
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, Oct. 2018 5159
Copyright ⓒ 2018 KSII

Enhanced Network Intrusion Detection
using Deep Convolutional Neural Networks

Sheraz Naseer1,2* and Yasir Saleem1

1 Department of Computer Science & Engineering, University of Engineering and Technology
Lahore, Pakistan

2 Department of Computer Science, School of Systems and Technology, University of Management and
Technology, Lahore, Pakistan

*Corresponding Author: Sheraz Naseer
[e-mail: sheraz.naseer@gmail.com]

Received September 21, 2017; revised December 18, 2017; accepted May 13, 2018;

published October 31, 2018

Abstract

Network Intrusion detection is a rapidly growing field of information security due to its
importance for modern IT infrastructure. Many supervised and unsupervised learning
techniques have been devised by researchers from discipline of machine learning and data
mining to achieve reliable detection of anomalies. In this paper, a deep convolutional neural
network (DCNN) based intrusion detection system (IDS) is proposed, implemented and
analyzed. Deep CNN core of proposed IDS is fine-tuned using Randomized search over
configuration space. Proposed system is trained and tested on NSLKDD training and testing
datasets using GPU. Performance comparisons of proposed DCNN model are provided with
other classifiers using well-known metrics including Receiver operating characteristics (RoC)
curve, Area under RoC curve (AuC), accuracy, precision-recall curve and mean average
precision (mAP). The experimental results of proposed DCNN based IDS shows promising
results for real world application in anomaly detection systems.

Keywords: Network Intrusion Detection, Deep Convolutional Neural Networks, Deep
learning, CNN, IDS, Information Security

This research was Not supported by any research grant from the IT R&D program of MKE/IITA, the Korean
government [2005-Y-001-04, Development of Next Generation Security Technology].

http://doi.org/10.3837/tiis.2018.10.028 ISSN : 1976-7277

5160 Naseer et al.: Network Intrusion Detection using deep CNN

1. Introduction

Intrusion detection is the process of monitoring, identifying, analyzing and managing IT
infrastructure events which can adversely impact the security of information systems.
Efficient and effective Intrusion Detection systems are required by every organization because
they assure the reliability of IT infrastructure of the organization and hence the undisrupted
business operations. The mainstream of intrusion detection systems (IDS) rely on signature
based approach but this method is unable to defend against zero-day attacks due to its reliance
on presence of attack signatures for successful detection of attacks.
Denning [1] introduced the idea of developing intrusion detection system by using Artificial
Intelligence techniques on security events to identify abnormal usage patterns and intrusions.
This idea introduced a new breed of intrusion detection systems (IDS) commonly known as
anomaly detection systems which employ machine learning and Data mining approaches.
These approaches primarily consist of supervised, unsupervised and semi-supervised learning
to propose solutions for anomaly detection problem
In supervised learning, intrusion detection is posed as a classification problem where detection
model is trained using both normal and anomalous data. Unsupervised learning uses unlabeled
or untagged data for learning tasks. Most popular unsupervised learning technique is
clustering [2] in which the learning algorithm searches for similarities among instances of
dataset to build group of instances called clusters. Semi-Supervised Learning (SSL) is a
combination of supervised and unsupervised learning approaches. The SSL approach utilizes
both labeled and unlabeled data [3] for learning.
Deep Learning is an area of Machine Learning which has the objective of moving Machine
Learning closer towards Artificial Intelligence [4] by using neuron like mathematical
structures for learning tasks. Neural Networks have been around for five decades [5] and have
been gaining and losing the favor of research community. The year 2012 marked the rise of
Deep neural networks (DNNs) in computer vision when Alexnet [6] won the ImageNet
classification challenge. Alexnet achieved top-1 and top-5 error rates of 37.5% and 17.0% on
ImageNet Dataset [7] which were considerably better than the previous state-of-the-art. Since
then DNNs have been successfully used in multiple disciplines which includes information
security.
Application of Deep Neural Networks for solution of Information security problems is
relatively new area of research. The main contribution of this study is investigation of Deep
Convolutional Neural Networks (DCNNs) for network anomaly detection problem. To the
best of our knowledge, DCNNs have never been investigated for the aforementioned
application. All experiments in this study are performed on NSLKDD dataset provided by [8].
NSLKDD was derived from KDDCUP99 [9] which was generated in 1999 from the
DARPA98 network traffic. Tavallaee et al. [8] discovered some inherent shortcomings in the
original KDDCUP99 dataset that would have adversely affected the performance of IDS
trained and evaluated on the Dataset. A statistically enhanced version of dataset called
NSLKDD was proposed by [8] to counter discovered statistical problems. Some advantages
of NSLKDD over KDDCUP99 dataset, as described by [8], include removal of redundant
records from training dataset for reducing complexity and bias towards frequent records and
introduction of non-duplicate records in testing datasets for unbiased evaluation.
The NSLKDD dataset incorporates 41 input features as in original KDDCUP99 dataset and a
class label. Features 1 to 9 represent the basic features which are extracted from TCP/IP

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5161

connection without inspecting the payload. Features 10 to 22 consist of contents features
generated from payload of TCP segments of packets. Features 23 to 31 are extracted from time
based traffic properties while features 32 to 41 contains host based traffic features that are
designed to assess attack within interval longer than 2 seconds. A class label is provided with
each record, which specifies the status of an instance either as normal or an attack. Original
KDDCUP99 dataset listed different types of attacks shown in Table 1.

Table 1. Attack Types in KDDCUP99 Dataset

Denial of Service (DoS) User to Root (U2R) Remote to Local (R2L) Probing (Probe)
Back Buffer Overflow FTP write IPSweep
Land Load module Guess Password NMAP
Neptune Perl IMAP Port Sweep
Ping of Death Rootkit MultiHop Satan
Smurf Phf
TearDrop SPY

 Warezclient
 Warezmaster

NSLKDD Dataset is available in four partitions. Two partitions namely NSLKDDTrain20p
and NSLKDDtrain+ each containing 25,192 and 125,973 training records respectively are
provide for training of models and remaining two partitions called NSLKDDTest+ and
NSLKDDTest21 are used to evaluate the performance of trained models. Both
NSLKDDTest+ and NSLKDDTest21 are comprised of 22,543 and 11,850 instances
respectively. NSLKDDTest21 also contains records for attack types not available in other
NSLKDD train and test Datasets. These attack types include processtable, mscan, snmpguess,
snmpgetattack, saint, apache2, httptunnel, back and mailbomb.
In this study, a DCNN is implemented for task of two-class supervised anomaly detection.
Fine tuning and hyper-parameter optimization of proposed DCNN was performed using
RandomizedGridSearch over configuration space. Classification metrics including accuracy,
Area under ROC curve, mean average precision, and precision-recall scores were calculated
for comparison of DCNN with well-known classification schemes including SVM, K-nearest
neighbor, Decision-Tree, RandomForest, Quadratic Discriminant Analysis (QDA) and
Extreme Learning machine (ELM) [10].
Rest of the article is divided into V sections. Section II highlights prominent works related to
IDS problem. Section III provides the methodology and architectural design of the system.
Section IV sheds light on implementation details including hardware setup and software
tool-chain. In Section V, we present results of proposed deep CNN based IDS along with
comparisons of results and timing information. This section is followed by section V and VI
which describes the conclusion and references of research respectively.

2. Related Work
Many machine learning techniques including supervised, unsupervised and semi-supervised,
have been proposed to enhance performance of anomaly detection. Supervised approaches
such as k-nearest neighbor (KNN) [11], neural network (NN)[12], and support vector machine
(SVM) have been extensively used to detect the intrusions [13]. A comprehensive repertoire of
anomaly based intrusion detection systems is presented by bhattacharraya et al. in [14].
Ghorbani et al. [15] provided an inclusive review of supervised and unsupervised learning
approaches for anomaly detection. Tavallee [16] compared the performance of the NSLKDD

5162 Naseer et al.: Network Intrusion Detection using deep CNN

dataset on different classifiers including naive bayes, SVM, and random forests etc. Solanas et
al. [17] presented clustering algorithms for anomaly detection. Laskov et al [18] provided
comparative analysis of supervised and unsupervised learning techniques with respect to their
detection accuracy and ability to detect unknown attacks.
Application of Deep Neural Networks for solution of Information security problems is
relatively new area of research. Although DCNNs have not been used for IDS, other DNN
structures like Autoencoders (AE), Deep belief Networks (DBNs) and LSTM have been.
David et al [19] employed a DBN to classify Malware samples. Gao et al. [20] proposed an
IDS architecture based on DBNs using energy based reduced Boltzmann machines (RBMs) on
KDDCup99 Dataset. Wang [21] proposed a deep network of stacked auto encoders (SAE) for
network traffic identification. A semi-supervised learning based approach with Random
weights based NN (NNRw) is used by Ashfaq et al. [22] to implement an IDS architecture
using NSLKDD.

It is relevant to mention that we encountered two approaches for evaluation of models in
literature. In first approach, authors used training datasets for both training and testing of
models using cross-validation mechanisms. The studies using this approach reported very high
detection rates, e.g. Kim et al. [23] used a four layer DNN with 100 units for intrusion
detection on KDD99 dataset and reported 99% accuracy. Similarly Alwardesh et al. [24] used
a DNN model and reported 97.9% accuracy. We believe that this approach is flawed, as given
sufficient training, classifiers can be over-fitted to achieve such high rates. The second
approach is to train the model on training Dataset without ever exposing the test dataset to
model during training and then test the model on testing dataset. We believe that 2nd approach
is more useful and all models in this study were trained on NSLKDD training datasets
(NSLKDDTrain20p and NSLKDDTrain+) and tested on NSLKDD test datasets
(NSLKDDTest+ and NSLKDDTest21). This approach was also adopted by [16], [22] and
[25].

3. Methodology
This section describes the preprocessing of dataset, architecture of model and hyper-parameter
selection method.

3.1 Preprocessing
A network flow,𝜙𝜙, is an ordered set of all packets 𝜋𝜋1, … ,𝜋𝜋𝑛𝑛 where 𝜋𝜋𝑖𝑖 = {𝑡𝑡𝑖𝑖 , 𝑆𝑆𝑖𝑖 ,𝐷𝐷𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑑𝑑𝑖𝑖 , 𝑝𝑝𝑖𝑖 , 𝑓𝑓𝑖𝑖}
represents a packet such that:

(1) ∀𝜋𝜋𝑖𝑖,𝜋𝜋𝑗𝑗 ∈ 𝜙𝜙,𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑗𝑗
(2) ∀𝜋𝜋𝑖𝑖,𝜋𝜋𝑗𝑗 ∈ 𝜙𝜙, �𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑗𝑗,𝐷𝐷𝑖𝑖 = 𝐷𝐷𝑗𝑗, 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑗𝑗,𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑗𝑗� 𝑎𝑎𝑎𝑎𝑑𝑑 �𝑆𝑆𝑖𝑖 = 𝐷𝐷𝑗𝑗,𝑆𝑆𝑗𝑗 = 𝐷𝐷𝑖𝑖, 𝑠𝑠𝑖𝑖 = 𝑑𝑑𝑗𝑗, 𝑑𝑑𝑖𝑖 =

𝑠𝑠𝑗𝑗�
(3) ∀𝜋𝜋𝑖𝑖≠𝑛𝑛 ∈ 𝜙𝜙(𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡𝑖𝑖+1)𝑎𝑎𝑎𝑎𝑑𝑑 (𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖 ≥ 𝛼𝛼)

where 𝑡𝑡𝑖𝑖, 𝑆𝑆𝑖𝑖 ,𝐷𝐷𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑑𝑑𝑖𝑖 , 𝑝𝑝𝑖𝑖 , 𝑓𝑓𝑖𝑖 represents time-stamp, source IP address, destination IP address,
source port, destination port, protocol and TCP flags respectively. IDS problem in this study is
treated as two-class problem where flows are either anomalous or normal. The training dataset
is prepared by combining NSLKDDTrain20p and NSLKDDTrain+ which contains 151,165
training instances. NSLKDD has 41 features like its predecessor KDDCUP99 and we have
used all 41 features. Out of 41 features, 3 features ‘protocol_type’, ‘service’ and ’flag’ are
symbolic features which needs to be converted to quantitative data before they can be used by

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5163

DCNN. Different techniques [26] [27] [28] [29] [30] have been proposed in literature for
encoding symbolic features to quantitative features. We studied the impact of different
category encoding schemes on classification accuracy of NSLKDD dataset using a
conventional classifier. For this purpose we chose Random-Forest algorithm due to its time
efficiency. Impact of different encoding schemes on dimensionality of dataset and training
time and accuracy of classifier are shown in Table 2.

Table 2. Impact of Different Category encoders on Accuracy of NSLKDD training Dataset

Encoding Scheme Dimensionality Training
Time
(Seconds)

Average
Training Score

Score
StDev

BackwardDifference 81 9.445193 0.961925 0.002291
BinaryEncoder 13 9.234833 0.962050 0.002472
HashingEncoder 8 20.524086 0.918650 0.002197
HelmertEncoder 81 9.418384 0.962100 0.002359
OnehotEncoder 84 8.884236 0.961950 0.002361
OrdinalEncoder 3 8.443738 0.961950 0.002513
SumEncoder 81 9.405340 0.961975 0.002560
PolynomialEncoder 81 9.642599 0.962000 0.002327
BaseNEncoder 13 10.734352 0.961925 0.002342
LeaveOneOutEncoder 3 8.746265 0.962150 0.002444

In Table 2, dimensionality shows the number of new features inserted by encoding algorithm
in each instance during encoding of three symbolic features. Average Training scores show the
training accuracy of selected Random-Forest classifier while using a particular encoding
scheme. Based on the performance of encoders, we chose LeaveOneOutEncoding proposed by
[26].
In general, learning algorithms benefit from standardization of the Dataset. Since different
feature vectors of NSLKDD Dataset contained different numerical ranges, we applied scaling
to convert raw feature vectors into more standardize representation for DCNN. As Datasets
contained both normal and anomalous traffic, to avoid the negative influence of sample mean
and variance, we used median and interquartile range (IQR) to scale the data for better results.
We removed the median and scaled the data according to IQR.

DCNNs accept input in form of images. Each NSLKDD training record from Training
Dataset is shaped as 32x32 greyscale image. At first, the idea of converting a 41 feature input
to a 32x32 2D array seems absurd but this approach has its merits. Arranging input features as
2D array helps to discover localized features which repeat themselves all over the input.
DCNNs differ from other classifiers as their weights are shared among all locations of the
input preserving spatial locality. The latent representations generated by DCNN for
classification are more sensitive to transitive relationships of features and help DCNNs to
learn high level relationships between global features which would otherwise be ignored by
other classifiers. As DCNNs can use GPUs for training, the training time of network with 2D
input is not that different from a classical SVM or K-NN classifier. The evidence of
abovementioned fact is presented in results section where training and testing times of
classifiers are discussed.

For converting network Dataset to corresponding image dataset, our first goal is to
create a mapping 𝐹𝐹:Φ → 𝐼𝐼, where 𝐼𝐼 represents image Dataset corresponding to Φ 𝑎𝑎𝑎𝑎𝑑𝑑
Φ = {𝜙𝜙𝑛𝑛}𝑛𝑛=1𝑁𝑁 is the preprocessed network flow Dataset. To achieve image representation 𝐼𝐼
corresponding to each training instance, vector v1 of length 41 is generated from the

5164 Naseer et al.: Network Intrusion Detection using deep CNN

preprocessed entries of dataset features and replicated 3 times to generate a corresponding
vector of 123 features which is converted to a vector �̅�𝑣 of 128 after concatenating first 5
features. For each training/testing instance, �̅�𝑣 is replicated to generate corresponding 32x32
greyscale representation. After transforming Φ → 𝐼𝐼, the label data was preprocessed according
to two-class structure. The result of label transformation is represented by 𝑦𝑦 = { 𝑦𝑦𝑛𝑛 ∈ {0,1}𝑀𝑀}
where M denotes the total number of classes. The entry of vector 𝑦𝑦𝑛𝑛is zero if corresponding
image belongs to normal traffic and 1 otherwise. Both Test Datasets NSLKDDTest+ and
NSLKDDTest21 were also subjected to same preprocessing.

3.2 Model Architecture
Proposed IDS approach uses a DCNN with an input layer, 3 pairs of conv-subsample layers, 3
fully connected layers and an output layer with one sigmoid unit. The input plane receives
preprocessed NSLKDD training dataset records in the form of 32x32 greyscale images as
described earlier.

Fig. 1. Architecture of Proposed Deep Convolutional Neural Network (DCNN) for Intrusion Detection

With local receptive fields, earlier layer neurons can extract elementary features which are
combined by subsequent CNN layers to form higher-order features. DCNN used in our study
is inspired by LeNet-5 [31] but contains heavy modifications in form of hyper-parameter
selection and regularization. Modifications include different input shape, different
convolution kernels at each convolution layer, different activation and objective functions and
a dropout layer to minimize overfitting. Each layer consists of trainable parameters and nodes
as described in Table 3. We use LeNet-5 nomenclature to name layers of DCNN for
description purpose where convolution layers are labeled as Cx, subsampling layers as Sx,
dropout layers as Dx and Fully connected layers FCx.

Table 3. Parameters for Individual layers of CNN used for Intrusion Detection

Layer Name : Function Output
Shape

Trainable Parameters
(Weights)

C1: Convolution layer with 3x3 kernels and 16 feature maps 16, (32,32) ((2*2)+ 1)*16 = 80
S2: Subsampling layer with 2x2 non-overlapping kernel 16, (16,16) 0 (Sub-sampling)
C3: Convolution layer with 3x3 kernels and 64 feature maps 32, (16,16) (((2x2)*16)+1)*32 =2080
S4: Subsampling layer with 2x2 non-overlapping kernel 32, (8,8) 0 (Sub-sampling)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5165

C5: Convolution layer with 3x3 kernels and 64 feature maps 64, (8,8) (((2x2)*32)+1)*64 =8256
S6: Subsampling layer with 2x2 non-overlapping kernel 64, (4,4) 0 (Sub-sampling)
Model Flattening 1024,1 Not Applicable
D1: Dropout layer with 0.5 drop probability Dropout Layer
FC7: Fully connected layer 128 ,1 (1024 +1)*128=131200
FC8: Fully connected layer 16 ,1 (128 +1)*16=2064
Output: Fully connected layer 1 (16 +1) *1=17

Input is shaped as 32x32 greyscale image. Layer C1 contains 16 feature maps where each
feature map is connected to a 2x2 neighborhood region of input image. All convolution layers
of DCNN use zero-padding for alignment of input-output shapes. S2 is a subsampling layer
with 16 feature maps of size 32x32 and each feature map is connected to a 2x2
non-overlapping region in corresponding feature map is C1 which results in 16 feature maps of
32x32. Layer C3 is convolutional layer containing 32 feature maps and each feature map of C3
corresponds to outputs of a different kernel function operating at several 2x2x16 regions of S2
layer. Layer S4 is a sub-sampling layer of 32 3x3 feature maps and each feature map is
connected to a 2x2 non-overlapping region in C3. Layer C5 performs convolution over the
output of S4 to generate 64 feature maps. The model is flattened to generate first fully
connected layer of 1024 units as shown in Fig. 1. A dropout layer D1 is placed between
flattened model and first fully connected layer FC7. Layer D1 is a regularization layer using
drop out regularization introduced by Srivastav et al [32]. D1 regularization layer randomly
drop units from the DCNN along with their weights during training time. This has the effect of
training an ensemble of neural networks were each member of ensemble is a subset of original
neural network. At test time, it is easy to approximate predictions of all ‘thinned’ subsets by
simply using an un-thinned original network with smaller weights. The last two layers are
fully connected layers. FC8 is a traditional multilevel perceptron layer. In fully connected
layers every neuron in the previous layer is connected to every neuron of next layer. The
output from convolution and sub-sampling layers extract deep features of the input image and
fully connected layers use these features for classifying input image. Output layer is a binary
classification layer with single sigmoid neuron unit who’s on-off state provide class
information of input NSLKDD image instance.

3.2 Hyper-Parameter Selection
In process of deep learning, hyper parameters include such ‘higher-level’ properties of the
model which cannot be learned from training set but have profound impact on learning
capacity and accuracy of the model. Some hyper-parameters include learning rate of model,
non-linearity, choice of objective function, regularization, parameter update method
(optimizer), initial weight initializations, mini-batch size of input and number of training
epochs to name a few. A learning algorithm 𝒜𝒜 maps 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛from 𝐺𝐺𝑥𝑥 to 𝑓𝑓 through optimization
of hyper-parameters 𝜆𝜆. The problem of determining good values for 𝜆𝜆 is called
Hyper-parameter optimization.

𝜆𝜆(∗) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜆𝜆∈∧ℰ~ 𝐺𝐺𝑥𝑥 [ℒ(𝑥𝑥;𝒜𝒜𝜆𝜆(𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛))]

In general it is difficult to perform optimization implied by above-mentioned equation. With
respect to expectation over 𝐺𝐺𝑥𝑥 , the technique of replacing expectation with mean over
validation set 𝑋𝑋𝑣𝑣𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣 whose elements are drawn I.I.Ds , where 𝑥𝑥 ~ 𝐺𝐺𝑥𝑥 is used, is called
cross-validation. The hyper-parameter problem in general is addressed by following
equations.

5166 Naseer et al.: Network Intrusion Detection using deep CNN

𝜆𝜆(∗) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜆𝜆∈∧𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥∈𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 �ℒ �𝑥𝑥;𝒜𝒜𝜆𝜆(𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛)��
= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜆𝜆∈∧ Ψλ

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜆𝜆∈ 𝜆𝜆(1),…,𝜆𝜆(𝑆𝑆) ≈ �̂�𝜆

Knowing little about hyper-parameter response surface Ψ or search space ∧, the dominant
strategy is to choose some number (S) of trial points 𝜆𝜆(1), … , 𝜆𝜆(𝑆𝑆), to evaluate Ψ(𝜆𝜆) for each one,
and return the Hyper-parameter set 𝜆𝜆 that produced best results as �̂�𝜆 . Commonly used
strategies for hyper-parameter optimization are grid-search and manual search, but their
effectiveness is limited. Grid search forms the set of trials by assembling every possible
combination of hyper-parameter values which results in exponential increase in trials and
require enormous computing resources. Manual search, on the other hand, suffers the
draw-back of difficulty in reproducing results.
Bergstra and Bengio [33] purposed Random-Search strategy for choosing trial-set
(𝜆𝜆(1), … , 𝜆𝜆(𝑆𝑆)). As the uncertainty arising from 𝑋𝑋𝑣𝑣𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣 being a sample from 𝐺𝐺𝑥𝑥 makes the test-set
score of best model among 𝜆𝜆(1), … , 𝜆𝜆(𝑆𝑆) a random variable 𝑧𝑧, this 𝑧𝑧 is modeled by a Gaussian
mixture model whose S components have means 𝜇𝜇𝑠𝑠 = Ψ(𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡)(𝜆𝜆(𝑠𝑠)) , variance 𝜎𝜎𝑠𝑠2 =
 𝒱𝒱(𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡)�𝜆𝜆(𝑠𝑠)� and weights 𝑊𝑊𝑠𝑠. The performance z of best model in an experiment of S trials
has mean 𝜇𝜇𝑧𝑧 and standard error 𝜎𝜎𝑧𝑧2 given by following equations:

𝜇𝜇𝑧𝑧 = Σ𝑠𝑠=1𝑆𝑆 𝜔𝜔𝑠𝑠𝜇𝜇𝑠𝑠 and

𝜎𝜎𝑧𝑧2 = Σ𝑠𝑠=1𝑆𝑆 𝜔𝜔𝑠𝑠 (𝜇𝜇𝑠𝑠2 + 𝜎𝜎𝑠𝑠2) − 𝜇𝜇𝑧𝑧2

The weights 𝜔𝜔𝑠𝑠 can be estimated by drawing validation scores Z(s) from general normal
distribution with means Ψ(𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡)(𝜆𝜆(𝑠𝑠)) and variance 𝒱𝒱(𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡)�𝜆𝜆(𝑠𝑠)� and counting how often
trial generates a winning score. According to [33] validation scores are typically relatively
close and few tens of hypothetical draws are sufficient. As compared to Grid-Search,
Random-search strategy make efficient use of limited computational budget to find better
model parameters by performing effective search over otherwise large configuration space.
We employed Random-search strategy for hyper-parameter optimization and implementation
details and results of hyper-parameter tuning are provided in implementation section.

4. Implementation
This section describes the experiment setup, implementation details and hyper-parameters
fine-tuning process of the model described in Fig. 1.

4.1 Experimental Setup
Hardware setup used for implementing proposed model included:

• CPU : Intel Xeon E-1650 Quad Core
• RAM : 16 GB
• GPU : nVidia GTX 1070 with 1920 CUDA cores and cuda 8.0

Software toolchain used to implement the model consist of IPython development environment
using Keras 2.0 on Theano [34] backend and nVidia cuda 8.0 [35] Training and testing data is
manipulated in form of numpy arrays. Python Sci-kit learn library is used to implement other
classifiers for comparisons.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5167

4.2 Hyper-Parameter Optimization
For Hyper-parameter optimization of proposed IDS, randomized search approach devised by
Bergstra et al. [33] is employed. Randomized search approach efficiently uses limited
computational budget to find better model parameters by performing effective search over
otherwise large configuration space. Table 4 provides top 5 models and their
hyper-parameters along with accuracy on Training Dataset selected by randomized search
algorithm.

Table 4. Hyper-parameters of Top five models selected by RandomizedSearch Algorithm

Sr
Activation Kernel_init Bias Optimiz

er Batch Epoch Learn
rate

Loss
Function

Train
Accuracy

1 Softsign He_normal Yes Adadelta 64 15 0.1 L2 Loss 0.9845

2 softsign glorot_normal Yes Adadelta 128 10 0.1 Binary
Crossentropy 0.9823

3 softsign Lecun_uniform Yes Adam 256 15 0.01 L2 Loss 0.9766
4 relu glorot_uniform No Adamax 128 10 0.01 L2 Loss 0.9712
5 tanh glorot_normal Yes Adam 128 10 0.05 MSE 0.9626

The selected hyper-parameters include softsign activation, He_normal kernel initialization,
Adadelta optimizer with batch size of 64 instances. Although learning rate of 0.1 was part of
configuration space, Adadelta does not require learning rate. Additional hyper-parameters of
proposed model included output layer of single sigmoid unit, drop-out rate of 0.5 and
zero-padding at each convolution layer input. A brief introduction of selected
hyper-parameters is as follows:
Softsign.
Softsign is a non-linearity which is considered an alternative to tanh because of its resistance
to saturation as compared to hard-clipped functions because of its smoother asymptotes.
Softsign is represented by following equation:

𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 (𝑥𝑥) =
𝑥𝑥

1 + |𝑥𝑥|

He_Normal.
He_normal is a kernel initialization scheme proposed by [36] which is built on the work of
[37], and allows for faster convergence of deeper CNNs. In forward propagation case, the
central idea of He_normal is to investigate the variance of the responses in each layer and
design initialization in a way that should avoid reducing or magnifying the magnitudes of
input signals exponentially. This is achieved by drawing initializations from a zero-mean

normal distribution whose standard distribution is �2
𝑛𝑛𝑣𝑣

. For 𝐿𝐿 layers put together, the

initialization design must assure that variance of response of Lth layer conforms to following
equation:

𝑉𝑉𝑎𝑎𝑎𝑎[𝑦𝑦𝐿𝐿] = 𝑉𝑉𝑎𝑎𝑎𝑎[𝑦𝑦1]. �Π𝑣𝑣=2𝐿𝐿 1
2
𝑎𝑎1𝑉𝑉𝑎𝑎𝑎𝑎[𝑤𝑤𝑣𝑣]�

The above product is expected to take a proper scalar (e.g. 1). As described by [36], a
sufficient condition is given as follows:

1
2
𝑎𝑎𝑣𝑣 𝑉𝑉𝑎𝑎𝑎𝑎[𝑤𝑤𝑣𝑣] = 1 ∀𝑙𝑙 ∈ 𝐿𝐿

5168 Naseer et al.: Network Intrusion Detection using deep CNN

Fulfilling abovementioned condition enables kernel initializations which provide many
desirable properties for training deep CNNs.

Adadelta.
Adadelta is parameter update mechanism proposed by [38] which provides per-dimension
learning rate method for gradient descent. According to [38], Adadelta dynamically adapts
over time using only first order information and produces minimal computational overhead
without requiring manual tuning of learning rate and shows robustness to noisy gradient
information, various data modalities, different model architectures and selection of
hyper-parameters. Adadelta is represented by following equation:

Δ𝑥𝑥𝑡𝑡 = −
𝑅𝑅𝑅𝑅𝑆𝑆[Δ𝑥𝑥]𝑡𝑡−1
𝑅𝑅𝑅𝑅𝑆𝑆[𝑎𝑎]𝑡𝑡

where Δ𝑥𝑥𝑡𝑡 is parameter update at time t, and 𝑅𝑅𝑅𝑅𝑆𝑆[𝑎𝑎]𝑡𝑡 is exponentially decaying average of
RMS at t.

L2 Loss:
L2 loss is an objective/loss function which is minimized by updating weights through
back-propagation. It is defined as the mean of absolute squared differences between true labels
and predicted labels of classifier. L2 Loss is computed by taking the average of all squared
differences as shown below.
 𝐿𝐿(𝑤𝑤) = 𝐸𝐸||𝑦𝑦 − 𝑦𝑦�|| 2

where 𝑦𝑦 represents actual labels, 𝑦𝑦� represents predictions of classifier and 𝐸𝐸 represents
expectation. L2 Loss has the intuitive interpretation of heavily penalizing peaky weight
vectors and preferring diffuse weight vectors, hence encouraging the network to use all of its
inputs a little rather that some of its inputs a lot.

4.3 Classifier implementations for comparison
For comparisons, we used Sci-kit learn [39] implementations of eleven Binary classifiers and
trained them on un-raveld version of Training Datasets. These classifiers included Extreme
Learning Machine [10] with three different hidden layers namely MLP layer, RBF layer and
Generalized layer [40], RBF SVM, k-NN with 08 neighbors, Decision Tree (J48) with 5 node
depth, Naïve Bayes, Random-Forest with 10 J48 estimators, Quadratic Discriminant Analysis
and Mulitlevel perceptron classifiers. Important hyper-parameters for these shallow models
are presented in Table 5.

5. Experimental Results and Evaluations
This section presents the results of the model and relevant comparisons with state of art. As
mentioned earlier, to the best of our knowledge, DCNNs have not been used for intrusion
detection problem so we implemented and trained other classifiers mentioned in previous
section with same training and testing Dataset. Performance comparisons with IDS proposed
in literatures are also provided.
For classification, accuracy is considered a harsh metric so other prominent metrics for quality
of binary classification including Receiver Operating Characteristic (ROC), Area under Curve
(AuC), Precision-Recall Curve and mean Average Precision (mAP) is provided. These

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5169

evaluation metrics are calculated using confusion matrix which presents four measures as
follows:

• True Positive: if an anomaly is classified by model as an anomaly, result is accepted as
TP

• False Positive: if a normal instance is classified by model as an anomaly, result is
accepted as FP

• True Negative : if an anomaly is classified by model as normal instance, result is
accepted as TN

• False Negative: if a normal instance is classified by model as normal instance, result is
accepted as FN

Accuracy. Accuracy is defined as ratio of the number of correctly classified anomalous and
normal instances to total number of all instances.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝐴𝐴𝑦𝑦 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

(𝑇𝑇𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑁𝑁𝑠𝑠𝐴𝐴𝑎𝑎𝑡𝑡 + 𝐴𝐴𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑙𝑙𝑠𝑠𝐴𝐴𝑠𝑠𝑁𝑁𝑠𝑠𝐴𝐴𝑎𝑎𝑡𝑡)

True positive Rate (TPR): TPR is also called sensitivity or recall and it is defined as TP/
(TP+FN). This metric corresponds to the proportion of positive data points that are correctly
considered as positive, with respect to all positive data points.

False Positive Rate (FPR): FPR is defined as FP/ (FP+TN). This corresponds to the
proportion of negative data points that are mistakenly considered as positive, with respect to
all negative data points. Both FPR and TPR are used to calculate ROC curve and Area under
ROC curve.
Results of all previously mentioned classifiers are taken on both NSLKDDTest+ and
NSLKDDTest21 datasets and comparison is provided thereof.

Table 5. Important parameters for other Binary classifiers used for comparison

Classifier Hyper-Parameters
Decision Tree Max Depth=5 , Split Quality Measure = ‘gini’, Max features

considered for each best split = 8
Random Forest Max Depth =5, No. of Estimators = 10, Split Quality Measure =

‘gini’, Max features considered for each best split = 5
QDA Priors=None, Regularization Parameter = 0.01, Rank Estimation

Threshold = 0.0001
Multilevel
Perceptron

Hidden layer Units = 100, Activation = relu, Solver = Adam, L2
Penalty = 0.01, Learning rate = 0.001, epochs = 200

Nearest
Neighbor

Neighbors = 8, Algorithm = Ball Tree, Leaf size = 30, Distance
Metric = Minkowiski

RBF SVM Kernel = RBF, Gamma = 1/41, epochs = 2000, Length scale =1,
Length scale bounds = (1e-5, 1e5)

Naïve Bays Default scikit-learn parameters
ELM MLP Hidden Layer Units = 512, activation=Tanh, Hidden Layer= MLP,

epochs = 100
ELM RBF Hidden Layer Units = 512, activation=Tanh, Hidden Layer= RBF,

epochs = 100
ELM
Generalized

Hidden Layer Units = 512, activation=grbf, epochs = 100 , Creates a
random layer of radial basis function units proposed by Navarro et
al.[40]

5170 Naseer et al.: Network Intrusion Detection using deep CNN

5.1 Receiver Operating Characteristics (ROC) Curve
RoC is a plot of False positive rate (FPR) against True positive rate (TPR) of binary classifiers
which shows a trade-off between sensitivity and specificity of classifier. The closer the RoC
curve is to top-left border, the better the quality of predictions by the classifier. RoC curves of
implemented classifiers for both NSLKDDTest+ and NSLKDDTest21 dataset are shown in
Fig. 2 and Fig. 3 respectively.

Fig. 2. Comparison of Receiver Operating Characteristics of various classifiers on NSLKDDTest+

Dataset (Top left Bold line shows the results of proposed DCNN based IDS)

Fig. 3. Comparison of Receiver Operating Characteristics of various classifiers on NSLKDDTest21

Dataset (Top-left Bold line shows the results of proposed DCNN based IDS)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5171

In Fig. 2, closest graph to top left border is that of DCNN model followed by Random-Forest
and SVM with Radial Basis kernel which shows superior performance of proposed approach
in comparison with remaining classifiers to make quality predictions.
Proposed DCNN model again outperforms other classifiers in Fig. 3 which show the RoC
curves of algorithms for NSLKDDTest21 dataset. Best RoC ratio is that of proposed DCNN
model followed respectively by SVM with RBFKernel and k-NN classifier.

5.2 Area under ROC Curve (AuC)
Area under RoC Curve (AuC) is a measure of how well a binary classifier can predict labels
(i.e Anamolous and Normal traffic). The AuC of a classifier is equal to the probability that the
classifier will rank a randomly chosen positive (Anomalous) record higher than a randomly
chosen negative (Normal) one. A perfect binary classifier has AuC =1 and any value of AuC <
0.5 shows bad performance of classifier. A larger AuC is usually better. Value greater than
0.80, 0.90 and 0.95 is deemed good, very good and excellent respectively. The AuC values for
both NSLKDDTest+ and NSLKDDTest21 datasets are shown in legends part of Fig. 2 and Fig.
3. Top 5 AuC scores for both test datasets are shown in Table 6 which depicts the
improvement of DCNN based IDS.

Table 6. Top 5 Area under RoC Curve results among implemented Classifiers for NSLKDDTest+ and

NSLKDDTest21 Datasets

Classifier Name AuC for
NSLKDDTest+

Classifier Name AuC for
NSLKDDTest21

DCNN 0.965 DCNN 0.926
Random-Forest 0.958 RBF SVM 0.867
RBF SVM 0.920 k-NN 0.825
Decision Tree 0.915 ELM Generalized 0.807
MLP 0.887 ELM RBF 0.803

5.3 Accuracy
Accuracy results of implemented classifiers are shown in Fig. 4. As shown in figure, DCNN
based IDS retains top accuracy for both NSLKDDTest+ and NSLKDDTest21 datasets.
Proposed DCNN showed accuracy of 85.22% for NSLKDDTest+ and 69.59% for
NSLKDDTest21 respectively. The sharp difference in Accuracies between NSLKDDTest+
and NSLKDDTest21 in all models is due to the fact that NSLKDDTest21 contains records for
attack types not available in other NSLKDD train and test Datasets. These attack types include
processtable, mscan, snmpguess, snmpgetattack, saint, apache2, httptunnel, back and
mailbomb. This means that trained models have never seen these attacks during training as
they were not available in training data.

5172 Naseer et al.: Network Intrusion Detection using deep CNN

Fig. 4. Comparison of Classification Accuracy of Algorithms for NSLKDDTest+ and NSLKDDTest21

Datasets

Comparison of DCNN based IDS with Accuracy results reported in literature is shown in
Table 7 while Table 8 shows the hyper parameters of DNN based models of Intrusion
Detection from Lieterature.

Table 7. Comparison with reported accuracies from literature

Classifier Test+ (%) Test21 (%) Classifier Test+ (%) Test21 (%)
DCNN(Proposed) 85.22 69.56 Random Tree [16] 82.02 66.16
J48 [16] 81.05 63.97
Naïve Bays [16] 76.56 55.77 NNRw1 [22] 82.41 67.06
Random Forest[16] 80.67 63.25 NNRw2 [22] 84.12 68.82
MLP [16] 77.41 57.34 Deep Autoencoder

(AE) [25]
83.34 Not

Reported
SVM [16] 69.52 42.29 Denoising AE [41] 88.65 Not

Reported

Table 8. Hyper-Parameters of DNN based models from Literature

Model Parameters
NNRw1[22] Fuzziness methodology, Uniform distribution for

weight and biases, Init Interval= [0, 𝜃𝜃]
NNRw2[22] Clustering for flag and services feature, Fuzziness

methodology, Uniform distribution for weight and
biases, Init Interval= [0, 𝜃𝜃]

Deep Autoencoder[25] Reduced Boltzmann Machines with 10
Bernaulli-Gaussian unit for bottleneck layer,
Layer-wise pre-training, Loss Function = Binary
Crossentropy, Epochs 1500, K-NN Classification
layer

De-noising Autoencoder [41] Hidden layer units = 30, Noise Rate = 10%

5.4 Precision-Recall Curve and Mean Average Precision
Precision is a measure of relevancy of results, while recall is a measure of how many truly
relevant results are returned. High precision relates to a low false positive rate, and high recall

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5173

relates to a low false negative rate. High scores for both show that the classifier is returning
accurate results (high precision), as well as returning a majority of all positive results (high
recall). Each classifier exhibits a trade-off between precision and recall. Due to the fact that
individually both Precision and Recall provide only a puzzel piece of classifier performance,
they are combined to form Precision-Recall curve which presents relationship between them
in more meaningful manner. The relationship between recall and precision can be observed in
the stairstep area of Precision-Recall curve - at the edges of these steps a small change in the
threshold considerably reduces precision, with only a minor gain in recall.

Fig. 5. Precision-Recall Curve of IDS classifiers for NSLKDDTest+ Dataset (Top-right to left bold line

shows the curve for proposed Deep convolution neural network for intrusion detection)

Fig. 6. Precision-Recall Curve of IDS classifiers for NSLKDDTest21 Dataset (Top-right to left bold

line shows the curve for proposed DCNN for IDS)

Perfect precision-recall curve (PRC) shows combination of lines from top-left corner to
top-right corner and further down in precision-recall space. This means that a classifier
showing abovementioned pattern of PRC maintain a high recall rate as well as high precision
rate on different thresoholds. Fig. 5 shows precision-recall curves of classifiers for

5174 Naseer et al.: Network Intrusion Detection using deep CNN

NSLKDDTest+ dataset and mean Average Precision (mAP) which is shown as area under
precision-recall curve in legends section of Fig. 5. Fig. 6 shows the same for NSLKDDTest21
dataset. As depicted in figures, PRC of proposed DCNN maintained both higher sensitivity
and higher precision on different thresholds of the stairstep. This result is also supported by
highest scores of Area under PRC achieved by DCNN which are 0.97 and 0.98 for
NSLKDDTest+ and NSLKDDTest21 respectively.Top 5 mAPs (Area under Precison-Recall
curve) are shown in Table 8.

Table 9. Top 5 mean Average Precision values (mAP) among implemented Classifiers for
NSLKDDTest+ and NSLKDDTest21 Datasets (mAP is also known as Area under Precision-Recall

Curve)

Classifier Name mAP for
NSLKDDTest+

Classifier
Name

mAP for
NSLKDDTest21

Proposed DCNN 0.97 Proposed
DCNN

0.98

Random Forest 0.96 RBF SVM 0.94
Decision Tree 0.92 ELM RBF 0.93
k-NN 0.90 ELM Gen 0.93
RBF SVM 0.89 Random Forest 0.93

5.4 Timing for Model Training and Evaluation
In this sub-section, we provide the training and testing time of algorithms used in this study.

Fig. 7. Training Time in seconds for Different algorithms used in experiments

For DCNN, GPU is used as training and testing device while remaining classification
algorithms were trained and tested using CPU. SVM with RBF kernel proved to be the most
expensive algorithm for training the model and took approximately 314 seconds. Proposed
DCNN model was trained for 20 epochs using GPU in 139 seconds. Remaining algorithms
took each under 100 seconds for training. Training times of classification algorithms used in
this study are shown in Fig. 7.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5175

Fig. 8. Test Time for Different algorithms used in experiments for both NSLKDDTest+ and

NSLKDDTest21 Datasets

For evaluation of test Datasets, k-NN proved to be the most expensive algorithm and took
approximately 8 and 4 seconds for NSLKDDTest+ and NSLKDDTest21 datasets respectively.
DCNN took 1.39 and 0.71 seconds for evaluating above-mentioned test Datasets. The fastest
evaluation was performed by Decision Tree algorithm, which took 5 and 3 milliseconds for
evaluating test datasets. Evaluation times for classification algorithms used in this study are
shown in Fig. 8.

From the results and comparisons shown in figures, it can be inferred that DCNNs show
promise as new technology for information security in general and for intrusion detection in
particular. Proposed model showed better or comparable results with already established
techniques and methods for anomaly detection.

6. Conclusion
In this paper, we proposed, implemented and analyzed a deep convolutional neural network
(DCNN) based intrusion detection system (IDS). Proposed DCNN model was trained using
GPU on NSLKDD training dataset and evaluation of the same was performed on
NSLKDDTest+ and NSLKDDTest21 datasets. Performance of DCNN was compared with
results from literature and other classification algorithms using well-known metrics including
Receiver operating characteristics (RoC) curve, Area under RoC curve (AuRoC), Accuracy,
precision-recall-curve and mean Average precision. Proposed model achieved classification
accuracy of 85.22 % and 69.56% for NSLKDDTest+ and NSLKDDTest21 respectively.
Results showed that like other application domains, DCNNs are a promising technology for
information security applications. Our future research will be directed towards investigating
DCNNs and other deep neural network architectures as feature engineering constructs from
raw network data and comparing quality of extracted deep network features with conventional
network traffic features for information security applications.

5176 Naseer et al.: Network Intrusion Detection using deep CNN

References
[1] D. E. Denning, “An intrusion-detection model,” IEEE Trans. Softw. Eng., no. 2, pp. 222–232, 1987.

Article (CrossRef Link)
[2] M. Luo, L. Wang, H. Zhang, and J. Chen, “A Research on Intrusion Detection Based on

Unsupervised Clustering and Support Vector Machine,” in Proc. of Information and
Communications Security: 5th International Conference, ICICS 2003, Huhehaote, China, October
10-13, 2003. Proceedings, S. Qing, D. Gollmann, and J. Zhou, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 325–336, 2003. Article (CrossRef Link)

[3] X. Zhu and A. B. Goldberg, “Introduction to Semi-Supervised Learning,” Synth. Lect. Artif. Intell.
Mach. Learn., vol. 3, no. 1, pp. 1–130, Jan. 2009. Article (CrossRef Link)

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
Article (CrossRef Link)

[5] M. Minsky and S. Papert, “Perceptrons.,” 1969.
[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” Advances in neural information processing systems, pp. 1097–1105, 2012.
Article (CrossRef Link)

[7] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis.
IJCV, vol. 115, no. 3, pp. 211–252, 2015. Article (CrossRef Link)

[8] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A Detailed Analysis of the KDD CUP 99
Data Set,” in Proc. of the Second IEEE International Conference on Computational Intelligence for
Security and Defense Applications, Piscataway, NJ, USA, pp. 53–58, 2009. Article (CrossRef Link)

[9] S. D. Bay, D. F. Kibler, M. J. Pazzani, and P. Smyth, “The UCI KDD Archive of Large Data Sets for
Data Mining Research and Experimentation,” SIGKDD Explor., vol. 2, p. 81, 2000.
Article (CrossRef Link)

[10] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and applications,”
Neurocomputing, vol. 70, no. 1–3, pp. 489–501, Dec. 2006. Article (CrossRef Link)

[11] Y. Liao and V. R. Vemuri, “Use of K-Nearest Neighbor classifier for intrusion detection,” Comput.
Secur., vol. 21, no. 5, pp. 439–448, Oct. 2002. Article (CrossRef Link)

[12] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neural networks and support
vector machines,”, pp. 1702–1707, 2002. Article (CrossRef Link)

[13] W. L. Al-Yaseen, Z. A. Othman, and M. Z. A. Nazri, “Multi-level hybrid support vector machine
and extreme learning machine based on modified K-means for intrusion detection system,” Expert
Syst. Appl., vol. 67, pp. 296–303, Jan. 2017. Article (CrossRef Link)

[14] D. K. Bhattacharyya and J. K. Kalita, Network anomaly detection: A machine learning perspective.
CRC Press, 2013.

[15] A. A. Ghorbani, W. Lu, and M. Tavallaee, "Network Intrusion Detection and Prevention," Boston,
MA: Springer US, vol. 47., 2010. Article (CrossRef Link)

[16] M. Tavallaee, “An adaptive hybrid intrusion detection system,” University of New Brunswick,
2011. Article (CrossRef Link)

[17] A. Solanas and A. Martínez-Ballesté, "Advances in artificial intelligence for privacy protection
and security," Hackensack, N.J.: World Scientific, ISBN: 978-981-4472-03-6, 2010.

[18] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning Intrusion Detection: Supervised or
Unsupervised?,” in Proc. of Image Analysis and Processing – ICIAP 2005: 13th International
Conference, Cagliari, Italy, September 6-8, 2005. Proceedings, F. Roli and S. Vitulano, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 50–57, 2005. Article (CrossRef Link)

[19] O. E. David and N. S. Netanyahu, “Deepsign: Deep learning for automatic malware signature
generation and classification,” in Proc. of 2015 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8, 2015. Article (CrossRef Link)

[20] N. Gao, L. Gao, Q. Gao, and H. Wang, “An Intrusion Detection Model Based on Deep Belief
Networks,” pp. 247–252, 2014. Article (CrossRef Link)

[21] Z. Wang, "The Applications of Deep Learning on Traffic Identification," blackhat 2015, 2015.
Article (CrossRef Link)

https://doi.org/10.1109/TSE.1987.232894
https://doi.org/10.1007/978-3-540-39927-8_30
https://doi.org/10.2200/S00196ED1V01Y200906AIM006
http://www.deeplearningbook.org/
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1145/380995.381030
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1109/IJCNN.2002.1007774
https://doi.org/10.1016/j.eswa.2016.09.041
https://doi.org/10.1007/978-0-387-88771-5
https://doi.org/10.1007/978-0-387-88771-5
http://www.unb.ca/cic/research/publications.html
https://doi.org/10.1007/11553595_6
https://doi.org/10.1109/IJCNN.2015.7280815
https://doi.org/10.1109/CBD.2014.41
http://docplayer.net/4041909-The-applications-of-deep-learning-on-traffic-identification.html

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5177

[22] R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H. Abbas, and Y.-L. He, “Fuzziness based
semi-supervised learning approach for intrusion detection system,” Inf. Sci., vol. 378, pp. 484–497,
Feb. 2017. Article (CrossRef Link)

[23] J. Kim, N. Shin, S. Y. Jo, and S. H. Kim, “Method of intrusion detection using deep neural
network,” in Proc. of Big Data and Smart Computing (BigComp), 2017 IEEE International
Conference on, pp. 313–316, 2017. Article (CrossRef Link)

[24] K. Alrawashdeh and C. Purdy, “Toward an Online Anomaly Intrusion Detection System Based on
Deep Learning,” in Proc. of Machine Learning and Applications (ICMLA), 2016 15th IEEE
International Conference on, pp. 195–200, 2016. Article (CrossRef Link)

[25] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula, “Autoencoder-based feature
learning for cyber security applications,” in Proc. of Neural Networks (IJCNN), 2017 International
Joint Conference on, pp. 3854–3861, 2017. Article (CrossRef Link)

[26] O. Zhang, “Strategies to encode categorical variables with many categories,” Feb-2017.
Article (CrossRef Link)

[27] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg, “Feature hashing for large
scale multitask learning,” in Proc. of Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 1113–1120, 2009. Article (CrossRef Link)

[28] Statistical Consulting Group, “Contrast Coding Systems for categorical variables,” Feb-2011.
[Online]. Article (CrossRef Link)

[29] W. Mcginnis, “Beyond One-Hot: an exploration of categorical variables,” Jul-2017.
Article (CrossRef Link)

[30] W. Mcginnis, “BaseN Encoding and Grid Search in categorical variables,” Jul-2017.
Article (CrossRef Link)

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. Article (CrossRef Link)

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple
Way to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958,
2014. Article (CrossRef Link)

[33] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” JMLR, p. 305,
2012. Article (CrossRef Link)

[34] Theano Development Team, “Theano: A Python framework for fast computation of mathematical
expressions,” ArXiv E-Prints, vol. abs/1605.02688, May 2016. Article (CrossRef Link)

[35] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel Programming with CUDA,”
Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008. Article (CrossRef Link)

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification,” in Proc. of Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015. Article (CrossRef Link)

[37] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proc. of Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pp. 249–256, 2010. Article (CrossRef Link)

[38] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” CoRR, vol. abs/1212.5701,
2012. Article (CrossRef Link)

[39] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp.
2825–2830, 2011. Article (CrossRef Link)

[40] F. Fernández-Navarro, C. Hervás-Martínez, J. Sánchez-Monedero, and P. A. Gutiérrez,
“MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis
function neural networks,” Neurocomputing, vol. 74, pp. 2502–2510, 2011.
Article (CrossRef Link)

[41] R. C. Aygun and A. G. Yavuz, “Network Anomaly Detection with Stochastically Improved
Autoencoder Based Models,” in Proc. of Proceedings of the International Conference on Cyber
Security and Cloud Computing, pp. 193–198, 2017. Article (CrossRef Link)

https://doi.org/10.1016/j.ins.2016.04.019
https://doi.org/10.1109/BIGCOMP.2017.7881684
https://doi.org/10.1109/ICMLA.2016.0040
https://doi.org/10.1109/IJCNN.2017.7966342
https://www.kaggle.com/c/caterpillar-tube-pricing/discussion/15748%23143154
https://doi.org/10.1145/1553374.1553516
https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
http://www.willmcginnis.com/2015/11/29/beyond-one-hot-an-exploration-of-categorical-variables/
http://www.willmcginnis.com/2016/12/18/basen-encoding-grid-search-category_encoders/
https://doi.org/10.1109/5.726791
https://www.cs.toronto.edu/%7Ehinton/absps/JMLRdropout.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://arxiv.org/abs/1605.02688
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1.1.207.2059
https://doi.org/10.1.1.423.4470
https://arxiv.org/abs/1201.0490
https://doi.org/10.1016/j.neucom.2010.11.032
https://doi.org/10.1109/CSCloud.2017.39

5178 Naseer et al.: Network Intrusion Detection using deep CNN

Dr. Yasir Saleem is currently serving as an Associate Professor in University of
Engineering and Technology (UET), Lahore, Pakistan. His research interests include
Computer Vision, Image Processing, Computer networks, Information/Network Security,
DSP, Power Electronics, Simulation and Control system. During his PhD, he did research
work for one semester under supervision of Prof. Dr. Zainal Salam in Renewable Energy and
Power Electronics Lab, Faculty of Electrical Engineering, UTM, Malaysia. He is an active
researcher and currently supervising postgraduate students at MS and PhD levels. He has
authored and co-authored journal and conference papers at national and international level in
fields of Electrical and Computer Science and Engineering.

Sheraz Naseer is currently working as an Assistant Professor in University of
Management and Technology (UMT), Lahore, Pakistan and PhD scholar at University of
Engineering & Technology, Lahore. He holds MS in information security along with
distinguished professional certifications of information Security including, CISSP, CoBit
and ITIL. He has more than 10 years of experience in Information security and IT. His
research interests include Cryptography, Data Driven Security, Intrusion Detection, Malware
Detection and application of deep neural networks for Information security.

