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Abstract 
 

Network Intrusion detection is a rapidly growing field of information security due to its 
importance for modern IT infrastructure. Many supervised and unsupervised learning 
techniques have been devised by researchers from discipline of machine learning and data 
mining to achieve reliable detection of anomalies. In this paper, a deep convolutional neural 
network (DCNN) based intrusion detection system (IDS) is proposed, implemented and 
analyzed. Deep CNN core of proposed IDS is fine-tuned using Randomized search over 
configuration space. Proposed system is trained and tested on NSLKDD training and testing 
datasets using GPU. Performance comparisons of proposed DCNN model are provided with 
other classifiers using well-known metrics including Receiver operating characteristics (RoC) 
curve, Area under RoC curve (AuC), accuracy, precision-recall curve and mean average 
precision (mAP). The experimental results of proposed DCNN based IDS shows promising 
results for real world application in anomaly detection systems. 
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1. Introduction 

Intrusion detection is the process of monitoring, identifying, analyzing and managing IT 
infrastructure events which can adversely impact the security of information systems. 
Efficient and effective Intrusion Detection systems are required by every organization because 
they assure the reliability of IT infrastructure of the organization and hence the undisrupted 
business operations. The mainstream of intrusion detection systems (IDS) rely on signature 
based approach but this method is unable to defend against zero-day attacks due to its reliance 
on presence of attack signatures for successful detection of attacks.  
Denning [1] introduced the idea of developing intrusion detection system by using Artificial 
Intelligence techniques on security events to identify abnormal usage patterns and intrusions. 
This idea introduced a new breed of intrusion detection systems (IDS) commonly known as 
anomaly detection systems which employ machine learning and Data mining approaches. 
These approaches primarily consist of supervised, unsupervised and semi-supervised learning 
to propose solutions for anomaly detection problem 
In supervised learning, intrusion detection is posed as a classification problem where detection 
model is trained using both normal and anomalous data. Unsupervised learning uses unlabeled 
or untagged data for learning tasks. Most popular unsupervised learning technique is 
clustering [2] in which the learning algorithm searches for similarities among instances of 
dataset to build group of instances called clusters. Semi-Supervised Learning (SSL) is a 
combination of supervised and unsupervised learning approaches. The SSL approach utilizes 
both labeled and unlabeled data [3] for learning.  
Deep Learning is an area of Machine Learning which has the objective of moving Machine 
Learning closer towards Artificial Intelligence [4] by using neuron like mathematical 
structures for learning tasks. Neural Networks have been around for five decades [5] and have 
been gaining and losing the favor of research community. The year 2012 marked the rise of 
Deep neural networks (DNNs) in computer vision when Alexnet [6] won the ImageNet 
classification challenge. Alexnet achieved top-1 and top-5 error rates of 37.5% and 17.0% on 
ImageNet Dataset [7] which were considerably better than the previous state-of-the-art. Since 
then DNNs have been successfully used in multiple disciplines which includes information 
security.  
Application of Deep Neural Networks for solution of Information security problems is 
relatively new area of research. The main contribution of this study is investigation of Deep 
Convolutional Neural Networks (DCNNs) for network anomaly detection problem. To the 
best of our knowledge, DCNNs have never been investigated for the aforementioned 
application. All experiments in this study are performed on NSLKDD dataset provided by [8]. 
NSLKDD was derived from KDDCUP99 [9] which was generated in 1999 from the 
DARPA98 network traffic. Tavallaee et al. [8] discovered some inherent shortcomings in the 
original KDDCUP99 dataset that would have adversely affected the performance of IDS 
trained and evaluated on the Dataset. A statistically enhanced version of dataset called 
NSLKDD was proposed by [8]  to counter discovered statistical problems. Some advantages 
of NSLKDD over KDDCUP99 dataset, as described by [8], include removal of redundant 
records from training dataset for reducing complexity and bias towards frequent records and 
introduction of non-duplicate records in testing datasets for unbiased evaluation.  
The NSLKDD dataset incorporates 41 input features as in original KDDCUP99 dataset and a 
class label. Features 1 to 9 represent the basic features which are extracted from TCP/IP 
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connection without inspecting the payload. Features 10 to 22 consist of contents features 
generated from payload of TCP segments of packets. Features 23 to 31 are extracted from time 
based traffic properties while features 32 to 41 contains host based traffic features that are 
designed to assess attack within interval longer than 2 seconds. A class label is provided with 
each record, which specifies the status of an instance either as normal or an attack. Original 
KDDCUP99 dataset listed different types of attacks shown in Table 1. 

Table 1. Attack Types in KDDCUP99 Dataset 

Denial of Service (DoS) User to Root (U2R) Remote to Local (R2L) Probing (Probe) 
Back Buffer Overflow FTP write IPSweep 
Land Load module Guess Password NMAP 
Neptune Perl IMAP Port Sweep 
Ping of Death Rootkit MultiHop Satan 
Smurf  Phf  
TearDrop   SPY  

  Warezclient  
  Warezmaster  

 
NSLKDD Dataset is available in four partitions. Two partitions namely NSLKDDTrain20p 
and NSLKDDtrain+ each containing 25,192 and 125,973 training records respectively are 
provide for training of models and remaining two partitions called NSLKDDTest+ and 
NSLKDDTest21 are used to evaluate the performance of trained models. Both 
NSLKDDTest+ and NSLKDDTest21 are comprised of 22,543 and 11,850 instances 
respectively. NSLKDDTest21 also contains records for attack types not available in other 
NSLKDD train and test Datasets. These attack types include processtable, mscan, snmpguess, 
snmpgetattack, saint, apache2, httptunnel, back and mailbomb. 
In this study, a DCNN is implemented for task of two-class supervised anomaly detection. 
Fine tuning and hyper-parameter optimization of proposed DCNN was performed using 
RandomizedGridSearch over configuration space. Classification metrics including accuracy, 
Area under ROC curve, mean average precision, and precision-recall scores were calculated 
for comparison of DCNN with well-known classification schemes including SVM, K-nearest 
neighbor, Decision-Tree, RandomForest, Quadratic Discriminant Analysis (QDA) and 
Extreme Learning machine (ELM) [10]. 
Rest of the article is divided into V sections. Section II highlights prominent works related to 
IDS problem. Section III provides the methodology and architectural design of the system. 
Section IV sheds light on implementation details including hardware setup and software 
tool-chain. In Section V, we present results of proposed deep CNN based IDS along with 
comparisons of results and timing information. This section is followed by section V and VI 
which describes the conclusion and references of research respectively. 

2. Related Work 
Many machine learning techniques including supervised, unsupervised and semi-supervised, 
have been proposed to enhance performance of anomaly detection. Supervised approaches 
such as k-nearest neighbor (KNN) [11], neural network (NN)[12], and support vector machine 
(SVM) have been extensively used to detect the intrusions [13]. A comprehensive repertoire of 
anomaly based intrusion detection systems is presented by bhattacharraya et al. in [14]. 
Ghorbani et al. [15] provided an inclusive review of supervised and unsupervised learning 
approaches for anomaly detection. Tavallee [16] compared the performance of the NSLKDD 
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dataset on different classifiers including naive bayes, SVM, and random forests etc. Solanas et 
al. [17] presented clustering algorithms for anomaly detection. Laskov et al [18] provided 
comparative analysis of supervised and unsupervised learning techniques with respect to their 
detection accuracy and ability to detect unknown attacks.  
Application of Deep Neural Networks for solution of Information security problems is 
relatively new area of research.  Although DCNNs have not been used for IDS, other DNN 
structures like Autoencoders (AE), Deep belief Networks (DBNs) and LSTM have been.  
David et al [19] employed a DBN to classify Malware samples. Gao et al. [20] proposed an 
IDS architecture based on DBNs using energy based reduced Boltzmann machines (RBMs) on 
KDDCup99 Dataset. Wang [21] proposed a deep network of stacked auto encoders (SAE) for 
network traffic identification. A semi-supervised learning based approach with Random 
weights based NN (NNRw) is used by Ashfaq et al. [22] to implement an IDS architecture 
using NSLKDD.  

It is relevant to mention that we encountered two approaches for evaluation of models in 
literature. In first approach, authors used training datasets for both training and testing of 
models using cross-validation mechanisms. The studies using this approach reported very high 
detection rates, e.g. Kim et al. [23] used a four layer DNN with 100 units for intrusion 
detection on KDD99 dataset and reported 99% accuracy. Similarly Alwardesh et al. [24] used 
a DNN model and reported 97.9% accuracy. We believe that this approach is flawed, as given 
sufficient training, classifiers can be over-fitted to achieve such high rates. The second 
approach is to train the model on training Dataset without ever exposing the test dataset to 
model during training and then test the model on testing dataset. We believe that 2nd approach 
is more useful and all models in this study were trained on NSLKDD training datasets 
(NSLKDDTrain20p and NSLKDDTrain+) and tested on NSLKDD test datasets 
(NSLKDDTest+ and NSLKDDTest21). This approach was also adopted by [16], [22] and 
[25]. 

3. Methodology 
This section describes the preprocessing of dataset, architecture of model and hyper-parameter 
selection method. 

3.1 Preprocessing 
A network flow,𝜙𝜙, is an ordered set of all packets 𝜋𝜋1, … ,𝜋𝜋𝑛𝑛 where 𝜋𝜋𝑖𝑖 = {𝑡𝑡𝑖𝑖 , 𝑆𝑆𝑖𝑖 ,𝐷𝐷𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑑𝑑𝑖𝑖 , 𝑝𝑝𝑖𝑖 , 𝑓𝑓𝑖𝑖} 
represents a packet such that: 

(1) ∀𝜋𝜋𝑖𝑖,𝜋𝜋𝑗𝑗 ∈ 𝜙𝜙,𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑗𝑗 
(2) ∀𝜋𝜋𝑖𝑖,𝜋𝜋𝑗𝑗 ∈ 𝜙𝜙, �𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑗𝑗,𝐷𝐷𝑖𝑖 = 𝐷𝐷𝑗𝑗, 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑗𝑗,𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑗𝑗� 𝑎𝑎𝑎𝑎𝑑𝑑 �𝑆𝑆𝑖𝑖 = 𝐷𝐷𝑗𝑗,𝑆𝑆𝑗𝑗 = 𝐷𝐷𝑖𝑖, 𝑠𝑠𝑖𝑖 = 𝑑𝑑𝑗𝑗, 𝑑𝑑𝑖𝑖 =

𝑠𝑠𝑗𝑗� 
(3) ∀𝜋𝜋𝑖𝑖≠𝑛𝑛 ∈ 𝜙𝜙(𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡𝑖𝑖+1)𝑎𝑎𝑎𝑎𝑑𝑑 (𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖 ≥ 𝛼𝛼) 

where 𝑡𝑡𝑖𝑖, 𝑆𝑆𝑖𝑖 ,𝐷𝐷𝑖𝑖 , 𝑠𝑠𝑖𝑖 ,𝑑𝑑𝑖𝑖 , 𝑝𝑝𝑖𝑖 , 𝑓𝑓𝑖𝑖 represents time-stamp, source IP address, destination IP address, 
source port, destination port, protocol and TCP flags respectively.  IDS problem in this study is 
treated as two-class problem where flows are either anomalous or normal. The training dataset 
is prepared by combining NSLKDDTrain20p and NSLKDDTrain+ which contains 151,165 
training instances. NSLKDD has 41 features like its predecessor KDDCUP99 and we have 
used all 41 features. Out of 41 features, 3 features ‘protocol_type’, ‘service’ and ’flag’ are 
symbolic features which needs to be converted to quantitative data before they can be used by 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018                              5163 

DCNN. Different techniques  [26] [27] [28] [29] [30] have been proposed in literature for 
encoding symbolic features to quantitative features. We studied the impact of different 
category encoding schemes on classification accuracy of NSLKDD dataset using a 
conventional classifier. For this purpose we chose Random-Forest algorithm due to its time 
efficiency. Impact of different encoding schemes on dimensionality of dataset and training 
time and accuracy of classifier are shown in Table 2. 

Table 2. Impact of Different Category encoders on Accuracy of NSLKDD training Dataset 

Encoding Scheme Dimensionality Training 
Time 
(Seconds) 

Average 
Training Score 

Score 
StDev 

BackwardDifference 81 9.445193   0.961925      0.002291    
BinaryEncoder 13 9.234833   0.962050      0.002472    
HashingEncoder 8 20.524086   0.918650      0.002197 
HelmertEncoder 81 9.418384   0.962100      0.002359    
OnehotEncoder 84 8.884236   0.961950      0.002361  
OrdinalEncoder 3 8.443738   0.961950      0.002513  
SumEncoder 81 9.405340   0.961975     0.002560    
PolynomialEncoder 81 9.642599   0.962000       0.002327   
BaseNEncoder 13 10.734352   0.961925      0.002342   
LeaveOneOutEncoder 3 8.746265   0.962150      0.002444            

 
In Table 2, dimensionality shows the number of new features inserted by encoding algorithm 
in each instance during encoding of three symbolic features. Average Training scores show the 
training accuracy of selected Random-Forest classifier while using a particular encoding 
scheme. Based on the performance of encoders, we chose LeaveOneOutEncoding proposed by 
[26].  
In general, learning algorithms benefit from standardization of the Dataset. Since different 
feature vectors of NSLKDD Dataset contained different numerical ranges, we applied scaling 
to convert raw feature vectors into more standardize representation for DCNN. As Datasets 
contained both normal and anomalous traffic, to avoid the negative influence of sample mean 
and variance, we used median and interquartile range (IQR) to scale the data for better results. 
We removed the median and scaled the data according to IQR.  

DCNNs accept input in form of images. Each NSLKDD training record from Training 
Dataset is shaped as 32x32 greyscale image. At first, the idea of converting a 41 feature input 
to a 32x32 2D array seems absurd but this approach has its merits. Arranging input features as 
2D array helps to discover localized features which repeat themselves all over the input. 
DCNNs differ from other classifiers as their weights are shared among all locations of the 
input preserving spatial locality. The latent representations generated by DCNN for 
classification are more sensitive to transitive relationships of features and help DCNNs to 
learn high level relationships between global features which would otherwise be ignored by 
other classifiers. As DCNNs can use GPUs for training, the training time of network with 2D 
input is not that different from a classical SVM or K-NN classifier. The evidence of 
abovementioned fact is presented in results section where training and testing times of 
classifiers are discussed.  

For converting network Dataset to corresponding image dataset, our first goal is to 
create a mapping 𝐹𝐹:Φ → 𝐼𝐼, where 𝐼𝐼  represents image Dataset corresponding to Φ 𝑎𝑎𝑎𝑎𝑑𝑑  
Φ = {𝜙𝜙𝑛𝑛}𝑛𝑛=1𝑁𝑁  is the preprocessed network flow Dataset. To achieve image representation 𝐼𝐼 
corresponding to each training instance, vector v1 of length 41 is generated from the 
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preprocessed entries of dataset features and replicated 3 times to generate a corresponding 
vector of 123 features which is converted to a vector �̅�𝑣 of 128 after concatenating first 5 
features. For each training/testing instance, �̅�𝑣 is replicated to generate corresponding 32x32 
greyscale representation. After transforming Φ → 𝐼𝐼, the label data was preprocessed according 
to two-class structure. The result of label transformation is represented by 𝑦𝑦 = { 𝑦𝑦𝑛𝑛 ∈ {0,1}𝑀𝑀} 
where M denotes the total number of classes.  The entry of vector 𝑦𝑦𝑛𝑛is zero if corresponding 
image belongs to normal traffic and 1 otherwise. Both Test Datasets NSLKDDTest+ and 
NSLKDDTest21 were also subjected to same preprocessing. 

3.2 Model Architecture 
Proposed IDS approach uses a DCNN with an input layer, 3 pairs of conv-subsample layers, 3 
fully connected layers and an output layer with one sigmoid unit. The input plane receives 
preprocessed NSLKDD training dataset records in the form of 32x32 greyscale images as 
described earlier. 

 
Fig. 1. Architecture of Proposed Deep Convolutional Neural Network (DCNN) for Intrusion Detection 

With local receptive fields, earlier layer neurons can extract elementary features which are 
combined by subsequent CNN layers to form higher-order features. DCNN used in our study 
is inspired by LeNet-5 [31] but contains heavy modifications in form of hyper-parameter 
selection and regularization. Modifications include different input shape, different 
convolution kernels at each convolution layer, different activation and objective functions and 
a dropout layer to minimize overfitting. Each layer consists of trainable parameters and nodes 
as described in Table 3. We use LeNet-5 nomenclature to name layers of DCNN for 
description purpose where convolution layers are labeled as Cx, subsampling layers as Sx, 
dropout layers as Dx and Fully connected layers FCx. 

Table 3. Parameters for Individual layers of CNN used for Intrusion Detection 

Layer Name : Function Output 
Shape 

Trainable Parameters 
(Weights) 

C1: Convolution layer with 3x3 kernels and 16 feature maps 16, (32,32) ((2*2)+ 1)*16 = 80 
S2: Subsampling layer with 2x2 non-overlapping kernel 16, (16,16) 0 (Sub-sampling) 
C3: Convolution layer with 3x3 kernels and 64 feature maps 32, (16,16) (((2x2)*16)+1)*32 =2080 
S4: Subsampling layer with 2x2 non-overlapping kernel 32, (8,8) 0 (Sub-sampling) 
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C5: Convolution layer with 3x3 kernels and 64 feature maps 64, (8,8) (((2x2)*32)+1)*64 =8256 
S6: Subsampling layer with 2x2 non-overlapping kernel 64, (4,4) 0 (Sub-sampling) 
Model Flattening 1024,1 Not Applicable 
D1: Dropout layer with 0.5 drop probability  Dropout Layer 
FC7: Fully connected layer  128 ,1  (1024 +1 )*128=131200 
FC8: Fully connected layer  16 ,1  (128 +1 )*16=2064 
Output: Fully connected layer  1 (16 +1 ) *1=17 

Input is shaped as 32x32 greyscale image. Layer C1 contains 16 feature maps where each 
feature map is connected to a 2x2 neighborhood region of input image. All convolution layers 
of DCNN use zero-padding for alignment of input-output shapes. S2 is a subsampling layer 
with 16 feature maps of size 32x32 and each feature map is connected to a 2x2 
non-overlapping region in corresponding feature map is C1 which results in 16 feature maps of 
32x32. Layer C3 is convolutional layer containing 32 feature maps and each feature map of C3 
corresponds to outputs of a different kernel function operating at several 2x2x16 regions of S2 
layer. Layer S4 is a sub-sampling layer of 32 3x3 feature maps and each feature map is 
connected to a 2x2 non-overlapping region in C3. Layer C5 performs convolution over the 
output of S4 to generate 64 feature maps. The model is flattened to generate first fully 
connected layer of 1024 units as shown in Fig. 1. A dropout layer D1 is placed between 
flattened model and first fully connected layer FC7. Layer D1 is a regularization layer using 
drop out regularization introduced by Srivastav et al [32]. D1 regularization layer randomly 
drop units from the DCNN along with their weights during training time. This has the effect of 
training an ensemble of neural networks were each member of ensemble is a subset of original 
neural network. At test time, it is easy to approximate predictions of all ‘thinned’ subsets by 
simply using an un-thinned original network with smaller weights. The last two layers are 
fully connected layers. FC8 is a traditional multilevel perceptron layer. In fully connected 
layers every neuron in the previous layer is connected to every neuron of next layer. The 
output from convolution and sub-sampling layers extract deep features of the input image and 
fully connected layers use these features for classifying input image. Output layer is a binary 
classification layer with single sigmoid neuron unit who’s on-off state provide class 
information of input NSLKDD image instance. 

3.2 Hyper-Parameter Selection 
In process of deep learning, hyper parameters include such ‘higher-level’ properties of the 
model which cannot be learned from training set but have profound impact on learning 
capacity and accuracy of the model. Some hyper-parameters include learning rate of model, 
non-linearity, choice of objective function, regularization, parameter update method 
(optimizer), initial weight initializations, mini-batch size of input and number of training 
epochs to name a few.  A learning algorithm 𝒜𝒜 maps 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛from 𝐺𝐺𝑥𝑥 to 𝑓𝑓 through optimization 
of hyper-parameters 𝜆𝜆.  The problem of determining good values for 𝜆𝜆  is called 
Hyper-parameter optimization. 

𝜆𝜆(∗) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜆𝜆∈∧ℰ~ 𝐺𝐺𝑥𝑥  [ℒ(𝑥𝑥;𝒜𝒜𝜆𝜆(𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛)) ] 

In general it is difficult to perform optimization implied by above-mentioned equation. With 
respect to expectation over 𝐺𝐺𝑥𝑥 , the technique of replacing expectation with mean over 
validation set 𝑋𝑋𝑣𝑣𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣  whose elements are drawn I.I.Ds , where 𝑥𝑥 ~ 𝐺𝐺𝑥𝑥  is used, is called 
cross-validation. The hyper-parameter problem in general is addressed by following 
equations. 
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𝜆𝜆(∗) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜆𝜆∈∧𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥∈𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  �ℒ �𝑥𝑥;𝒜𝒜𝜆𝜆(𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛)�� 
= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜆𝜆∈∧ Ψλ 

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜆𝜆∈ 𝜆𝜆(1),…,𝜆𝜆(𝑆𝑆) ≈ �̂�𝜆 

Knowing little about hyper-parameter response surface Ψ or search space ∧, the dominant 
strategy is to choose some number (S) of trial points 𝜆𝜆(1), … , 𝜆𝜆(𝑆𝑆), to evaluate Ψ(𝜆𝜆) for each one, 
and return the Hyper-parameter set 𝜆𝜆  that produced best results as �̂�𝜆 . Commonly used 
strategies for hyper-parameter optimization are grid-search and manual search, but their 
effectiveness is limited. Grid search forms the set of trials by assembling every possible 
combination of hyper-parameter values which results in exponential increase in trials and 
require enormous computing resources. Manual search, on the other hand, suffers the 
draw-back of difficulty in reproducing results. 
Bergstra and Bengio [33] purposed Random-Search strategy for choosing trial-set 
(𝜆𝜆(1), … , 𝜆𝜆(𝑆𝑆)). As the uncertainty arising from 𝑋𝑋𝑣𝑣𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣 being a sample from 𝐺𝐺𝑥𝑥 makes the test-set 
score of best model among 𝜆𝜆(1), … , 𝜆𝜆(𝑆𝑆) a random variable 𝑧𝑧, this 𝑧𝑧 is modeled by a Gaussian 
mixture model whose S components have means 𝜇𝜇𝑠𝑠 = Ψ(𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡)(𝜆𝜆(𝑠𝑠)) , variance  𝜎𝜎𝑠𝑠2 =
 𝒱𝒱(𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡)�𝜆𝜆(𝑠𝑠)� and weights 𝑊𝑊𝑠𝑠. The performance z of best model in an experiment of S trials 
has mean 𝜇𝜇𝑧𝑧 and standard error 𝜎𝜎𝑧𝑧2 given by following equations: 

𝜇𝜇𝑧𝑧 =  Σ𝑠𝑠=1𝑆𝑆 𝜔𝜔𝑠𝑠𝜇𝜇𝑠𝑠 and 

𝜎𝜎𝑧𝑧2 =  Σ𝑠𝑠=1𝑆𝑆 𝜔𝜔𝑠𝑠 (𝜇𝜇𝑠𝑠2 + 𝜎𝜎𝑠𝑠2) −  𝜇𝜇𝑧𝑧2 

The weights 𝜔𝜔𝑠𝑠 can be estimated by drawing validation scores Z(s) from general normal 
distribution with means Ψ(𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡)(𝜆𝜆(𝑠𝑠)) and variance 𝒱𝒱(𝑡𝑡𝑚𝑚𝑠𝑠𝑡𝑡)�𝜆𝜆(𝑠𝑠)� and counting how often 
trial generates a winning score. According to [33] validation scores are typically relatively 
close and few tens of hypothetical draws are sufficient. As compared to Grid-Search, 
Random-search strategy make efficient use of limited computational budget to find better 
model parameters by performing effective search over otherwise large configuration space. 
We employed Random-search strategy for hyper-parameter optimization and implementation 
details and results of hyper-parameter tuning are provided in implementation section. 

4. Implementation 
This section describes the experiment setup, implementation details and hyper-parameters 
fine-tuning process of the model described in Fig. 1. 

4.1 Experimental Setup 
Hardware setup used for implementing proposed model included:  

• CPU : Intel Xeon E-1650 Quad Core 
• RAM : 16 GB 
• GPU : nVidia GTX 1070 with 1920 CUDA cores and cuda 8.0 

Software toolchain used to implement the model consist of IPython development environment 
using Keras 2.0 on Theano [34] backend and nVidia cuda 8.0 [35] Training and testing data is 
manipulated in form of numpy arrays. Python Sci-kit learn library is used to implement other 
classifiers for comparisons. 
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4.2 Hyper-Parameter Optimization 
For Hyper-parameter optimization of proposed IDS, randomized search approach devised by 
Bergstra et al. [33] is employed. Randomized search approach efficiently uses limited 
computational budget to find better model parameters by performing effective search over 
otherwise large configuration space. Table 4 provides top 5 models and their 
hyper-parameters along with accuracy on Training Dataset selected by randomized search 
algorithm. 
 

Table 4. Hyper-parameters of Top five models selected by RandomizedSearch Algorithm 

Sr
# Activation Kernel_init Bias Optimiz

er Batch Epoch Learn 
rate 

Loss 
Function 

Train 
Accuracy 

1 Softsign He_normal Yes Adadelta 64 15 0.1 L2 Loss 0.9845 

2 softsign glorot_normal Yes Adadelta 128 10 0.1 Binary 
Crossentropy 0.9823 

3 softsign Lecun_uniform Yes Adam 256 15 0.01 L2 Loss 0.9766 
4 relu glorot_uniform No  Adamax 128 10 0.01 L2 Loss 0.9712 
5 tanh glorot_normal Yes Adam 128 10 0.05 MSE 0.9626 

 
The selected hyper-parameters include softsign activation, He_normal kernel initialization, 
Adadelta optimizer with batch size of 64 instances. Although learning rate of 0.1 was part of 
configuration space, Adadelta does not require learning rate. Additional hyper-parameters of 
proposed model included output layer of single sigmoid unit, drop-out rate of 0.5 and 
zero-padding at each convolution layer input. A brief introduction of selected 
hyper-parameters is as follows: 
Softsign.  
Softsign is a non-linearity which is considered an alternative to tanh because of its resistance 
to saturation as compared to hard-clipped functions because of its smoother asymptotes. 
Softsign is represented by following equation: 

𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 (𝑥𝑥) =
𝑥𝑥

1 + |𝑥𝑥|
 

He_Normal.  
He_normal is a kernel initialization scheme proposed by [36] which is built on the work of 
[37], and allows for faster convergence of deeper CNNs. In forward propagation case, the 
central idea of He_normal is to investigate the variance of the responses in each layer and 
design initialization in a way that should avoid reducing or magnifying the magnitudes of 
input signals exponentially.  This is achieved by drawing initializations from a zero-mean 

normal distribution whose standard distribution is �2
𝑛𝑛𝑣𝑣

.  For 𝐿𝐿  layers put together, the 

initialization design must assure that variance of response of Lth layer conforms to following 
equation: 

𝑉𝑉𝑎𝑎𝑎𝑎[𝑦𝑦𝐿𝐿] = 𝑉𝑉𝑎𝑎𝑎𝑎[𝑦𝑦1]. �Π𝑣𝑣=2𝐿𝐿 1
2
𝑎𝑎1𝑉𝑉𝑎𝑎𝑎𝑎[𝑤𝑤𝑣𝑣]�  

The above product is expected to take a proper scalar (e.g. 1). As described by [36], a 
sufficient condition is given as follows: 

1
2
𝑎𝑎𝑣𝑣  𝑉𝑉𝑎𝑎𝑎𝑎[𝑤𝑤𝑣𝑣] = 1 ∀𝑙𝑙 ∈ 𝐿𝐿 
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Fulfilling abovementioned condition enables kernel initializations which provide many 
desirable properties for training deep CNNs. 

Adadelta.  
Adadelta is parameter update mechanism proposed by [38] which provides per-dimension 
learning rate method for gradient descent. According to [38], Adadelta dynamically adapts 
over time using only first order information and produces minimal computational overhead 
without requiring manual tuning of learning rate and shows robustness to noisy gradient 
information, various data modalities, different model architectures and selection of 
hyper-parameters. Adadelta is represented by following equation: 

Δ𝑥𝑥𝑡𝑡 =  −
𝑅𝑅𝑅𝑅𝑆𝑆[Δ𝑥𝑥]𝑡𝑡−1
𝑅𝑅𝑅𝑅𝑆𝑆[𝑎𝑎]𝑡𝑡  

 

where Δ𝑥𝑥𝑡𝑡  is parameter update at time t, and 𝑅𝑅𝑅𝑅𝑆𝑆[𝑎𝑎]𝑡𝑡 is exponentially decaying average of 
RMS at t.  

L2 Loss:  
L2 loss is an objective/loss function which is minimized by updating weights through 
back-propagation. It is defined as the mean of absolute squared differences between true labels 
and predicted labels of classifier. L2 Loss is computed by taking the average of all squared 
differences as shown below. 
    𝐿𝐿(𝑤𝑤) =   𝐸𝐸||𝑦𝑦 −  𝑦𝑦�|| 2 

where 𝑦𝑦 represents actual labels, 𝑦𝑦� represents predictions of classifier and 𝐸𝐸 represents 
expectation. L2 Loss has the intuitive interpretation of heavily penalizing peaky weight 
vectors and preferring diffuse weight vectors, hence encouraging the network to use all of its 
inputs a little rather that some of its inputs a lot. 

4.3 Classifier implementations for comparison 
For comparisons, we used Sci-kit learn [39] implementations of eleven Binary classifiers and 
trained them on un-raveld version of Training Datasets.  These classifiers included Extreme 
Learning Machine [10] with three different hidden layers namely MLP layer, RBF layer and 
Generalized layer [40], RBF SVM, k-NN with 08 neighbors, Decision Tree (J48) with 5 node 
depth, Naïve Bayes, Random-Forest with 10 J48 estimators, Quadratic Discriminant Analysis 
and Mulitlevel perceptron classifiers. Important hyper-parameters for these shallow models 
are presented in Table 5. 

5. Experimental Results and Evaluations 
This section presents the results of the model and relevant comparisons with state of art. As 
mentioned earlier, to the best of our knowledge, DCNNs have not been used for intrusion 
detection problem so we implemented and trained other classifiers mentioned in previous 
section with same training and testing Dataset. Performance comparisons with IDS proposed 
in literatures are also provided.  
For classification, accuracy is considered a harsh metric so other prominent metrics for quality 
of binary classification including Receiver Operating Characteristic (ROC), Area under Curve 
(AuC), Precision-Recall Curve and mean Average Precision (mAP) is provided. These 
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evaluation metrics are calculated using confusion matrix which presents four measures as 
follows: 

• True Positive: if an anomaly is classified by model as an anomaly, result is accepted as 
TP 

• False Positive: if a normal instance is classified by model as an anomaly, result is 
accepted as FP 

• True Negative : if an anomaly is classified by model as normal instance, result is 
accepted as TN 

• False Negative: if a normal instance is classified by model as normal instance, result is 
accepted as FN 

Accuracy. Accuracy is defined as ratio of the number of correctly classified anomalous and 
normal instances to total number of all instances. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝐴𝐴𝑦𝑦 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

(𝑇𝑇𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑁𝑁𝑠𝑠𝐴𝐴𝑎𝑎𝑡𝑡 + 𝐴𝐴𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑙𝑙𝑠𝑠𝐴𝐴𝑠𝑠𝑁𝑁𝑠𝑠𝐴𝐴𝑎𝑎𝑡𝑡)
 

True positive Rate (TPR): TPR is also called sensitivity or recall and it is defined as TP/ 
(TP+FN). This metric corresponds to the proportion of positive data points that are correctly 
considered as positive, with respect to all positive data points. 

False Positive Rate (FPR): FPR is defined as FP/ (FP+TN). This corresponds to the 
proportion of negative data points that are mistakenly considered as positive, with respect to 
all negative data points. Both FPR and TPR are used to calculate ROC curve and Area under 
ROC curve.  
Results of all previously mentioned classifiers are taken on both NSLKDDTest+ and 
NSLKDDTest21 datasets and comparison is provided thereof. 
 

Table 5. Important parameters for other Binary classifiers used for comparison 

Classifier Hyper-Parameters 
Decision Tree Max Depth=5 , Split Quality Measure = ‘gini’,  Max features 

considered for each best split = 8 
Random Forest Max Depth =5, No. of Estimators = 10, Split Quality Measure = 

‘gini’,  Max features considered for each best split = 5 
QDA Priors=None, Regularization Parameter = 0.01, Rank Estimation 

Threshold = 0.0001 
Multilevel 
Perceptron 

Hidden layer Units = 100, Activation = relu, Solver = Adam, L2 
Penalty = 0.01, Learning rate = 0.001, epochs = 200 

Nearest 
Neighbor 

Neighbors = 8, Algorithm = Ball Tree, Leaf size = 30, Distance 
Metric = Minkowiski 

RBF SVM Kernel = RBF, Gamma = 1/41, epochs = 2000, Length scale =1, 
Length scale bounds = (1e-5, 1e5) 

Naïve Bays Default scikit-learn parameters 
ELM MLP Hidden Layer Units = 512, activation=Tanh, Hidden Layer= MLP,  

epochs = 100 
ELM RBF Hidden Layer Units = 512, activation=Tanh, Hidden Layer= RBF, 

epochs = 100 
ELM 
Generalized 

Hidden Layer Units = 512, activation=grbf, epochs = 100 , Creates a 
random layer of radial basis function units proposed by Navarro et 
al.[40] 
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5.1 Receiver Operating Characteristics (ROC) Curve 
RoC is a plot of False positive rate (FPR) against True positive rate (TPR) of binary classifiers 
which shows a trade-off between sensitivity and specificity of classifier. The closer the RoC 
curve is to top-left border, the better the quality of predictions by the classifier. RoC curves of 
implemented classifiers for both NSLKDDTest+ and NSLKDDTest21 dataset are shown in 
Fig. 2 and Fig. 3 respectively. 

 
Fig. 2. Comparison of Receiver Operating Characteristics of various classifiers on NSLKDDTest+ 

Dataset (Top left Bold line shows the results of proposed DCNN based IDS) 

 
Fig. 3. Comparison of Receiver Operating Characteristics of various classifiers on NSLKDDTest21 

Dataset (Top-left Bold line shows the results of proposed DCNN based IDS) 
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In Fig. 2, closest graph to top left border is that of DCNN model followed by Random-Forest 
and SVM with Radial Basis kernel which shows superior performance of proposed approach 
in comparison with remaining classifiers to make quality predictions. 
Proposed DCNN model again outperforms other classifiers in Fig. 3 which show the RoC 
curves of algorithms for NSLKDDTest21 dataset. Best RoC ratio is that of proposed DCNN 
model followed respectively by SVM with RBFKernel and k-NN classifier. 
 

5.2 Area under ROC Curve (AuC) 
Area under RoC Curve (AuC) is a measure of how well a binary classifier can predict labels 
(i.e Anamolous and Normal traffic). The AuC of a classifier is equal to the probability that the 
classifier will rank a randomly chosen positive (Anomalous) record higher than a randomly 
chosen negative (Normal) one. A perfect binary classifier has AuC =1 and any value of AuC < 
0.5 shows bad performance of classifier. A larger AuC is usually better. Value greater than 
0.80, 0.90 and 0.95 is deemed good, very good and excellent respectively. The AuC values for 
both NSLKDDTest+ and NSLKDDTest21 datasets are shown in legends part of Fig. 2 and Fig. 
3. Top 5 AuC scores for both test datasets are shown in Table 6 which depicts the 
improvement of DCNN based IDS. 
 
Table 6. Top 5 Area under RoC Curve results among implemented Classifiers for NSLKDDTest+ and 

NSLKDDTest21 Datasets 

Classifier Name AuC for 
NSLKDDTest+ 

Classifier Name AuC for 
NSLKDDTest21 

DCNN 0.965 DCNN  0.926 
Random-Forest 0.958 RBF SVM 0.867 
RBF SVM 0.920 k-NN 0.825 
Decision Tree 0.915 ELM Generalized 0.807 
MLP 0.887 ELM RBF 0.803 

 

5.3 Accuracy 
Accuracy results of implemented classifiers are shown in Fig. 4. As shown in figure, DCNN 
based IDS retains top accuracy for both NSLKDDTest+ and NSLKDDTest21 datasets. 
Proposed DCNN showed accuracy of 85.22% for NSLKDDTest+ and 69.59% for 
NSLKDDTest21 respectively. The sharp difference in Accuracies between NSLKDDTest+ 
and NSLKDDTest21 in all models is due to the fact that NSLKDDTest21 contains records for 
attack types not available in other NSLKDD train and test Datasets. These attack types include 
processtable, mscan, snmpguess, snmpgetattack, saint, apache2, httptunnel, back and 
mailbomb.  This means that trained models have never seen these attacks during training as 
they were not available in training data. 
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Fig. 4. Comparison of Classification Accuracy of Algorithms for NSLKDDTest+ and NSLKDDTest21 

Datasets 

Comparison of DCNN based IDS with Accuracy results reported in literature is shown in 
Table 7 while Table 8 shows the hyper parameters of DNN based models of Intrusion 
Detection from Lieterature. 

Table 7. Comparison with reported accuracies from literature 

Classifier Test+ (%) Test21 (%) Classifier Test+ (%) Test21 (%) 
DCNN(Proposed) 85.22 69.56 Random Tree [16] 82.02 66.16 
J48 [16] 81.05 63.97    
Naïve Bays [16] 76.56 55.77 NNRw1 [22] 82.41 67.06 
Random Forest[16] 80.67 63.25 NNRw2 [22] 84.12 68.82 
MLP [16] 77.41 57.34 Deep Autoencoder 

(AE) [25] 
83.34 Not 

Reported 
SVM [16] 69.52 42.29 Denoising AE [41] 88.65 Not 

Reported 
 

Table 8. Hyper-Parameters of DNN based models from Literature 

Model Parameters 
NNRw1[22] Fuzziness methodology, Uniform distribution for 

weight and biases, Init Interval= [0, 𝜃𝜃] 
NNRw2[22] Clustering for flag and services feature, Fuzziness 

methodology, Uniform distribution for weight and 
biases, Init Interval= [0, 𝜃𝜃] 

Deep Autoencoder[25] Reduced Boltzmann Machines with 10 
Bernaulli-Gaussian unit for bottleneck layer, 
Layer-wise pre-training, Loss Function = Binary 
Crossentropy, Epochs 1500, K-NN Classification 
layer 

De-noising Autoencoder [41] Hidden layer units = 30, Noise Rate = 10% 
 

5.4 Precision-Recall Curve and Mean Average Precision 
Precision is a measure of relevancy of results, while recall is a measure of how many truly 
relevant results are returned. High precision relates to a low false positive rate, and high recall 
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relates to a low false negative rate. High scores for both show that the classifier is returning 
accurate results (high precision), as well as returning a majority of all positive results (high 
recall). Each classifier exhibits a trade-off between precision and recall. Due to the fact that 
individually both Precision and Recall provide only a puzzel piece of classifier performance, 
they are combined to form Precision-Recall curve which presents relationship between them 
in more meaningful manner. The relationship between recall and precision can be observed in 
the stairstep area of Precision-Recall curve - at the edges of these steps a small change in the 
threshold considerably reduces precision, with only a minor gain in recall.   

 
Fig. 5. Precision-Recall Curve of IDS classifiers for NSLKDDTest+ Dataset (Top-right to left bold line 

shows the curve for proposed Deep convolution neural network for intrusion detection) 

 
Fig. 6. Precision-Recall Curve of IDS classifiers for NSLKDDTest21 Dataset (Top-right to left bold 

line shows the curve for proposed DCNN for IDS) 

Perfect precision-recall curve (PRC) shows combination of lines from top-left corner to 
top-right corner and further down in precision-recall space. This means that a classifier 
showing abovementioned pattern of PRC maintain a high recall rate as well as high precision 
rate on different thresoholds. Fig. 5 shows precision-recall curves of classifiers for 
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NSLKDDTest+ dataset and mean Average Precision (mAP) which is shown as area under 
precision-recall curve in legends section of Fig. 5.  Fig. 6 shows the same for NSLKDDTest21 
dataset. As depicted in figures, PRC of proposed DCNN maintained both higher sensitivity 
and higher precision on different thresholds of the stairstep. This result is also supported by 
highest scores of Area under PRC achieved by DCNN which are 0.97 and 0.98 for 
NSLKDDTest+ and NSLKDDTest21 respectively.Top 5 mAPs (Area under Precison-Recall 
curve) are shown in Table 8. 

Table 9. Top 5 mean Average Precision values (mAP) among implemented Classifiers for 
NSLKDDTest+ and NSLKDDTest21 Datasets (mAP is also known as Area under Precision-Recall 

Curve) 

Classifier Name mAP  for 
NSLKDDTest+ 

Classifier 
Name 

mAP for 
NSLKDDTest21 

Proposed DCNN  0.97 Proposed 
DCNN  

0.98 

Random Forest 0.96 RBF SVM 0.94 
Decision Tree 0.92 ELM RBF 0.93 
k-NN 0.90 ELM Gen 0.93 
RBF SVM 0.89 Random Forest 0.93 

5.4 Timing for Model Training and Evaluation 
In this sub-section, we provide the training and testing time of algorithms used in this study.  
 

 
Fig. 7. Training Time in seconds for Different algorithms used in experiments 

For DCNN, GPU is used as training and testing device while remaining classification 
algorithms were trained and tested using CPU. SVM with RBF kernel proved to be the most 
expensive algorithm for training the model and took approximately 314 seconds. Proposed 
DCNN model was trained for 20 epochs using GPU in 139 seconds. Remaining algorithms 
took each under 100 seconds for training. Training times of classification algorithms used in 
this study are shown in Fig. 7.  
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018                              5175 

 

 
Fig. 8. Test Time for Different algorithms used in experiments for both NSLKDDTest+ and 

NSLKDDTest21 Datasets 

For evaluation of test Datasets, k-NN proved to be the most expensive algorithm and took 
approximately 8 and 4 seconds for NSLKDDTest+ and NSLKDDTest21 datasets respectively. 
DCNN took 1.39 and 0.71 seconds for evaluating above-mentioned test Datasets. The fastest 
evaluation was performed by Decision Tree algorithm, which took 5 and 3 milliseconds for 
evaluating test datasets. Evaluation times for classification algorithms used in this study are 
shown in Fig. 8. 

From the results and comparisons shown in figures, it can be inferred that DCNNs show 
promise as new technology for information security in general and for intrusion detection in 
particular. Proposed model showed better or comparable results with already established 
techniques and methods for anomaly detection. 

6. Conclusion 
In this paper, we proposed, implemented and analyzed a deep convolutional neural network 
(DCNN) based intrusion detection system (IDS). Proposed DCNN model was trained using 
GPU on NSLKDD training dataset and evaluation of the same was performed on 
NSLKDDTest+ and NSLKDDTest21 datasets. Performance of DCNN was compared with 
results from literature and other classification algorithms using well-known metrics including 
Receiver operating characteristics (RoC) curve, Area under RoC curve (AuRoC), Accuracy, 
precision-recall-curve and mean Average precision. Proposed model achieved classification 
accuracy of 85.22 % and 69.56% for NSLKDDTest+ and NSLKDDTest21 respectively. 
Results showed that like other application domains, DCNNs are a promising technology for 
information security applications. Our future research will be directed towards investigating 
DCNNs and other deep neural network architectures as feature engineering constructs from 
raw network data and comparing quality of extracted deep network features with conventional 
network traffic features for information security applications. 
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