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Abstract 
 

With the development of video-related applications, media content has increased dramatically 
through applications. There is a substantial amount of near-duplicate videos (NDVs) among 

Internet videos, thus NDVR is important for eliminating near-duplicates from web video 

searches. This paper proposes a novel NDVR system that supports large-scale retrieval and 

contributes to the efficient and accurate retrieval performance. For this, we extracted 
keyframes from each video at regular intervals and then extracted both commonly used 

features (LBP and HSV) and new image features from each keyframe. A recent study 

introduced a new image feature that can provide more robust information than existing 
features even if there are geometric changes to and complex editing of images. We convert a 

vector set that consists of the extracted features to binary code through a set of hash functions 

so that the similarity comparison can be more efficient as similar videos are more likely to map 
into the same buckets. Lastly, we calculate similarity to search for NDVs; we examine the 

effectiveness of the NDVR system and compare this against previous NDVR systems using 

the public video collections CC_WEB_VIDEO. The proposed NDVR system’s performance 

is very promising compared to previous NDVR systems.  
 

 

Keywords: Near-duplicate Video, NDVR, Class Activation Maps, Hashing, supervised 

learning 
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1. Introduction 

With the development of video-related applications such as video-sharing websites, video 

broadcasting, and advertising services, the amount of available media content has increased 

dramatically. Among this huge amount of media content, there is a substantial portion of 
duplicate and near-duplicate videos (NDVs) that have gone through video editing and 

redistribution [1–5]. Such NDVs largely influence video-related applications, removing them 

requires near-duplicate video retrieval (NDVR). The principle of NDVR is to retrieve accurate 

and efficient NDVs that are defined as identical or approximately identical videos that are 
almost exact duplicates of each other. To reflect these needs, NDVR is utilized in various 

fields; it is applicable in various uses such as copyright protection, video monitoring, and 

recommendation systems. For instance, we can use NDVR in search engines, ensuring that 
users can enjoy a range of videos distinct from each other rather than be faced with an endless 

list of the same or similar clips. Another example is using NDVR to reduce the risk that video 

products face of being compromised by unauthorized copying, editing, and redistribution; 
therefore, NDV detection is important for copyright protection. 

NDVR involves searching for identical or approximately identical videos to existing videos 

[6] and consists of three main parts: 1) keyframe extraction, 2) feature extraction, 3) similarity 

computation. Keyframe extraction extracts multiple representative images from each video at 
regular intervals; it then extracts features to characterize each keyframe. Feature extraction 

generates numerical characteristics from each image using domain knowledge. Well-extracted 

features increase the retrieval algorithms’ effectiveness. Similarity computation calculates 
similarities between videos using the extracted features and finally retrieve near-duplicate 

videos based on the similarities. NDVR system computes similarities and retrieve relevant 

videos by exhaustively comparing the features extracted from each keyframe between all 

pairwise keyframes. Here, because no single feature type exists that is sufficiently robust to 
capture all variations in the information, previous studies have proposed video representation 

methods that combine multiple types of feature. Many studies have used HSV histogram 

[2,3,7,8] as the global feature type such as contrast changes, or sensitivity to brightness and 
local binary pattern (LBP) as the local feature type [7,9,10]. Even though comparing all 

available keyframe pairs and using complex and high-dimension features can offer accurate 

retrieval results, in practice, there are time complexity problems.  
This paper proposes a novel NDVR system that supports large-scale retrieval, which 

extends the hashing functions to non-linear functions through dimension conversion. In 

addition, this system contributes to the efficient and accurate retrieval performance. For this, 

we extract keyframes from each video at regular intervals. Then, we extract both commonly 
used features (LBP and HSV) and a new image feature from each keyframe. The new image 

feature, which recent research introduced, can provide more robust information than existing 

features even if there are geometric changes and complex editing of images because it involves 
object localization without bounding boxes. We convert a vector set that consists of the 

extracted features to binary code through a set of hash functions so that the similarity 

comparison can be efficient by making similar videos more likely to map into the same 
buckets. Lastly, we calculate similarity to search for NDVs. We examine and compare the 

NDVR system’s effectiveness against previous NDVR systems using the public video 

collection CC_WEB_VIDEO. 
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The remainder of this paper goes as follows: Section 2 presents related works for NDVR 

systems, Sections 3 and 4 explain the basic NDVR system and the proposed method, 
respectively, Section 5 shows the experiment results, and Section 6 concludes this work. 

2. Related Works 

Most NDVR approaches carry out retrieval by extracting features from video content. One 

common strategy is to extract low-level features for characterizing each keyframe after 

selecting keyframes from videos through uniform sampling. The most common features are 
color information such as RGB and HSV histogram [2,3,7,8,11]; previous research often 

referred to these as global features. However, because the characteristics of videos can be 

changed by major variations such as histogram normalization and color variation, these can be 

used to retrieve videos that are almost identical to the query video with minor variations [7]. 
Compared to global features, local features are more robust to complex editing or geometric 

changes and they generally provide better performance when processing videos with complex 

scenes. Local binary pattern (LBP) is commonly utilized as the local feature [12]. Features in 
this category include Difference of Gaussian (DOG) [13], scale invariant feature transform 

(SIFT) [14], and a mixture of principal component analysis (PCA) and SIFT referred to as 

PCA-SIFT [15]. In recent studies using these image features, several have investigated areas 
such as understanding an image and finding special regions in an image [16, 17]. Meanwhile, 

Bolei Zhou et al. [18] used convolutional neural network (CNN) to propose deep features with 

localizability applicable to images. We refer to this feature as class activation maps (CAM). 

CAM for a particular category indicates discriminative image regions used by the 
convolutional neural network (CNN) to identify the category as shown in Fig. 1. 

 

 
Fig. 1. Examples of CAM 

 

Comparing complex and high-dimension features can provide accurate retrieval results but 
is very time-consuming. The hashing technique enables large-scale retrieval through rapid 

pairwise similarity comparison between videos. Classic hashing technologies include locality 

sensitive hashing (LSH), which converts video data into binary code through a set of random 

projections. Using LSH means that similar objects are more likely mapped into the same 
buckets. In addition, previous studies have developed various extensions of LSH. For example, 

J. Song et. al proposed a learning-based hashing method that jointly learns pseudo class labels 

and the hash code for given objects based on a discriminant embedding framework driven by 
linear discriminant analysis [19]. Other examples are spectral hashing (SPH) [10], self-taught 
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hashing (STH) [9], semi-supervised hashing (SSH) [20], and supervised hashing with kernels 

[21]. they construct hashcodes using different distance measures. 

3. Near-duplicate video retrieval 

3.1 Definition of near-duplicate video 

NDVs are defined as follows in previous research: Near-duplicate web videos are identical or 
approximately identical videos close to exact duplicates of each other, but different in file 

format, encoding parameters, photometric variations (color or lighting changes), editing 

operations (caption, logo, and border insertion), different lengths, and certain modifications 
(added or removed frames). A user would clearly identify the videos as "essentially the same" 

[6]. NDVs are two videos that look the same or approximately the same; the two do not have to 

be pixel identical for us to consider them duplicates. Whether two videos are duplicates 

depends entirely on the type of their differences and the comparison’s purpose. Originally, 
precise duplicate videos and near-duplicate videos were different definitions, but this paper 

includes exact duplicates in our definition of near-duplicate videos. 
 

3.2 Structure of near-duplicate video retrieval 

Generally, we use NDVR to search for identical or approximately identical videos and output 

a ranked list of videos that are relevant to a specific user-provided query. We search NDVs 
using a constructed retrieval system as follows: 

Step 1: Keyframe extraction 

The characteristics of video data include both image information and significant 
information such as audio data. In addition, video data has a concurrent temporal, complex, 

and informal structure. We generally make summarized information from such huge data by 

extracting keyframes from the video. The keyframe extraction method extracts keyframes 

from each video at regular intervals; assuming that we extract n  keyframes from videos, later 

processing steps focus on information provided by those n  extracted keyframes. 

Step 2: Feature extraction 

Feature extraction is a process for generating numerical characteristics based on domain 

knowledge about data. An important factor for feature extraction is that it requires compact 
and reliable features because it deals with big data elements such as video. Therefore, previous 

studies have proposed various approaches using different features. Global features to reflect 

the whole characteristic of an image are suitable for identifying copies in formatting 
modifications such as frame resolution changes and format conversion. Unlike global features, 

we can extract local features after segmenting an image into regions and computing a set of 

color, texture and shape features for each region. We consider such local features robust and 
tolerant of geometric and photometric variation. However, there are too many local points for 

efficient, exhaustive comparison, even between two frames. The notation of the extracted 

feature vector is as follows: Let 
1 2 3{ , , ... }dx x x x x  be the feature vector for one feature type. 

Assuming that n  keyframes are extracted from a video, each feature type includes the size 

n d  where d  is the length of each feature. For example, we use 1 2 3{ , , ... }i i i i idx x x x x  to 

denote the first feature type for the i  th keyframe. 

Step 3: Hash code generation 
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Many previous studies have used hashing when retrieving huge data such as video. This 

converts an input vector into a fixed-length binary string through hash functions. Generally, a 
longer hash code provides better performance, but is also more time consuming. The most 

classic and general hashing approach is a random projection; this generates binary code (hash 

code) by projecting the extracting features into random lines designated as an auxiliary space, 

and this hash code makes similar videos more likely to map into the same buckets. This step 

has a set of s  hash functions 
1 2 3{ , , ... }i i i i is       each of which takes extracted 

features as inputs and returns a binary number. Finally, a set of hash functions generates a hash 

code matrix of size n s  where n  is the number of keyframes. 

Step 4: Similarity computation 

We generate a unique hash code matrix for each video; we use the Hamming distance 

between generated hash codes to assess the similarity between videos. This returns a list of 
videos that possess the highest similarity to the query video. 

4. Proposed NDVR system 

 

 
Fig. 2. Flowchart of the proposed NDVR system 

 
Fig. 2 shows a flowchart of the proposed NDVR system. The system consists of keyframe 

extraction, feature extraction, hashing, and similarity computation. The keyframe extraction 

method extracts n  keyframes from each video in regular intervals as mentioned in Section 3 

and then extracts features from the n  keyframes. 
 

4.1 Keyframe extraction 

As mentioned in Section 3.2, the keyframe extraction method extracts keyframes from 
videos at regular intervals. In this research, we set the interval such that the method extracts a 

keyframe every 10 seconds. 
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4.2 Features 

1) HSV 

We calculate a color histogram for each keyframe in the video that is a representative global 

feature and reflects the global statistics or summaries of low-level color in videos. We 

represent each feature as 
1 2 3{ , , ... }i mHSV HSV HSV HSV HSV ; this includes hue, saturation, 

and value. The equation to normalize the histogram to an overall size is as follows:  
 

1

1

1
{ },

m

i m i j

j

NormalizedHSV NH NH where NH HSV
M 

          (1) 

 

Where M  is the biggest value in histogram and 
ijHSV  is the j th value of the color 

histogram at keyframe i . 

2) Local binary pattern 

LBP indicates the texture representation of images and studies commonly utilize this as the 
local feature as it tends to be more robust in complex editing, photometric, and geometric 

changes than global features. We can extract LBP features by comparing the brightness of the 

eight pixels adjacent to the pixel at the center. 

 

 
Fig. 3. How to extract an LBP feature 

 

As shown in Fig. 3, if the brightness value of the surrounding pixels is greater than or equal 
to the central pixel, this set as 1; if smaller, this is set as 0. Then, we convert the generated 

binary number 01110011 to the decimal number 115. Fig. 4 shows an example LBP feature. 

 

 
Fig. 4. An example LBP feature (a) original image (b) visualization of LBP (c) the histogram of LBP 

 

The original LBP application uses this histogram as a texture model for the corresponding 
image region (e.g. the texture of grassplot, forest, land, sky, and object). Many studies used 

LBP in recognition or detection problems because they can express complex pattern changes 

even though they were originally developed to classify image textures. 

 
3) Class activation maps  

Apart from HSV and LBP, we can use many other feature extraction methods to 

characterize keyframes. Bolei Zhou et al. recently proposed deep features for discriminative 
localization. We refer to this feature as class activation maps (CAM) [18]. A class activation 

map for a particular category indicates the discriminative image regions used by the 

convolutional neural network (CNN) to identify the category as shown in Fig. 1. This easily 
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identifies the discriminative image regions in a single forward pass for a wide variety of tasks, 

even when we have not originally trained the network. For example, in Fig. 5, even if we train 
a network using Fig. 5 (a), it can identify similar image regions in Fig. 5 (b). 

 

 
Fig. 5. Localizing class-specific image regions 

 

This research uses a deep CNN design composed of five convolutional layers, five pooling 
layers, and one fully connected layer. We applied a Rectified Linear Unit (ReLu) activation 

function on five convolutional layers and a softmax function on one fully connected layer. The 

first convolutional layer has 32 5x5 filters and uses the same padding; the layer’s output 

decreases by half through the pooling layer. Consider as an example an input image of 
224x224x3 components; the resulting output of the first convolutional layer would be 

112x112x32 components. The remaining convolutional layers are 5x5 and use the same 

padding. We identify and categorize the information of videos using the ground truth 
information provided by the data set. Then, we train the designed CNN using the videos as an 

input. Fig. 6 (a) shows the whole architecture and (b) shows examples of CAM features 

extracted from the network architecture. Here, in the figures of examples, we visualize the 

values that correspond to the features as Heat Maps. 

 

 
Fig. 6. (a) The network’s whole architecture (b) Example CAM features extracted from network (a) 
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4.3 Hashing 

Hashing has drawn attention in large-scale data retrieval. In recent research, Yanbin Hao et al. 
proposed a stochastic multiview hashing algorithm to facilitate the construction of a 

large-scale NDVR system [7]. They learned which hash functions applied to linear functions 

by maximizing the mixture of the generalized retrieval precision and recall scores. Then, they 

converted multiple features to binary hash code strings. In this study, we extend the hashing 
functions to non-linear functions through dimension conversion. 

Given multiple feature vectors X  from a set of n keyframes that involve all feature types, 

the vector 
1 2 3{ , , ... }i i i i idX x x x x  stores the features of the i  th keyframe. We convert these 

feature vectors to binary hash codes with size s  through the hash functions, which we express 

as 1 2 3{ , , ... }i i i i ish h h h h  where {0,1}ih  . We generate hash codes by constructing s  hash 

functions   where { }i iX  . These functions are as follows: 

 
1

(1)

0

, 1
d

il ij ijl il

j

z x w b for l m




                          (2) 

 ( )il ilz sigmoid z                                                               (3) 

(2)

0

1
m

ik iz izs is

z

h z w b for k s


                          (4) 

( )ik ikh sigmoid h                                                             (5) 

 

The above equations (2) map feature vectors to a one-dimension space by projecting with 

m  linear functions where the size of w  is d m , and the size of b  is 1 m . Then, we use 

sigmoid to make the output vector approximate to 0 or 1. The projected one-dimension vectors 

map into another space to extend non-linear functions, which we call dimension conversion 

and is equivalent to a neural network. We express this process as Equation (4), and we apply 

Equation (5) to make the hash code 0 or 1 by using a thresholding method. Generally, we refer 

to ikh  as the relaxed hash code. In NDVR, one classical way to generate hash code for a video 

is to process the relaxed hash codes of its representative keyframes by first performing 

averaging and then thresholding operations [21]. 

 

1
( )

i

ik jk

j indi

h Threshold h
ind 

                                           (6) 

 

Equation (6) shows a generated hash code vector for a video in which iind  is the set of 

keyframe indices for the video and iind  is its cardinality. Finally, we generated the V s  

hash code matrix for all videos. 

When making a list of output videos close to a query video, accurately measuring the 

similarity between the videos is very significant. Therefore, this study focuses on how to 

compute the optimal hash codes from the feature vectors to ensure correct similarity 
information between videos. When there is ground truth information available regarding the 

relevance between videos, constructing probabilities by rewarding actually related videos with 
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a score of 1 and non-related or unknown ones with a score of 0 is helpful. We refer to this as 

p  and express this as: 

 

|

1 if ith video is near-duplicated video

       with jth video

0 otherwise

i jp




 



                    (7) 

 

Assuming that each 
|i jp represents the probability of the i th video for query j , a natural 

way of learning the hash functions is re-computing such probabilities in the space of hash 

functions and minimizing the difference between two sets of probabilities. Therefore, the 

probability equation q  is: 

 
2

2
| 2

2

exp( )

exp( )

i j

i j

i ki k

h h
q

h h


 


 
                                         (8) 

 

We increase the probability that we have extracted ix  and 
jx  from near-duplicated videos 

by learning hash functions using available ground truth information. We can assess the 

hashing’s quality by examining how well the probabilities of p  and q  match. We measure 

the difference between two conditional probabilities p  and q  using the following 

KL-divergence method: 

 

log( )
ij

ij

i j ij

p
O p

q
                                              (9) 

 

According to the decrease in cross-entropy value, we have increased the probability of 
similar objects mapping into the same group. Hash functions in Equations (2), (3), (4), and (5) 

consist of weight and bias parameters. Therefore, we can convert the optimization problem for 

hash functions into a minimization problem of composite KL-divergence values. We solve this 
problem by employing a gradient descent algorithm. We can compute the gradient using the 

following compound function derivation. 
 

(2) (2)

i

i

hO O

w h w

 
 
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                                              (10) 

(1) (1)

i i

i i

h zO O

w h z w

  
  

   
                                     (11) 

 

As has been established in many machine-learning studies, placing bias on the 0
th
 weight 

vector means that there is no need to determine the gradient of the bias. Evidently, the targeted 

gradients depend on the different components of
i

O

z




,

(2)

iz

w




, iz

h




 and

(1)

iz

w




. The 

components can be calculated as follows. 
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Substituting (12), (13), (14), and (15) into (10) and (11) permits the derivation of the 

complete formulations of 
(2)

O

w




 and 

(2)

O

w




. Generating binary code through learned hash 

functions means that similar videos are more likely to map into the same buckets. In addition, 

if we can calculate similarity using binary code, we can decrease the retrieval speed because 
we have only calculated the Hamming distance, which uses a bit operation. This leads to 

avoiding costly pairwise keyframe comparisons and can effectively improve the retrieval 

efficiency. In terms of video retrieval, the computational complexity of computing a hash code 

has a low cost of around O(
3d ), where d is the length of the input vector. This phase has very 

simple operations such as linear combination, sigmoid, and thresholding compared to the 
retrieval phase, so it does not affect the retrieval time. In the retrieval phase, the bit count 

operations for the hamming distance calculation leads to a very fast online NDVR system. 

Therefore, NDVs can be found by linear search O( n )[22]. This paper demonstrates its 

efficiency in the results section. 

5. Experiments and results 

5.1 Dataset and metric 

This study tested the proposed method through experiments using a publically available web 

video dataset. The CC_WEB_VIDEO dataset [6] consists of 12,790 video clips downloaded 
from video sharing websites such as YouTube, Google, and Yahoo! through keyword search, 

and is organized into 24 sets. The set has 398,015 keyframes in total. In previous research, two 

non-expert assessors were asked to watch videos from this dataset with one query at a time, 

and assessors labeled all videos with statuses (E: Exact duplicate, S: Similar video, V: 
Different version, M: Major change, L: Longer version, X: Dissimilar video, or -1: Video does 

not exist) according to their judgment. Therefore, this dataset provides reliable ground truth 

information for all video clips. In addition, the most popular video was selected as the seed 
video for each query for near-duplicate video retrieval. 

Retrieval performance evaluations commonly use the classic metric of the mean average 

precision (MAP). We use the precision–recall curve and MAP. 
 

Re / , Pr /call G D G ecision G D D                        (10) 

 

Where G  is the ground truth set of redundant videos and D  is the detected one. 
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5.1 Experimental setup 

The hash code length s  influences retrieval performance and efficiency, so selecting the 
optimal length hash code is important. We prove the retrieval performance according to the 

length s  by testing changing the length from 500 and 1,000 with step size 50. Here, we 

applied LBP, HSV, and CAM for this test and we set the same experimental conditions except 

the hash code length. 
 

Table 1. Applications in each class 

Hash Code Length MAP Time(s) 

S = 500 0.6798 0.33 

S = 550 0.6865 0.37 

… … … 

S = 800 0.9738 0.59 

S = 850 0.9765 0.65 

S = 900 0.9777 0.68 

S = 950 0.9861 0.75 

S = 1,000 0.9898 0.78 

 

Table 1 shows the changes in MAP performance. We can see from the results that it 
provides a quite similar retrieval performance in the range 800–1,000 even though the hash 

code lengths differ. In addition, in the case of the retrieval time, the longer the hash code, the 

greater the retrieval time margin. Therefore, we fixed the hash code length at s = 900 while 

considering the MAP and computation time. 

5.2 Baseline 

In this section, we describe baselines algorithms to compare our method.  
1) Spectral hashing (SH) [10] 

We base the spectral hashing on analyzing the k  smallest single-dimension analytical 

Eigen functions of pL  using a rectangular approximation along every PCA direction. This 

uses spectral relaxation such as PCA. Then, they find the smallest element of the data whose 

dimensions are reduced by PCA. Finally, we convert this to binary code along with the k  

smallest eigenvalues. 

2) Multiple feature hashing (MFH) [23] 

This system proposed a sophisticated multiview method called MFH by extending SPH. 
MFH learns the training videos’ hash codes and a group of hash functions to generate hash 

codes for videos outside the training set; it encodes the information provided by the HSV and 

LBP features as a neighbor graph and seeks a hash function to preserve the desired neighbor 

structure. 
3) Stochastic Multiview hashing (SMVH) [7] 

This method learns binary strings to characterize data samples by combining multiple 

feature types and auxiliary information through a stochastic matching procedure of 
neighborhood probabilistic models. This learns the mapping functions stochastically by 

maximizing a mixture of the generalized retrieval precision and recall scores. The scores are 

approximated by the composite Kullback–Leibler (KL) divergence computed between two 
probabilistic models constructed in the original feature space and a relaxed hash code space.  

4) Self-taught hashing (STH) [9] 

This system relies on the hashing method STH, which shares a similar hash code training 

procedure to SPH but achieves out-of-sample extension through a different scheme based on 
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linear SVM. 

5) Hierarchical fusing (HF) [6] 
This system combines the global and local features, by firstly using the color histogram 

signature to detect the NDVs with high confidence and filtering out the very novel ones, and 

then performing a pairwise comparison based on the local features to further determine the 

uncertain videos. 
6) Unsupervised Stochastic Multiview hashing (USMVH) [7] 

This system is an unsupervised version of SMVH 

 
The following section describes the proposed method and the results of the overall 

comparison with other methods. 

5.3 Results  

For the experiment, we extracted 768 HSV and 256 LBP features and 1024 CAM features 

from each keyframe. We compited the retrieval speed using Python 3.5 running on a server 

with an Intel i7 4770 CPU, 16 GB RAM, and 64-bit Windows 7 operating system. 
 

Table 2. Experiment results 

Hashing method Features MAP Time(s) 

None HSV and LBP 85.61% 17.27 

None HSV, LBP, and CAM 91.45% 29.50 

SH [10] HSV and LBP 86.4% 0.28 

MFH [23] HSV and LBP 92.8% 0.27 

SMVH [7] HSV and LBP 97.1% 0.28 

STH [9] HSV and LBP 93.2% 0.28 

HF [6] HSV, PCA-SIFT[24] 95.2% 8 

USMVH [7] HSV and LBP 95.5% 0.30 

SMVH HSV, Haar [25] 94.3% 0.27 

SMVH HSV, Fens [26] 96.7% 0.32 

Proposed HSV, LBP, and CAM 98.98% 0.75 

 

 
Fig. 7. Experiment results with a Precision–Recall curve 
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Table 2 summarizes the MAP performance of all methods and the retrieval speed for  

CC_WEB_VIDEO. In addition, Fig. 7 shows the Precision-Recall curve for the experiment 
results. According to this result, LBP, HSV, and CAM features provide better performance 

than cases that use LBP and HSV. In addition, the proposed method (98.98%) is better than the 

other hashing method with LBP and HSV. Table 2 also compares the retrieval speed. The 

proposed method’s set of feature vectors is relatively larger than other methods that use LBP 
and HSV, so the proposed method needs more hash functions. Therefore, we can see that the 

proposed method has a longer retrieval time. However, the retrieval speed is dramarically 

decreased compared to not using hashing methods. 
 

 
Fig. 8. AP performance comparison 

 
Finally, we tested the average precision (AP) performance of a different feature set over 

each of the 24 queries. For most queries, a feature set that includes LBP, HSV, and CAM 

shows better performance that one that only includes LBP and HSV. Although there are a few 
individual cases such as Q10, Q16, and Q24 for which the LBP and HSV feature set shows 

better performance than LBP, HSV, and CAM, this does not change the overall conclusion 

when taking all queries into account. 

5. Conclusion 

This paper proposes a novel NDVR system that supports large-scale retrieval. For this, we 
extracted keyframes from each video at regular intervals. Then, we extracted both commonly 

used features (LBP, HSV) and the new image feature from each keyframe. We accurately 

retrieved the NDVs by considering the new image feature provided auxiliary information such 
as the object localization of keyframes. The extracted features make up a vector set that we 

convert to simple binary strings through a set of mapping functions such that the similarity 

comparison can be efficient. Lastly, we calculated the similarity to search for NDVs. We 

examined the NDVR system’s effectiveness and compared it against previous NDVR systems 
using the public video collection CC_WEB_VIDEO. The proposed method dealt with 

important accuracy issues in recent NDVR studies and contributed to performance 

improvement. 
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