary string through hash functions. Generally, a
longer hash code provides better performance, but is also more time consuming. The most

classic and general hashing approach is a random projection; this generates binary code (hash

code) by projecting the extracting features into random lines designated as an auxiliary space,

and this hash code makes similar videos more likely to map into the same buckets. This step

has a set of s hash functions
1 2 3{ , , ... }i i i i is      each of which takes extracted

features as inputs and returns a binary number. Finally, a set of hash functions generates a hash

code matrix of size n s where n is the number of keyframes.

Step 4: Similarity computation

We generate a unique hash code matrix for each video; we use the Hamming distance

between generated hash codes to assess the similarity between videos. This returns a list of
videos that possess the highest similarity to the query video.

4. Proposed NDVR system

Fig. 2. Flowchart of the proposed NDVR system

Fig. 2 shows a flowchart of the proposed NDVR system. The system consists of keyframe

extraction, feature extraction, hashing, and similarity computation. The keyframe extraction

method extracts n keyframes from each video in regular intervals as mentioned in Section 3

and then extracts features from the n keyframes.

4.1 Keyframe extraction

As mentioned in Section 3.2, the keyframe extraction method extracts keyframes from
videos at regular intervals. In this research, we set the interval such that the method extracts a

keyframe every 10 seconds.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4305

4.2 Features

1) HSV

We calculate a color histogram for each keyframe in the video that is a representative global

feature and reflects the global statistics or summaries of low-level color in videos. We

represent each feature as
1 2 3{ , , ... }i mHSV HSV HSV HSV HSV ; this includes hue, saturation,

and value. The equation to normalize the histogram to an overall size is as follows:

1

1

1
{ },

m

i m i j

j

NormalizedHSV NH NH where NH HSV
M 

   (1)

Where M is the biggest value in histogram and
ijHSV is the j th value of the color

histogram at keyframe i .

2) Local binary pattern

LBP indicates the texture representation of images and studies commonly utilize this as the
local feature as it tends to be more robust in complex editing, photometric, and geometric

changes than global features. We can extract LBP features by comparing the brightness of the

eight pixels adjacent to the pixel at the center.

Fig. 3. How to extract an LBP feature

As shown in Fig. 3, if the brightness value of the surrounding pixels is greater than or equal
to the central pixel, this set as 1; if smaller, this is set as 0. Then, we convert the generated

binary number 01110011 to the decimal number 115. Fig. 4 shows an example LBP feature.

Fig. 4. An example LBP feature (a) original image (b) visualization of LBP (c) the histogram of LBP

The original LBP application uses this histogram as a texture model for the corresponding
image region (e.g. the texture of grassplot, forest, land, sky, and object). Many studies used

LBP in recognition or detection problems because they can express complex pattern changes

even though they were originally developed to classify image textures.

3) Class activation maps

Apart from HSV and LBP, we can use many other feature extraction methods to

characterize keyframes. Bolei Zhou et al. recently proposed deep features for discriminative
localization. We refer to this feature as class activation maps (CAM) [18]. A class activation

map for a particular category indicates the discriminative image regions used by the

convolutional neural network (CNN) to identify the category as shown in Fig. 1. This easily

4306 Byun et al. : Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using

Deep Feature applicable to Large-scale Datasets

identifies the discriminative image regions in a single forward pass for a wide variety of tasks,

even when we have not originally trained the network. For example, in Fig. 5, even if we train
a network using Fig. 5 (a), it can identify similar image regions in Fig. 5 (b).

Fig. 5. Localizing class-specific image regions

This research uses a deep CNN design composed of five convolutional layers, five pooling
layers, and one fully connected layer. We applied a Rectified Linear Unit (ReLu) activation

function on five convolutional layers and a softmax function on one fully connected layer. The

first convolutional layer has 32 5x5 filters and uses the same padding; the layer’s output

decreases by half through the pooling layer. Consider as an example an input image of
224x224x3 components; the resulting output of the first convolutional layer would be

112x112x32 components. The remaining convolutional layers are 5x5 and use the same

padding. We identify and categorize the information of videos using the ground truth
information provided by the data set. Then, we train the designed CNN using the videos as an

input. Fig. 6 (a) shows the whole architecture and (b) shows examples of CAM features

extracted from the network architecture. Here, in the figures of examples, we visualize the

values that correspond to the features as Heat Maps.

Fig. 6. (a) The network’s whole architecture (b) Example CAM features extracted from network (a)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4307

4.3 Hashing

Hashing has drawn attention in large-scale data retrieval. In recent research, Yanbin Hao et al.
proposed a stochastic multiview hashing algorithm to facilitate the construction of a

large-scale NDVR system [7]. They learned which hash functions applied to linear functions

by maximizing the mixture of the generalized retrieval precision and recall scores. Then, they

converted multiple features to binary hash code strings. In this study, we extend the hashing
functions to non-linear functions through dimension conversion.

Given multiple feature vectors X from a set of n keyframes that involve all feature types,

the vector
1 2 3{ , , ... }i i i i idX x x x x stores the features of the i th keyframe. We convert these

feature vectors to binary hash codes with size s through the hash functions, which we express

as 1 2 3{ , , ... }i i i i ish h h h h where {0,1}ih  . We generate hash codes by constructing s hash

functions  where { }i iX  . These functions are as follows:

1

(1)

0

, 1
d

il ij ijl il

j

z x w b for l m




   (2)

 ()il ilz sigmoid z (3)

(2)

0

1
m

ik iz izs is

z

h z w b for k s


   (4)

()ik ikh sigmoid h (5)

The above equations (2) map feature vectors to a one-dimension space by projecting with

m linear functions where the size of w is d m , and the size of b is 1 m . Then, we use

sigmoid to make the output vector approximate to 0 or 1. The projected one-dimension vectors

map into another space to extend non-linear functions, which we call dimension conversion

and is equivalent to a neural network. We express this process as Equation (4), and we apply

Equation (5) to make the hash code 0 or 1 by using a thresholding method. Generally, we refer

to ikh as the relaxed hash code. In NDVR, one classical way to generate hash code for a video

is to process the relaxed hash codes of its representative keyframes by first performing

averaging and then thresholding operations [21].

1
()

i

ik jk

j indi

h Threshold h
ind 

  (6)

Equation (6) shows a generated hash code vector for a video in which iind is the set of

keyframe indices for the video and iind is its cardinality. Finally, we generated the V s

hash code matrix for all videos.

When making a list of output videos close to a query video, accurately measuring the

similarity between the videos is very significant. Therefore, this study focuses on how to

compute the optimal hash codes from the feature vectors to ensure correct similarity
information between videos. When there is ground truth information available regarding the

relevance between videos, constructing probabilities by rewarding actually related videos with

4308 Byun et al. : Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using

Deep Feature applicable to Large-scale Datasets

a score of 1 and non-related or unknown ones with a score of 0 is helpful. We refer to this as

p and express this as:

|

1 if ith video is near-duplicated video

 with jth video

0 otherwise

i jp




 



 (7)

Assuming that each
|i jp represents the probability of the i th video for query j , a natural

way of learning the hash functions is re-computing such probabilities in the space of hash

functions and minimizing the difference between two sets of probabilities. Therefore, the

probability equation q is:

2

2
| 2

2

exp()

exp()

i j

i j

i ki k

h h
q

h h


 


 
 (8)

We increase the probability that we have extracted ix and
jx from near-duplicated videos

by learning hash functions using available ground truth information. We can assess the

hashing’s quality by examining how well the probabilities of p and q match. We measure

the difference between two conditional probabilities p and q using the following

KL-divergence method:

log()
ij

ij

i j ij

p
O p

q
  (9)

According to the decrease in cross-entropy value, we have increased the probability of
similar objects mapping into the same group. Hash functions in Equations (2), (3), (4), and (5)

consist of weight and bias parameters. Therefore, we can convert the optimization problem for

hash functions into a minimization problem of composite KL-divergence values. We solve this
problem by employing a gradient descent algorithm. We can compute the gradient using the

following compound function derivation.

(2) (2)

i

i

hO O

w h w

 
 

  
 (10)

(1) (1)

i i

i i

h zO O

w h z w

  
  

   
 (11)

As has been established in many machine-learning studies, placing bias on the 0
th
 weight

vector means that there is no need to determine the gradient of the bias. Evidently, the targeted

gradients depend on the different components of
i

O

z




,

(2)

iz

w




, iz

h




 and

(1)

iz

w




. The

components can be calculated as follows.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4309

2 ()()i j ij ij ji ji

ji

O
h h p q p q

h


    


 (12)

(2)
()i

i i

h
sigmoid h z

w


  


 (13)

()i
i i

i

h
sigmoid h w

z


  


 (14)

(1)
()i

i i

z
sigmoid z x

w


  


 (15)

Substituting (12), (13), (14), and (15) into (10) and (11) permits the derivation of the

complete formulations of
(2)

O

w




 and

(2)

O

w




. Generating binary code through learned hash

functions means that similar videos are more likely to map into the same buckets. In addition,

if we can calculate similarity using binary code, we can decrease the retrieval speed because
we have only calculated the Hamming distance, which uses a bit operation. This leads to

avoiding costly pairwise keyframe comparisons and can effectively improve the retrieval

efficiency. In terms of video retrieval, the computational complexity of computing a hash code

has a low cost of around O(
3d), where d is the length of the input vector. This phase has very

simple operations such as linear combination, sigmoid, and thresholding compared to the
retrieval phase, so it does not affect the retrieval time. In the retrieval phase, the bit count

operations for the hamming distance calculation leads to a very fast online NDVR system.

Therefore, NDVs can be found by linear search O(n)[22]. This paper demonstrates its

efficiency in the results section.

5. Experiments and results

5.1 Dataset and metric

This study tested the proposed method through experiments using a publically available web

video dataset. The CC_WEB_VIDEO dataset [6] consists of 12,790 video clips downloaded
from video sharing websites such as YouTube, Google, and Yahoo! through keyword search,

and is organized into 24 sets. The set has 398,015 keyframes in total. In previous research, two

non-expert assessors were asked to watch videos from this dataset with one query at a time,

and assessors labeled all videos with statuses (E: Exact duplicate, S: Similar video, V:
Different version, M: Major change, L: Longer version, X: Dissimilar video, or -1: Video does

not exist) according to their judgment. Therefore, this dataset provides reliable ground truth

information for all video clips. In addition, the most popular video was selected as the seed
video for each query for near-duplicate video retrieval.

Retrieval performance evaluations commonly use the classic metric of the mean average

precision (MAP). We use the precision–recall curve and MAP.

Re / , Pr /call G D G ecision G D D    (10)

Where G is the ground truth set of redundant videos and D is the detected one.

4310 Byun et al. : Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using

Deep Feature applicable to Large-scale Datasets

5.1 Experimental setup

The hash code length s influences retrieval performance and efficiency, so selecting the
optimal length hash code is important. We prove the retrieval performance according to the

length s by testing changing the length from 500 and 1,000 with step size 50. Here, we

applied LBP, HSV, and CAM for this test and we set the same experimental conditions except

the hash code length.

Table 1. Applications in each class

Hash Code Length MAP Time(s)

S = 500 0.6798 0.33

S = 550 0.6865 0.37

… … …

S = 800 0.9738 0.59

S = 850 0.9765 0.65

S = 900 0.9777 0.68

S = 950 0.9861 0.75

S = 1,000 0.9898 0.78

Table 1 shows the changes in MAP performance. We can see from the results that it
provides a quite similar retrieval performance in the range 800–1,000 even though the hash

code lengths differ. In addition, in the case of the retrieval time, the longer the hash code, the

greater the retrieval time margin. Therefore, we fixed the hash code length at s = 900 while

considering the MAP and computation time.

5.2 Baseline

In this section, we describe baselines algorithms to compare our method.
1) Spectral hashing (SH) [10]

We base the spectral hashing on analyzing the k smallest single-dimension analytical

Eigen functions of pL using a rectangular approximation along every PCA direction. This

uses spectral relaxation such as PCA. Then, they find the smallest element of the data whose

dimensions are reduced by PCA. Finally, we convert this to binary code along with the k

smallest eigenvalues.

2) Multiple feature hashing (MFH) [23]

This system proposed a sophisticated multiview method called MFH by extending SPH.
MFH learns the training videos’ hash codes and a group of hash functions to generate hash

codes for videos outside the training set; it encodes the information provided by the HSV and

LBP features as a neighbor graph and seeks a hash function to preserve the desired neighbor

structure.
3) Stochastic Multiview hashing (SMVH) [7]

This method learns binary strings to characterize data samples by combining multiple

feature types and auxiliary information through a stochastic matching procedure of
neighborhood probabilistic models. This learns the mapping functions stochastically by

maximizing a mixture of the generalized retrieval precision and recall scores. The scores are

approximated by the composite Kullback–Leibler (KL) divergence computed between two
probabilistic models constructed in the original feature space and a relaxed hash code space.

4) Self-taught hashing (STH) [9]

This system relies on the hashing method STH, which shares a similar hash code training

procedure to SPH but achieves out-of-sample extension through a different scheme based on

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4311

linear SVM.

5) Hierarchical fusing (HF) [6]
This system combines the global and local features, by firstly using the color histogram

signature to detect the NDVs with high confidence and filtering out the very novel ones, and

then performing a pairwise comparison based on the local features to further determine the

uncertain videos.
6) Unsupervised Stochastic Multiview hashing (USMVH) [7]

This system is an unsupervised version of SMVH

The following section describes the proposed method and the results of the overall

comparison with other methods.

5.3 Results

For the experiment, we extracted 768 HSV and 256 LBP features and 1024 CAM features

from each keyframe. We compited the retrieval speed using Python 3.5 running on a server

with an Intel i7 4770 CPU, 16 GB RAM, and 64-bit Windows 7 operating system.

Table 2. Experiment results

Hashing method Features MAP Time(s)

None HSV and LBP 85.61% 17.27

None HSV, LBP, and CAM 91.45% 29.50

SH [10] HSV and LBP 86.4% 0.28

MFH [23] HSV and LBP 92.8% 0.27

SMVH [7] HSV and LBP 97.1% 0.28

STH [9] HSV and LBP 93.2% 0.28

HF [6] HSV, PCA-SIFT[24] 95.2% 8

USMVH [7] HSV and LBP 95.5% 0.30

SMVH HSV, Haar [25] 94.3% 0.27

SMVH HSV, Fens [26] 96.7% 0.32

Proposed HSV, LBP, and CAM 98.98% 0.75

Fig. 7. Experiment results with a Precision–Recall curve

4312 Byun et al. : Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using

Deep Feature applicable to Large-scale Datasets

Table 2 summarizes the MAP performance of all methods and the retrieval speed for

CC_WEB_VIDEO. In addition, Fig. 7 shows the Precision-Recall curve for the experiment
results. According to this result, LBP, HSV, and CAM features provide better performance

than cases that use LBP and HSV. In addition, the proposed method (98.98%) is better than the

other hashing method with LBP and HSV. Table 2 also compares the retrieval speed. The

proposed method’s set of feature vectors is relatively larger than other methods that use LBP
and HSV, so the proposed method needs more hash functions. Therefore, we can see that the

proposed method has a longer retrieval time. However, the retrieval speed is dramarically

decreased compared to not using hashing methods.

Fig. 8. AP performance comparison

Finally, we tested the average precision (AP) performance of a different feature set over

each of the 24 queries. For most queries, a feature set that includes LBP, HSV, and CAM

shows better performance that one that only includes LBP and HSV. Although there are a few
individual cases such as Q10, Q16, and Q24 for which the LBP and HSV feature set shows

better performance than LBP, HSV, and CAM, this does not change the overall conclusion

when taking all queries into account.

5. Conclusion

This paper proposes a novel NDVR system that supports large-scale retrieval. For this, we
extracted keyframes from each video at regular intervals. Then, we extracted both commonly

used features (LBP, HSV) and the new image feature from each keyframe. We accurately

retrieved the NDVs by considering the new image feature provided auxiliary information such
as the object localization of keyframes. The extracted features make up a vector set that we

convert to simple binary strings through a set of mapping functions such that the similarity

comparison can be efficient. Lastly, we calculated the similarity to search for NDVs. We

examined the NDVR system’s effectiveness and compared it against previous NDVR systems
using the public video collection CC_WEB_VIDEO. The proposed method dealt with

important accuracy issues in recent NDVR studies and contributed to performance

improvement.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4313

Acknowledgment

This research was supported by a 2019 Research Grant from Sangmyung University.

References

[1] Liu, J., Huang, Z., Cai, H., Shen, H. T., Ngo, C. W., and Wang, W., “Near-duplicate video

retrieval: Current research and future trends,” ACM Comput. Surv., vol. 45, no. 4, Art. no. 44., pp.
218–227, 2013. Article (CrossRef Link)

[2] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, “Multiple feature hashing for real-time large

scale near-duplicate video retrieval,” in Proc. of 19th ACM Int. Conf. Multimedia, pp. 423–432,

2011 Article (CrossRef Link)

[3] M. Cherubini, R. De Oliveira, and N. Oliver, “Understanding near-duplicate videos: A user-centric

approach,” in Proc. of 17th ACM Int. Conf. Multimedia, pp. 35–44, 2009. Article (CrossRef Link)

[4] H. T. Shen, X. Zhou, Z. Huang, J. Shao, and X. Zhou, “UQLIPS: A real-time near-duplicate video

clip detection system,” in Proc. 33rd Int. Conf. Very Large Data Bases, pp. 1374–1377, 2007.

[5] H.-K. Tan, C.-W. Ngo, R. Hong, and T.-S. Chua, “Scalable detection of partial near-duplicate

videos by visual-temporal consistency,” in Proc. of 17th ACM Int. Conf. Multimedia, pp. 145–154,

2009. Article (CrossRef Link)

[6] X. Wu, A. G. Hauptmann, and C.-W. Ngo, “Practical elimination of near-duplicates from web
video search,” in Proc. of 15th ACM Int. Conf. Multimedia, pp. 218-227, 2007.

Article (CrossRef Link)

[7] Yanbin Hao, Tingting Mu, Richang Hong, Meng Wang, Ning An, John Y. Goulermas, “Stochastic

Multiview Hashing for Large-Scale Near-Duplicate Video Retrieval,” IEEE Transactions on

Multimedia, Vol. 19, No. 1, pp. 1-14, 2016. Article (CrossRef Link)

[8] L. Shang, L. Yang, F. Wang, K.-P. Chan, and X.-S. Hua, “Real-time large scale near-duplicate web

video retrieval,” in Proc. of 18th ACM Int. Conf. Multimedia, pp. 531–540, 2010.

Article (CrossRef Link)

[9] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast similarity search,” in Proc. of

33rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, pp. 18–25, 2010. Article (CrossRef Link)
[10] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. of Adv. Neural Inf. Process.

Syst. Conf., pp. 1753–1760, 2009.

[11] J. Yuan, L.-Y. Duan, Q. Tian, S. Ranganath, and C. Xu, “Fast and robust short video clip search for

copy detection,” in Proc. of Adv. Multimedia Inf. Process. Conf., pp. 479–488, 2004.

Article (CrossRef Link)

[12] G. Zhao and M. Pietikainen, “Dynamic texture recognition using local binary patterns with an

application to facial expressions,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp.

915–928, Jun. 2007. Article (CrossRef Link)

[13] D.-G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., vol.

60, no. 2, pp. 91–110, 2004. Article (CrossRef Link)

[14] D.-G. Lowe, “Object recognition from local scale-invariant features,” in Proc. of Int. Conf.
Comput. Vis., pp. 1150–1157, 1999. Article (CrossRef Link)

[15] Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive representation for local image

descriptors,” in Proc. of IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog., pp. 506–513,

Jun.-Jul. 2004. Article (CrossRef Link)

[16] Chenggang Yan, Liang Li, Chunjie Zhang, Bingtao Liu, Yongdong Zhang, Qionghai Dai,

“Cross-modality Bridging and Knowledge Transferring for Image Understanding,” IEEE

Transactions on Multimedia. (Early Access), pp. 1-1, 2019 Article (CrossRef Link)

[17] Chenggang Yan, Liang Li, Chunjie Zhang, Bingtao Liu, Yongdong Zhang, Qionghai Dai, “A Fast

Uyghur Text Detector for Complex Background Images,” IEEE Transactions on Multimedia,Vol.

20, Issue. 12, pp. 3389-3398, 2018. Article (CrossRef Link)

https://doi.org/10.1145/2501654.2501658
https://doi.org/10.1145/2072298.2072354
https://doi.org/10.1145/1631272.1631280
https://doi.org/10.1145/1631272.1631295
https://doi.org/10.1145/1291233.1291280
https://doi.org/10.1109/TMM.2016.2610324
https://doi.org/10.1145/1873951.1874021
https://doi.org/10.1145/1835449.1835455
https://doi.org/10.1007/978-3-540-30542-2_59
https://doi.org/10.1109/TPAMI.2007.1110
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/CVPR.2004.1315206
https://doi.org/10.1109/TMM.2019.2903448
https://doi.org/10.1109/TMM.2018.2838320

4314 Byun et al. : Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using

Deep Feature applicable to Large-scale Datasets

[18] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, “Learning Deep

Features for Discriminative Localization,” in Proc. of Computer Vision and Pattern Recognition

(CVPR), 2016 IEEE Conference on, PP. 2921-2929, 2016. Article (CrossRef Link)

[19] J. Song, L. Gao, Y. Yan, D. Zhang, and N. Sebe, “Supervised hashing with pseudo labels for

scalable multimedia retrieval,” in Proc. of 23rd ACM Int. Conf. Multimedia, pp. 827–830, 2015.

Article (CrossRef Link)
[20] R. Salakhutdinov and G. E. Hinton, “Learning a nonlinear embedding by preserving class

neighbourhood structure,” in Proc. of 11th Int. Conf. Artif. Intell. Statist., pp. 412–419, 2007.

[21] W. Liu, J.Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hashing with kernels,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recog., pp. 2074–2081, 2012. Article (CrossRef Link)

[22] A. Gionis et al., “Similarity search in high dimensions via hashing,” in Proc. of 25th Int. Conf. Very

Large Data Bases, pp. 518–529, 1999.

[23] J. Song, Y. Yang, Z. Huang, H. T. Shen, and J. Luo, “Effective multiple feature hashing for

large-scale near-duplicate video retrieval,” IEEE Trans. Multimedia, vol. 15, no. 8, pp. 1997–2008,

Dec. 2013. Article (CrossRef Link)

[24] David G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International

Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004. Article (CrossRef Link)

[25] P. Viola, M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proc. of
IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001,

2001. Article (CrossRef Link)

[26] Mustafa Ozuysal, Michael Calonder, Vincent Lepetit, Pascal Fua, “Fast Keypoint Recognition

Using Random Ferns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32,

no. 3, pp. 448–461, Jan. 2009. Article (CrossRef Link)

Sung-Woo Byun received his BS degree from the department of digital media technology

from SangMyung University, Seoul, Korea. He is currently a PhD student in the department
of computer science, SangMyung University. His main research interests include signal
processing, artificial intelligence, and personalized media processing.

Seok-Pil Lee received his BS and MS degrees in electrical engineering from Yonsei

University, Seoul, Korea, in 1990 and 1992, respectively. In 1997, he earned a PhD degree in
electrical engineering, also at Yonsei University. From 1997 to 2002, he worked as a senior
research staff member at Daewoo Electronics, Seoul, Korea. From 2002 to 2012, he worked
as a head of a digital media research center of the Korea Electronics Technology Institute. He
worked also as a research staff member at Georgia Tech., Atlanta, USA from 2010 to 2011.
He is currently a Professor at the department of electronic engineering, SangMyung
University. His research interests include artificial intelligence, audio digital processing, and
multimedia searching

https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1145/2733373.2806341
https://doi.org/10.1109/CVPR.2012.6247912
https://doi.org/10.1109/TMM.2013.2271746
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/TPAMI.2009.23

